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Abstract 

Response-adaptive randomization is being used in COVID-19 trials, but it is unknown whether 

outcome rate changes during surges of COVID-19 will lead to bias in trial results. In response-

adaptive randomization, allocation ratios are adjusted according to interim analyses to assign 

more patients to promising interventions. Although it is known that response-adaptive 

randomization may give biased estimates if outcome rates drift over time, observed mortality 

fluctuations in the COVID-19 pandemic are more extreme than any previously tested in 

simulation. We hypothesized that pandemic surges induce bias in trials using response-adaptive 

randomization, and that adjustment for time will alleviate that bias. Bayesian 4-arm superiority 

trials with a mortality outcome were simulated to investigate bias in treatment effect, 

comparing complete and response-adaptive randomization under different pandemic scenarios 

based on data from New York, Spain, and Italy. Relative bias in the odds ratio associated with 

treatment ranged from 0.3% to 11% and was largest in trials with a surge and an effective 

intervention that did not adjust for time. Bias was attenuated by adjustment for time without 

compromising the false-positive rate. Trials using response-adaptive randomization were more 

likely to identify effective interventions but were slower to drop ineffective interventions. Even 

with variation in outcome rates similar to observed pandemic surges, COVID-19 trials using 

response-adaptive randomization that adjust for time can provide accurate estimates of 

treatment effects.  

Keywords 

Adaptive Clinical Trials As Topic, Critical Care, Computer Simulation, COVID-19, Pneumonia 
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Introduction 

The SARS-CoV-2 pandemic triggered a global effort to test interventions in clinical trials.1 Some 

of the proposed and ongoing trials employ response-adaptive randomization, defined as a 

method of changing allocation to interventions in a randomized trial according to trial 

outcomes.1–4 This is a method of allocating more patients to effective interventions and 

potentially reducing the sample size required to reach a conclusion 5–8, but uptake has so far 

been uncommon.9–11  

Response-adaptive randomization (RAR), as compared to complete (conventional) 

randomization, is potentially suitable for COVID-19 trials because RAR generally increases the 

probability that patients are allocated to effective arms. This may appeal to patients 

considering enrollment, clinicians screening patients or joining trials, and regulators assigning 

trial funding.5,6,12–19 In the setting of 2 or more interventions in addition to control there may 

also be a decrease in sample size required to identify successful therapies, depending on the 

method of adaptive randomization.14,20–23. Trials that use RAR may face logistical challenges 19, 

require complex analyses limiting the accessibility of results 24, and give biased estimates if the 

risk of outcomes changes over time. 8,16,21,22,25 This last limitation is particularly relevant to 

COVID-19. For example, if COVID-19 cases have overburdened the healthcare system, the 

mortality rate may increase and then return to baseline as the surge abates. If the allocation 

ratios of patients to different treatment arms are different during the time of high as opposed 

to baseline mortality, a naïve comparison of outcomes by treatment assignment could create 

the illusion of harm or efficacy between equivalent treatments (Figure 1). 
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COVID-19 outbreaks with surges in case numbers have occurred worldwide, causing shortages 

of medications and equipment, provision of intensive care in non-traditional settings, and wide 

variation in mortality rate for critically ill and hospitalized patients.26–31 The performance of 

adaptive randomization has been assessed in trials with linear drift, including drift based on the 

Ebola virus disease epidemiology.12,32 No work, to our knowledge, assesses the robustness of 

response-adaptive randomization to the nonlinear surges demonstrated by COVID-19. 

Aims: 

Use simulated trials of therapies for COVID-19 to: (1) compare bias in the estimated odds ratios 

between trials using response-adaptive and complete randomization; (2) assess whether using 

regression to adjust for time reduces the potential bias with RAR; and (3) identify whether RAR 

demonstrates other advantages in the setting of pandemic epidemiology. 

Methods 

This simulation study followed recommendations of Morris et. al 33 and the STRESS simulation 

reporting guidelines 34. This research did not require research ethics board review according to 

the Tri-Council Policy Statement Article 2.1. 35 In this study we use a Bayesian statistical 

framework, similar to most contemporary trials that use RAR 10,11,36, although response-

adaptive randomization can also be implemented using frequentist approaches 6,32,37. 

Additional details about the methods are available in the Supplement. 

