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Additional methods

Definition of trimesters

The trimesters considered in the analyses are periods of 13 weeks, defined so that the 
winter trimester best covers the typical period of flu epidemics in northern countries. 
Northern countries are defined as countries with latitude above the Tropic of Cancer. The 
winter trimester is identified based on FluNet data from 1995 to 2019, as follows. For each of
the 365 possible starting dates of the trimester (a window of 91 days), we computed the 
annual proportion of positive cases falling in the period, averaged over all northern countries 
and years. We then define the winter trimester as the one that contains the highest annual 
proportion of positive cases. The spring, summer and autumn trimesters are identified 
accordingly. Also, we verified that the summer trimester according to this definition roughly 
contains the highest proportion of positive cases for southern countries. The winter, spring, 
summer and autumn trimesters obtained begin the first Monday following 12 December, 12 
March, 11 June and 11 September, respectively. Certain years have 53 weeks instead of 52,
thus trimesters may occasionally have 14 weeks. 

Details on the computation of the log relative influenza level

Data reported on FluNet were partial or not consistent in some cases. Number of processed 
tests was sometimes different from the sum of positive and negative tests. In this case, the 
sum of positive and negative tests was used as the number of processed tests. When one of
the three records (processed, positive and negative tests) was missing, this could be 
computed from the other two. The number of processed tests, when missing, was computed 
from the sum of positive and negative tests, the number of positive tests, when missing, was 
computed from the difference between processed and negative tests (provided the former 
was larger or equal to the later), and so on. We discarded weeks in which only processed 
and either positive or negative tests were present and the number of processed tests was 
smaller than the number of positive/negative tests. We also discarded weeks with only one 
record. Russia showed some irregularities with certain weeks having the number of 
processed tests nearly equal to the number of positive tests differently from the preceding or 
following weeks, signalling sudden changes in the data collection and sharing protocol. 
These weeks were removed from the analysis.

Before calculating the percentage of positive influenza tests, 0.5 positive cases are added to 
each country-trimester, so that the positivity rate always results greater than zero. This 
allows distinguishing countries without influenza and with a massive surveillance system 

from countries without influenza but processing only a few tests.

When working with percentages - e.g. the percentage of influenza positive samples or the 
percentage of annual influenza samples falling in a certain trimester - the centre of the 
distribution was computed from the closure of the geometric mean, that was proved to be a 
BLU (best linear unbiased) estimator, unlike the standard arithmetic mean [1].

Definition of covariates

Definition of the covariates included in the main analyses:
● age: median age of population, UN projection for 2020.
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● longitude: longitude of the centre of population of the country in degrees, from -180 
(W) to 180 (E). Longitude of the country is computed as the average longitude of all 
the cities of the country with more than 300K inhabitants. The average is weighted for
the population size of each city. If there are no cities in the country with at least 300K 
inhabitants, the longitude of the capital is considered.

● latitude: latitude of the centre of population of the country in degrees, from -90 (S) to 
90 (N). The latitude is calculated analogously to longitude.

● T: average temperature (in Celsius degrees) of the country-trimester. For each 
country, the temperature is computed as the average temperature of all the cities 
within the country with more than 300K inhabitants, weighted by the population size. 
If there are no cities in the country with at least 300K inhabitants, the capital is 
considered. Temperature data are taken from the ERA5 dataset, which provides 
hourly estimates of weather variables for all locations identified by a regular lat-lon 
grid of 0.25 degrees. The temperature of a city is calculated by looking at the closest 
grid point to the city and averaging the temperatures for the hours 0h00, 6h00, 12h00
and 18h00 of each day of the trimester.

● RH: average relative humidity, computed analogously to the temperature.
● IDVI: Score for the preparedness of a country in facing infectious diseases, from 0 

(most vulnerable) to 1 (less vulnerable).
● COVID-19 daily cases: number of reported daily cases of COVID-19 per million of 

inhabitants averaged over the trimester.
● workplace presence reduction: median over the trimester of the daily percentage 

reduction of presence at workplaces. 
● reduction of international flights: average percentage of reduction in the inbound 

and outbound air passengers of the country for each trimester with respect to the 
same trimester of 2019. The reduction for a trimester is calculated as the weighted 
average of the monthly reduction for the 4 months covering the trimester, with first 
and last months of the trimester, partially covered by the trimester, weighted 0.5, 
while the other months, fully covered by the trimester, weighted 1. The reduction for 
the month m and year y=2020,2021 is defined as 1−wm, y /wm ,2019, with w being the 
number of passengers flying to or from the country.