Data-generating mechanism 

Simulations generated randomized superiority trials of hospitalized patients with severe COVID-

19 pneumonia comparing three interventions to control with a binary 28-day mortality 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 15, 2022. ; https://doi.org/10.1101/2022.07.13.22277596doi: medRxiv preprint 

https://doi.org/10.1101/2022.07.13.22277596
http://creativecommons.org/licenses/by-nc-nd/4.0/


 8 

outcome. Each trial ran for 365 days. Mortality was simulated as a binary random variable 

based on mortality rate, and daily enrollment was simulated as a Poisson random variable 

based on the mean daily enrollment. Important components of the data-generating mechanism 

detailed below were pandemic epidemiology, number and efficacy of intervention arms, 

randomization algorithms, statistical treatment of time-varying risk, and stopping rules.  

Pandemic epidemiology 

Pandemic epidemiology impacted the mortality and enrollment rates. Based on available 

information we set the baseline 28-day mortality rate to 20%. 26,38 Surges compromising 

healthcare capacity have been observed in China 39, Italy 27, New York 26, Spain 31, and Brazil 40. 

Narrative reports describe provision of intensive care throughout the hospital during surge 

conditions, so we set the surge mortality rate to be similar to the intensive care unit mortality 

at 40%. 41,42 For enrollment rates we used information from completed and in-progress COVID-

19 trials and set mean daily enrolment to be 15 patients at baseline and 25 patients during 

surge.2,43,44  

The duration of each surge was set to 21 days, based on the large dataset from the United 

Kingdom.42 The first surge, when present, began on trial day 30. The cyclic surge scenario used 

three surges (spring, fall, winter) starting on trial day 30, 150, and 270, approximately similar to 

the 1918 pandemic.45 The base case had no surge, and alternative cases had one or three 

surges. Single surge cases with later surge timing (days 150 and 270) were investigated in 

sensitivity analyses. 
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Number and efficacy of intervention arms 

The trials evaluated three intervention arms and one control arm, mimicking large trials of 

COVID-19 evaluating multiple arms. 2,43,46 Preliminary results from COVID-19 trials suggested an 

odds ratio of 0.75 for benefit was feasible.43,47 We defined the “null” scenario as all 

interventions being equivalent (OR = 1) and the “nugget” scenario as one intervention effective 

(OR 0.75) and the remainder equivalent (OR = 1). The control arm was intervention 1 and if 

there was an effective intervention, it was intervention 2. As sensitivity analyses we conducted 

simulations where a single intervention was harmful with an odds ratio of 1.33 and where there 

was one effective, one harmful, and one equivalent intervention.44 

Randomization algorithms 

The base case for randomization was complete randomization where patients have equal 

probability of being allocated to each arm remaining in the trial including control. Both 

randomization algorithms began interim analyses after 100 patient-outcomes were available 

and repeated them every 14 days thereafter.  

The response-adaptive randomization algorithm used for these simulations was a mixed 

patient-benefit and power-oriented approach analogous to that used in the REMAP trial and 

algorithms shown to have better performance among adaptive randomization algorithms.2,23 

For probability ρg of allocation to treatment group g, probability O(g) that intervention g is 

optimal, and number of patients ng allocated to group g: 

𝜌𝜌𝑔𝑔 ∝  �
𝑂𝑂(𝑔𝑔)

(𝑛𝑛𝑔𝑔 + 1)
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The algorithm additionally preserved power by stipulating that if any 𝜌𝜌𝑔𝑔 < 0.10, it is increased 

and all 𝜌𝜌𝑔𝑔 are renormalized such that all allocation probabilities are at least 0.10.  

Statistical treatment of time-varying outcomes 

Analyses of trials using complete randomization can adjust for time to improve precision.48 For 

trials using RAR, adjustment for time can also reduce bias 32,49 but may not be able to 

accommodate the extreme time-trend shifts seen in pandemic epidemiology. The simulations 

compared trials with and without adjustment for time in interim and final analyses by dividing 

the timeline into 14-day “blocks” and analyzing time block as a categorical variable. Smaller 

time blocks and lower enrollment rates were investigated as sensitivity analyses to explore the 

performance of time trend adjustment with fewer patients in each time block. 

Stopping rules 

The simulated trials used stopping rules analogous to those in REMAP and Thall et al.2,10,11,21 An 

intervention was declared superior if the probability it was the optimal intervention was greater 

than 0.99, and inferior if the same probability was less than 0.01. The region of practical 

equivalence ranged from an odds ratio of 1/1.2 to 1.2 and an intervention was declared 

equivalent if the probability of the odds ratio (relative to control) falling in that region was 0.90 

or greater. Arms were dropped when determined to be inferior or equivalent. The trial stopped 

at 365 days, if an intervention was superior, or if all interventions were either inferior or 

equivalent. 
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Estimand 

The estimand for these simulations was the log-odds ratio associated with treatment.33 The 

odds ratio was assumed constant across varying baseline risk within each model.  

Methods for trial analysis 

Interim and final analyses used Bayesian logistic regression to calculate the posterior 

distribution of the log-odds of mortality associated with each intervention.50,51 Models including 

adjustment for time incorporated time-block of enrollment as a categorical variable. A case 

with no interim analyses was considered as a sensitivity analysis. 

Performance measures 

Performance measures were calculated for each factorial combination of the simulation 

characteristics. Results were also calculated according to the subgroup of whether or not the 

trial reached a conclusion, defined as either a single intervention being declared superior or all 

interventions being declared equivalent or inferior according to the stopping rules. 

Bias 

The primary outcome for this simulation study was bias in the estimate of the odds ratio. This 

was calculated as the relative (percentage) difference between the mean estimate across 

simulations and the true value. We calculated Monte Carlo standard error and the root mean-

squared error for the log-odds ratio.   

Operating characteristics 

True negative rate was calculated as the proportion of simulated trials where an intervention 

with OR ≥ 1 did not meet the criterion for superiority. True positive rate was calculated as the 
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proportion of trials that declared an effective intervention to be superior. Practical efficiency 

characteristics included the proportion of trials that reached a conclusion, the duration among 

trials that reached a conclusion, and the sample size enrolled in each arm. 

Ethical import  

The ethical import of the trials was assessed by the proportion of patients randomized to a 

superior intervention where one existed, the time to dropping inferior or equivalent arms, and 

the average 28-day mortality of participants in the trial. 

Computational details 

All simulations were coded in R and Stan using RStudio and several supporting packages.52–58 

Existing software does not accommodate the time-adjustment aspect of these analyses.59 The 

Niagara computer cluster run by Compute Canada was used to run the simulations.60,61 Each 

Bayesian regression was run in 2 chains for 3000 iterations with 1000 iterations warmup. The 

number of simulated trials was chosen to be 1000 to keep the Monte Carlo standard error for 

the log-odds of bias approximately below 0.005, corresponding to a 95% confidence interval for 

odds ratio of bias 0.99 to 1.01.33 Chains and r-hat values were inspected in test cases to ensure 

convergence.50 All R code is available in the supporting information. 

Results 

We simulated 1000 trials for each of 24 factorial scenarios. This required 3.5 hours of 

computation across 4 nodes on the cluster each using 80 cores (1120 core-hours of 

computation). 
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Bias 

Relative bias ranged from 0.3% to 11%, with variation according to scenario across the 

simulations (Table 1, Table E1). Across all scenarios with time-adjusted analyses, bias was less 

than 15% of the size of the average 95% credible interval for the mean odds ratio. In the null 

scenario the odds ratios were biased towards harm (OR > 1), and bias was largest (11%) in the 

single surge scenario using complete randomization without adjustment for time. Results were 

similar for interventions with OR set to 1.0 in the nugget scenario (Table E1), where complete 

randomization was associated with greater bias than adaptive randomization. 

In the nugget scenario, where one intervention had odds ratio 0.75, odds ratios generally 

overestimated benefit with the lowest odds ratio seen in the single surge nugget scenario using 

adaptive randomization without adjustment for time trends (OR estimate 0.69, relative bias 

10.4%). Bias in this scenario decreased (OR 0.73, relative bias 4.0%) with the use of adjustment 

for time (Figure 2). Throughout interventions with odds ratio of 0.75, complete as opposed to 

adaptive randomization gave less biased estimates of the odds ratio.  

Operating characteristics 

The proportion of trials that appropriately concluded equivalent interventions were not 

superior was high (lowest proportion 0.958, Table 2). After incorporating adjustment for time, 

the proportion of trials using adaptive randomization that appropriately concluded equivalent 

interventions were not superior was 0.99 or higher in all scenarios (Table 2, Table E2). The 

proportion of trials where an ineffective intervention was declared optimal was low across null 

scenarios. 
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The proportion of trials that reached a conclusion varied according to pandemic epidemiology 

from a low of 0.39 (null scenario, no surge, adaptive randomization, adjustment for time 

trends) to a high of 0.86 (nugget scenario, single surge, adaptive randomization, no adjustment 

for time trends). 