● nb days of school closure: number of days over the trimester when policies related 
to schools and universities closure were implemented. The OxGRT dataset provides 
2 daily variables: (i) the level of severity of the policy as measured on an ordinal 
scale (0=no measure, 1=altered openings for schools, 2=closing certain 
levels/categories of schools, 3=complete closure), and (ii) the geographical scope, 
i.e. whether that policy is enforced locally or nationally. Based on the values of these 
variables different definitions of school closure are possible - severity equal or above 
1, 2, or 3, and each of these severity levels being implemented either locally or 
nationally. To choose the most convenient definition we used an unsupervised 
approach. We first computed the number of days with school closure for each data 
point (country-trimester) for all possible definitions. We then computed the 
distribution of the number of days with school closure over all data points and picked 
the definition with maximum resolution power, i.e. that maximises the number of 
observations with values not falling in the extremes. We obtained that schools are 
considered to be closed if certain levels/categories of schools were closed on a 
national scale or if there was at least one complete closure on a local scale.

● nb days of workplace closure: The severity levels defined in the OxGRT dataset 
were: 0=no measures, 1=recommend closings, 2=require closing for some 
sectors/categories of workers, 3=require closing for all-but-essential workplaces. 
With the unsupervised procedure described for school closure we obtained that 
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workplaces were defined as closed for stringency level at least 2 nationwide, or for 
stringency level 3 locally.

● nb days of public event restrictions: The severity levels defined in the OxGRT 
dataset were: 0=no measures, 1=recommend cancelling, 2=require cancelling. With 
the unsupervised procedure we obtained that public events were defined as closed 
when there was a countrywide enforcement. 

● nb days of gathering restrictions: The severity levels defined in the OxGRT 
dataset were: 0=no restrictions, 1=restrictions above 1000 people, 2=restrictions 
between 101-1000 people, 3=restrictions between 11-100 people, 4=restrictions on 
gatherings of 10 people or less. With the unsupervised procedure we defined as 
gatherings restriction a nationwide ban of gatherings of more than 100 people.

● nb days of public transport restrictions: The severity levels defined in the OxGRT 
dataset were: 0=no measures, 1=recommend closing, 2=require closing. With the 
unsupervised procedure we obtained that public transports were defined as closed 
when a recommendation (level 1) was issued at local or national level.

● nb days of stay at home requirements: The severity levels defined in the OxGRT 
dataset were: 0=no measures, 1=recommend not leaving house, 2= require not 
leaving house with exceptions for 'essential' trips, 3=require not leaving house with 
minimal exceptions. With the unsupervised procedure described for school closure 
we obtained that staying at home was implemented for severity level 1 or more, 
locally or nationally.

● nb days of international travel restrictions: The severity levels defined in the 
OxGRT dataset were: 0=no restrictions, 1=screening arrivals, 2=quarantine arrivals 
from some or all regions, 3=ban arrivals from some regions, 4=ban on all regions or 
total border closure. With the unsupervised procedure we obtained that international 
travels were defined as enacted for severity level 3 or 4. 

● nb days of facial covering requirements:  The severity levels defined in the 
OxGRT dataset were: 0=no policy, 1=recommended, 2=required in some specified 
shared/public spaces with other people present, 3=required in all shared/public 
spaces with other people present, 4=required at all times regardless of location or 
presence of other people. With the unsupervised procedure we obtained that mask 
use was implemented for severity level 3 or 4.

● nb days of testing implementation: The severity levels defined in the OxGRT 
dataset were: 0=no testing policy, 1=only those who both (a) have symptoms AND 
(b) meet specific criteria, 2=testing of anyone showing COVID-19 symptoms, 3=open
public testing. With the unsupervised procedure we obtained that testing policies 
were defined as implemented for stringency level 3.