The frequency with which superior interventions were identified as such was not high in any 

scenario. For interventions with odds ratio 0.75, the lowest probability of being declared 

superior (0.38) was seen in simulations with no surge, complete randomization, and adjustment 

for time trends. By contrast, the highest probability of being declared superior (0.77) was seen 

in simulations with a single surge, adaptive randomization, and no adjustment for time trends 

(Table 2, Figure E1). Trials using adaptive as opposed to complete randomization in the nugget 

scenario yielded a higher probability of identifying a superior intervention (Figure 3). 

Among trials that did not reach conclusions according to the stopping criteria, the probability 

that an effective intervention was the optimal arm was still high. In those trials, the highest 

mean posterior probability of an effective intervention being optimal (0.945) was seen in the 

cyclic surge scenario with adaptive randomization and adjustment for time trends (Table E3). 

Sample size was generally large (Table 3). Because most trials were limited by the 365-day time-

limit, sample sizes were similar across intervention scenarios.  

Ethical import 

In the nugget scenario, trials using adaptive randomization consistently randomized about 

twice as many patients to the superior intervention arm (Table 3). The average risks of 28-day 
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mortality were lower in trials using adaptive randomization, although absolute differences were 

small (Table 3, Figure E2).  

Equivalent or harmful interventions were generally dropped earlier from trials using complete 

as opposed to adaptive randomization (Figure E3). By contrast, there was minimal difference in 

time to recognition of a superior intervention.  

A large number of null interventions (OR 1) had “Inferiority” conclusions. Across all factorial 

scenarios, in 95% of trials where intervention 3 (OR = 1) was deemed inferior the posterior 

probability of equivalence with respect to control was at least 0.78. 

Discussion 

This simulation study of COVID-19 found that response-adaptive randomization can generate 

biased estimates of efficacy amidst surges of COVID-19, and that adjustment for time 

eliminates this bias. Simulations used realistic trial design and parameters. The bias was 

generally in the direction of overestimating the efficacy of effective interventions. Relative to 

complete randomization, response-adaptive randomization with time-adjustment increased the 

number of patients allocated to effective interventions, increased the probability of identifying 

effective interventions, and did not increase the probability of concluding that equivalent 

interventions were effective. However, it delayed the removal of ineffective interventions.  

Adjustment for time trends during pandemic surges attenuated bias for both adaptive and 

complete randomization approaches, but it slightly increased bias if there was no surge. 

However, the slight increase in bias in the case of no surge is outweighed by the alleviation of 
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large amounts of bias in the cases with surge, so where numerically feasible, adjustment for 

time trends should be the standard-of-design for Bayesian trials using either response-adaptive 

randomization or complete randomization with frequent interim analyses. 

The simulations revealed important consequences of using complete versus response-adaptive 

randomization. Trials using complete randomization identified ineffective interventions earlier 

than trials using response-adaptive randomization. This occurred because in response-adaptive 

randomization fewer patients are allocated to interventions that are measured to be 

ineffective, so more time is required to recruit enough patients to definitively remove those 

interventions from the trial. The proportion of all COVID-19 patients enrolled in trials is low, 

making this an important consideration in trial design. Announcement of the RECOVERY trial 

hydroxychloroquine results on June 5, 2020 62, for example, allowed other trials such as the 

SOLIDARITY trial to stop allocating patients to hydroxychloroquine, and hopefully reduced the 

inappropriate use of hydroxychloroquine worldwide. More subtle potential benefits include 

redirection of resources to other avenues for reducing COVID-19 morbidity and mortality, such 

as additional experimental agents, methods of contact tracing and isolation, or public health 

campaigns to promote universal masking. 

Trials using response-adaptive randomization were more likely to identify effective 

interventions than trials using complete randomization. Even among trials that did not reach a 

definite conclusion by 365 days, effective interventions studied with adaptive randomization 

had a higher probability of being the optimal intervention compared to those studied with 

complete randomization. Historically, the high proportion of trials with indeterminate or 

negative results has been a source of frustration for clinicians and trialists.63 Although adaptive 
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randomization does not increase the chance that an intervention is effective, it does increase 

the chance that an effective intervention is appropriately recognized.  