● nb days of contact tracing implementation: The severity levels defined in the 
OxGRT dataset were: 0=no contact tracing, 1=not for all cases, 2=contact tracing for 
all identified cases. With the unsupervised procedure we obtained that contact 
tracing was defined as implemented for severity level 2.

● nb days of elderly shielding: The severity levels defined in the OxGRT dataset 
were: 0=no measures, 1=recommended isolation, hygiene, and visitor restriction 
measures in LTCFs and/or elderly people to stay at home, 2=narrow restrictions for 
isolation, hygiene in LTCFs, some limitations on external visitors and/or restrictions 
protecting elderly people at home, 3=extensive restrictions for isolation and hygiene 
in LTCFs, all non-essential external visitors prohibited, and/or all elderly people 
required to stay at home and not leave the home with minimal exceptions, and 
receive no external visitors. With the unsupervised procedure described for school 
closure we obtained that protection of elderly people was defined as implemented 
when it was enforced at least at level 2 locally or nationally.

Definition of the covariates included in the sensitivity analyses:
● COVID-19 daily deaths: number of reported daily deaths of COVID-19 per million of 

inhabitants averaged over the trimester.
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● station presence reduction: median over the trimester of the daily percentage 
reduction of presence in public transport stations and transportation hubs.

● recreation place presence reduction: median over the trimester of the daily 
percentage reduction of presence at restaurants, bars, shopping malls and other 
recreation places.

● home presence rise: median over the trimester of the daily percentage rise of 
presence in residential places.

● stringency index: average of the daily stringency index provided by OxCGRT. This 
index combines eight indicators of containment and closure policies and an indicator 
regarding the presence of public information campaigns related to the pandemic. The
daily index ranges from 0 for countries with no measures, to 100 for countries 
adopting maximally stringent policies regarding all nine indicators. Seven of the 
eleven indicators considered in the previous covariates are included in this index.

Covariate distributions: We provide in Figure S1 the distributions of the log relative influenza
level and the covariates across countries-trimesters. 
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Figure S1. Distributions of the 26 variables considered in the regression analysis, for all the 330 
observations included in the study. For each plot, summary values of the distributions are shown in the 
legend. We included here both the covariates considered in the main analysis and the covariates considered in 
the sensitivity analysis.

6

185
186
187
188



Algorithms for the regression analysis

Clustering and regression trees: We relied on the CART algorithm [2] to classify countries-
trimesters based on a target variable, here the log relative influenza level. In a nutshell, 
observations are iteratively split in groups according to a covariate selected at each iteration 
so that the intra-group variance of the target variable is minimised. We controlled the 
structure of the tree by fixing the minimum number of observations in a terminal leaf 
(minbucket) and the regularisation parameter cp in the R package rpart [3]. The two 
parameters are optimised by cross-validation. 

Cross-Validation for the hyperparameter tuning of the regression tree: The search for the 
optimal values of minbucket and cp is run over the following grid of parameters:
minbucket ∈{4≤m≤18∨m∈N } and cp∈ {0.001∗c∨0≤c≤20,c∈N }. For each point of the
parameter space, 2000 trees were generated. Each tree is created on a random sample of 
70% of the data and its prediction error (1-coefficient of determination) is calculated on the 
remaining 30% of the observations. Following Breiman' rule, the optimal tree is identified as 
the smallest tree that has mean prediction error less than the minimum error increased by its
standard deviation. The simplest tree is identified by looking at the smallest number of splits 
on average, the largest minbucket, and the largest cp, in order. The optimal parameters 
identified were cp=0.011, minbucket=4.

Variable selection through permutation risk measures for covariate importance: The Variable
Selection Using Random Forests (VSURF) algorithm has been exploited to identify the 
predictors associated with the reduction of influenza. This method evaluates the importance 
of each variable by measuring the prediction error increase when values of one variable at a 
time are permuted. This is a classical method used in the framework of Random Forests 
and, more in general, in machine learning algorithms. Also, some studies pointed out that 
permutation risk measures of variable importance are often more effective than alternative 
methods based on Sobol’s indices or Shapley values [4]. 

The VSURF algorithm was run using the following parameters: ntrees=8000, nfor.thres=100,
nfor.interpr=100, nfor.pred=100 (and mtry=6 by default). 