Response-adaptive randomization also led to more patients being allocated to an effective 

intervention, when one was present. This could help increase patient enrollment by satisfying 

an individual patient’s desire to have improved outcomes through participation in research.7 

This may also encourage clinicians to participate in the trial by reducing the tension between 

desire to give an individual patient a potentially optimal therapy and the need for randomized 

evaluation where equipoise exists. However, increased complexity of the consent process and 

trial conduct may offset these benefits.64 

On other aspects of trial performance, the two randomization algorithms were largely similar. 

Despite randomizing many more patients to effective interventions, trials using response-

adaptive randomization did not show a clinically significant improvement in average patient 

outcomes, partially due to the small difference (20% versus 15.8%) in mortality rates outside of 

surge conditions. After incorporating adjustment for time trends, there was little difference in 

true negative rates.  

This investigation has several limitations. First, response-adaptive randomization algorithms are 

not monolithic and different implementations of RAR may lead to different conclusions.32,65 

Investigation of all possible RAR design choices is infeasible, so instead we modeled our 

algorithm after a large ongoing trial of critically ill patients with COVID-19. Second, our 

implementation of COVID epidemiology may not be a nuanced enough representation of the 

actual dynamics of mortality or enrollment rates during a surge in cases. Third, the validity of 
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these results may depend on having enough patients in each “time block” such that categorical 

adjustment for time trends yields an accurate model. Fourth, the simulations modeled a 

multicenter trial with a surge taking place at the same time in every center, a pattern not seen 

with COVID-19 surges so far. If surges occurred throughout a trial, and at different times at 

different sites, the net effect would be regression to the mean event rate, so the issues with 

RAR could be less pronounced than in the scenarios modeled here. Finally, while the code for 

replication of this study is easily available, the computational demands of the simulations may 

limit efforts to plan Bayesian adaptive trials with adjustment for time trends.36,66  

The decision to incorporate adaptive versus complete randomization into a trial of a therapy for 

COVID-19 also depends on factors beyond those captured in these simulations. Adaptive 

randomization introduces the possibility of clinicians inferring interim results due to detectable 

changes in treatment allocation as the trial progresses. Using adaptive randomization requires 

an added level of organization and communication across sites that may outweigh any 

statistical or ethical benefits amidst the chaos of a pandemic. If adaptive randomization is used 

with adjustment for time, meta-analyses of therapies would require individual patient data. 

Finally, research concerning COVID-19 is reaching a much wider audience than almost any 

medical research previously undertaken, potentially increasing the requirement for simple and 

transparent statistical analyses as opposed to the more complex analyses required for adaptive 

randomization. Optimal trial design requires consideration of both quantitative and qualitative 

aspects of design elements. 
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Conclusion 

In trials of therapies for COVID-19 during surges that may be associated with increased 

mortality rates, the use of response-adaptive randomization without adjustment for time 

estimates results in biased estimates of efficacy. However, this bias is eliminated with 

adjustment for time and response-adaptive as opposed to complete randomization has a higher 

probability of identifying effective interventions. Response-adaptive randomization with time 

adjustment is an appealing option for pandemic trials.  
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Tables 

Table 1: Bias for equivalent and effective interventions 
Covid 

Scenario 
Intervention 

Scenarioa 
Time 

adjustment 
Algorithm Mean posterior odds 

ratio of treatmentb 
Relative 
bias (%) 

Bias (log-
odds) 

Monte Carlo 
SEc 

RMSEd 

No surge Null 
(OR = 1) 

No Complete 1.04 (0.83 to 1.33) 3.9 0.0389 0.0044 0.145 
Adaptive 1.00 (0.82 to 1.25) 0.4 0.0035 0.0042 0.134 

Yes Complete 1.06 (0.83 to 1.43) 6.5 0.0646 0.0054 0.181 
Adaptive 1.03 (0.83 to 1.32) 2.7 0.0267 0.0053 0.171 

Nugget 
(OR = 0.75) 

No Complete 0.74 (0.6 to 0.93) 1.9 0.0187 0.0047 0.150 
Adaptive 0.73 (0.59 to 0.92) 3.2 0.0315 0.0048 0.154 

Yes Complete 0.75 (0.61 to 0.95) 0.3 0.0032 0.0049 0.153 
Adaptive 0.72 (0.58 to 0.92) 4.3 0.0434 0.0047 0.156 

Single 
surge 

Null 
(OR = 1) 

No Complete 1.11 (0.91 to 1.44) 11.4 0.1142 0.0069 0.244 
Adaptive 1.04 (0.87 to 1.36) 4.5 0.0445 0.0086 0.274 