Additional results

Countries included in the analysis

There were 166 countries that contributed to FluNet during the period from 15 Dec 2014 to 
12 Sep 2021. All FluNet records for these 166 countries were included in Figure 1A. Upon 
filtering based on the quality and extent of the FluNet records, 112 countries were included 
in the descriptive study (Figure 1B and Figure 2). For those countries, only the trimesters 
satisfying the inclusion criteria were included. Among the 112 countries, covariates were 
available only for 93 countries. This last group of countries was included in the regression 
analysis. The list of countries discarded at each step and included among the 93 countries  
is reported in Table S1.
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Table S1. Countries included in the different steps of the study. Countries are indicated with their 3-letter 
code, OWID_KOS is for Kosovo. Countries are grouped into five regions, aggregating different influenza 
transmission zones [5]: Central and South America (Temperate South America, Tropical South America and 
Central America and Caribbean), North America and Europe (North America, Northern Europe, South West 
Europe and Eastern Europe), Africa (Northern Africa, Western Africa, Middle Africa, Eastern Africa, Southern 
Africa), Western, Southern and Central Asia (Western Asia, Southern Asia, South-East Asia, Central Asia), 
Eastern Asia and Oceania (Eastern Asia, Oceania Melanesia Polynesia).

Regression tree

Additional details of the 5-group classification: We provide in the following additional details 
on the 5-group repartition presented in Figure 4 of the main paper: the box plot of covariate 
values for observations in each group (Figure S2), and the list of countries-trimester 
belonging to each group (Table S2).
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Figure S2. Variable distributions for the five-group partitioning by means of the regression tree. For each 
variable the boxplot shows the distribution in the group. Horizontal lines show median and quartiles of the whole 
dataset for comparison.
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Table S2. Classification of countries-trimesters according to the high-level partitioning in five groups by 
means of the regression tree. Countries are grouped into five regions, aggregating different influenza 
transmission zones [5]: Central and South America (Temperate South America, Tropical South America and 
Central America and Caribbean), North America and Europe (North America, Northern Europe, South West 
Europe and Eastern Europe), Africa (Northern Africa, Western Africa, Middle Africa, Eastern Africa, Southern 
Africa), Western, Southern and Central Asia (Western Asia, Southern Asia, South-East Asia, Central Asia), 
Eastern Asia and Oceania (Eastern Asia, Oceania Melanesia Polynesia).

Full Regression Tree: The regression tree selected using the algorithm had 14 terminal 
leaves and a coefficient of determination R²=0.69. The leaves identified by the model were 
well defined (Figure S3), i.e. distinct from each other and characterised by homogeneous 
values of log relative influenza level - only for two of them the interquartile width of the 
observed log relative influenza level was greater than unity.
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Figure S3: Goodness of fit of the regression tree. The 14 boxplots display the distributions of the log relative 
influenza level for countries-trimesters of the 14 leaves. The black crosses identify the mean values of the 
distributions (also shown through the color scale) that correspond to the predicted log relative influenza level. R² 
is the coefficient of determination. 

The tree is shown in Figure S4. The first four splits are done according to IDVI, COVID-19 
daily cases, longitude and workplace presence reduction as discussed in the main paper. 
The other variables are used for a finer partition in smaller groups. The classification of 
countries-trimesters in leaves is reported in the supplementary data [6].

Group 1 (109 observations) is split into leaves 1 and 2. In leaf 1, lower temperatures relative 
to leaf 2 are associated with a greater reduction in influenza. Leaf 1 consists largely of 
temperate countries in Europe, North and South America, during the 2020-2021 influenza 
season, which had a greater influenza reduction. Leaf 2 includes a more limited number of 
observations  (26, compared with the 83 in leaf 1) from countries of tropical and subtropical 
areas with IDVI>0.54, e.g. Panama, Costa Rica, Colombia, Malaysia. Influenza reduction for 
these countries was less strong compared with leaf 1, but still substantial if compared with 
low-IDVI tropical countries, classified in group 5. 

Group 2 is formed by a single leaf with well defined properties detailed in the main paper. 

The 45 observations of the group 3 are distributed in four leaves including a few countries-
trimesters each. Similarly to the split within group 1, a first split based on temperature 
separates countries with higher temperature and higher log relative influenza level (Saudi 
Arabia and Qatar) from countries with lower temperature and lower log relative influenza 
level. This second branch splits based on the reduction of international flights. On the left 
side of the split there is a group of 8 countries-trimesters where low values of log relative 
influenza level were associated with lower-than-average reduction of international flights, 
reduction of workplace presence and number of days with gathering restrictions. This group 
was characterised by a number of days of school closure higher than average. The right side
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of the split has two leaves that are discussed in the main paper, i.e. leaf 5 including mainly 
Singapore and leaf 6 including mainly other Southeast Asia countries.

Group 4 consists of 39 observations. This includes mainly countries during spring 2020 that 
are grouped in leaf 9 (34 out of 39 observations). Five observations are separated by the 
other because they have a more limited number of days with school closure and a lower log 
relative influenza level. This is a heterogeneous set of countries, mainly between winter 
2021 and spring 2021.

Group 5 contains a significant proportion of all observations (123 out of 330) that are 
separated into five leaves (leaves 10, 11, 12, 13 and 14). Interestingly, the five leaves show 
a clear trend with increasing log relative influenza level that is, in general, associated with a 
decrease in four of the five COVID-19 response variables - COVID-19 daily cases, reduction 
of international flights, reduction of workplace presence, and number of days with school 
closure. Limitations on gatherings remain moderate for all five leaves. Two splits are based 
on the reduction of international flights, between leaf 10 and leaves 11 and 12, and between 
leaf 13 and 14. For these two splits a greater reduction of international flights is associated 
with a lower influenza log ratio. Finally, leaves 11 and 12 differ in relative humidity. The two 
leaves contain almost the same set of countries for different trimesters - e.g. Guatemala, 
Honduras, India, Nepal, and Zambia. These are tropical countries characterised by a dry and
a rainy season throughout the year, where influenza usually peaks twice a year with the 
main peak during the rainy season [7–10]. Our analysis shows that for rainy seasons the 
reduction of influenza was smaller. 
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Figure S4: Full regression tree. A Regression tree obtained with the variables selected in Figure 3. For each 
node the average log relative influenza level and the number of observations are reported (the former is also 
indicated with a colour scale).  B Properties of each leaf. For each covariate the percentile of the whole dataset 
distribution the median of the group corresponds to is indicated with the colour scale and reported in the bubble. 
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Robustness checks and sensitivity analyses

Robustness of the variable selection procedure

The variable selection procedure is a stochastic algorithm that may lead to different results 
when repeated. Therefore, variable importance was estimated by averaging over 100 
stochastic realisations. To be sure results were stable we repeated the procedure 20 times. 
Each time the same 11 predictors are selected as the important covariates for predicting the 
log relative influenza ratios. 

Robustness of the tree structure optimization

The regression tree was regularised by two parameters (minbucket and cp) optimised with 
cross-validation through the stochastic procedure discussed in the Additional methods 
section of the supplementary information. To be sure that the procedure converges to a 
stable result we repeated it 10 times. The regularisation parameters selected each time were
very similar and led to the construction of trees almost identical to the tree described in the 
Results section and in the supplementary information. In particular, the classification of 
countries-trimesters in the five high-level groups was robust.

Robustness of the tree under small perturbations of the dataset

We assessed the robustness of the tree under small perturbations in the dataset. We built 
ten regression trees on a random subsample of 314 observations (~95% of the total) 
keeping the same 11 predictors and hyperparameters. The ten resulting trees (i.e. the 
perturbed trees) were compared with the tree built from the entire dataset (i.e. the reference 
tree) using the Adjusted Rand Index (ARI) [11]. Specifically, we compared the classification 
in 5 groups to assess the robustness of the 5-group repartition discussed in the main paper. 
The average score value for the ten comparisons is 0.86, indicating good agreement 
between the perturbed and reference trees. 

Sensitivity of the variable selection under changes on the assumption made

We tested whether the predictors of the log relative influenza level changed with the choices 
made throughout the analysis. The creation of the dataset of observations is based on two 
main assumptions: (i) k=0.5 positive cases had been added to each country-trimester in 
order to remove zero counts of influenza cases, and (ii) a threshold s=130 for the minimum 
number of tests processed per quarter was set to discard countries-trimesters with poor 
data. In addition, some choices were made when defining the covariates. We tested the 
robustness of our results to all these choices by analysing the following alternative models 
(the baseline model is here referred as base 0 model): 

● base 1: k=1 (instead of 0.5), s=130, same covariates of the base 0 model;
● base 2: k=0.5, s=26 (instead of 130), same covariates of the base 0 model;
● base 3: k=0.5, s=260 (instead of 130), same covariates of the base 0 model;
● Cov 1: k=0.5, s=130, COVID-19 daily deaths is used in alternative to COVID-19 daily 

cases to quantify the intensity of the COVID-19 epidemic;
● Mob 1: k=0.5, s=130, the public transport station presence reduction is tested in 

alternative to workplace presence reduction to capture changes of social activity;
● Mob 2: k=0.5, s=130, the recreation place presence reduction is tested in alternative 

to workplace presence reduction to capture changes of social activity;  

14

305

306

307
308
309
310
311

312

313
314
315
316
317
318
319

320

321
322
323
324
325
326
327
328

329

330
331
332
333
334
335
336
337

338
339
340
341
342
343
344
345
346

https://www.zotero.org/google-docs/?0YWmqA


● Mob 3: k=0.5, s=130, the increase in home presence is tested in alternative to 
workplace presence reduction to capture changes of social activity;  

● No Age: k=0.5, s=130, the variables age is removed among the set of covariates to 
be included in the regression;

● No IDVI: k=0.5, s=130,  the variables IDVI is removed among the set of covariates to 
be included in the regression;

● Str. Idx: k=0.5, s=130, all variables associated with NPIs are replaced by the 
stringency index.

For all the alternative models the selected sets of important factors are highly similar (Table 
S3): impact of COVID-19, international mobility, workplace presence reduction (or the 
alternative proxy of social activity considered), IDVI, age, temperature and longitude always 
result significant, while latitude and RH are discarded only once and twice respectively. All 
proxies of social activity tested were classified as important. The stringency index when 
included was not selected, indicating that the aggregate information it carries is not important
in explaining the influenza reduction. This is consistent with the fact that only 2 out of the 11 
governamental response variables were selected as important.  

We used the ARI similarity index to compare the sensitivity trees and the baseline tree up to 
the five-group repartitions. Models Mob 1, Mob 2, Mob 3, No Age, Str. Idx. led to an 
excellent recovery of the baseline tree (ARI > 0.9). The 5-group repartition showed the same
behaviour as in the baseline model. The tree obtained with Base 1 was in good agreement 
with the baseline tree. Interestingly, removing IDVI from the set of covariates led to only a 
moderate recovery of the baseline tree (ARI= 0.69), despite IDVI and Age being highly 
correlated. Age is not able to fully compensate for IDVI in creating the 5 group repartition 
discussed in the main paper. This is consistent with the fact that both covariates were found 
to be important by the VSURF procedure. 

The comparison of trees obtained with base 2, base 3 and Cov 1 and the baseline tree up to 
the five-groups repartition led to lower similarity values (ARI between 0.53 and 0.66). Still, 
we found that the four trees shared in large part the same behaviour. In particular, the first 
split was the same (i.e. based on IDVI with the same threshold value), meaning that all 
partitions had the distinction between high IDVI, low influenza countries and low IDVI, high 
influenza ones. Also, the 2020 spring trimesters of temperate countries (comprising the bulk 
of group 4) remained in great part grouped together and separated from the rest. In all three 
sensitivity trees, countries of group 2 of the baseline tree (zero-covid countries) were 
grouped together and included in a larger group together with countries of group 1 of the 
baseline tree. 
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Table S3. Predictors selected for 11 alternative models. Each model includes only variables associated with a
colored cell, green is for the selected variables, red for the rejected ones. Additional information about the 
parameters k,s used for the definition of the observation set is provided. Also, the similarity index is reported: it 
measures the similarity of the five-group classifications made by each alternative model compared with the 
reference model (base 0).
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