Yes Complete 1.04 (0.84 to 1.32) 3.8 0.0384 0.0043 0.142 
Adaptive 1.02 (0.83 to 1.28) 2.0 0.0195 0.0045 0.142 

Nugget 
(OR = 0.75) 

No Complete 0.74 (0.61 to 0.94) 0.9 0.0090 0.0051 0.162 
Adaptive 0.67 (0.54 to 0.87) 10.4 0.1043 0.0065 0.233 

Yes Complete 0.74 (0.61 to 0.92) 1.4 0.0136 0.0045 0.142 
Adaptive 0.72 (0.58 to 0.91) 4.0 0.0399 0.0042 0.139 

Cyclic 
surges 

Null 
(OR = 1) 

No Complete 1.06 (0.87 to 1.34) 6.2 0.0618 0.0051 0.172 
Adaptive 1.03 (0.85 to 1.3) 2.6 0.0259 0.0060 0.192 

Yes Complete 1.05 (0.84 to 1.34) 4.7 0.0472 0.0045 0.149 
Adaptive 1.02 (0.84 to 1.26) 1.8 0.0177 0.0045 0.142 

Nugget 
(OR = 0.75) 

No Complete 0.75 (0.62 to 0.92) 0.6 0.0063 0.0044 0.138 
Adaptive 0.7 (0.57 to 0.89) 6.9 0.0691 0.0060 0.203 

Yes Complete 0.74 (0.61 to 0.91) 1.9 0.0194 0.0040 0.129 
Adaptive 0.72 (0.59 to 0.91) 3.6 0.0363 0.0038 0.126 

a: Null refers to all interventions having odds ratio 1; Nugget refers to intervention 2 having odds ratio 0.75 and all others 1. 
b: The point estimate is the odds ratio associated with the mean posterior log-odds of treatment. In parentheses are the odds ratios associated 
with the mean lower and upper bounds of the 95% credible interval around the posterior log odds of treatment. This gives a sense of the 
average outcome estimate and 95% credible interval across simulated trials. 
c: SE = standard error, in log-odds units 
d: RMSE = root mean standard error, in log-odds units  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 15, 2022. ; https://doi.org/10.1101/2022.07.13.22277596doi: medRxiv preprint 

https://doi.org/10.1101/2022.07.13.22277596
http://creativecommons.org/licenses/by-nc-nd/4.0/


 25 

Table 2: Trial conclusions and rejection for equivalent and effective interventions 
Covid 

Scenario 
Intervention 

Scenario 
Time 

adjustment 
Algorithm Trials that 

reached a 
conclusion 

Type of conclusion Type of non-superiority Monte Carlo 
SE for 

Rejection 
Superiority Rejectiona Equivalence Inferiority Continue  

No surge Null 
(OR = 1) 

No Complete 0.588 0.003 0.997 0.476 0.333 0.188 0.002 
Adaptive 0.453 0.007 0.993 0.441 0.247 0.305 0.003 

Yes Complete 0.611 0.008 0.992 0.467 0.342 0.183 0.003 
Adaptive 0.387 0.008 0.992 0.372 0.284 0.336 0.003 

Nugget 
(OR = 0.75) 

No Complete 0.486 0.428 0.572 0.014 0.054 0.504 0.016 
Adaptive 0.616 0.571 0.429 0.016 0.045 0.368 0.016 

Yes Complete 0.443 0.380 0.620 0.013 0.057 0.550 0.015 
Adaptive 0.591 0.553 0.447 0.006 0.041 0.400 0.016 

Single 
surge 

Null 
(OR = 1) 

No Complete 0.710 0.006 0.994 0.513 0.344 0.137 0.002 
Adaptive 0.505 0.042 0.958 0.202 0.486 0.270 0.006 

Yes Complete 0.696 0.005 0.995 0.565 0.286 0.144 0.002 
Adaptive 0.496 0.002 0.998 0.461 0.262 0.275 0.001 

Nugget 
(OR = 0.75) 

No Complete 0.793 0.717 0.283 0.016 0.065 0.202 0.014 
Adaptive 0.861 0.770 0.230 0.042 0.060 0.128 0.013 

Yes Complete 0.535 0.466 0.534 0.025 0.051 0.458 0.016 
Adaptive 0.675 0.616 0.384 0.018 0.054 0.312 0.015 

Cyclic 
surges 

Null 
(OR = 1) 

No Complete 0.834 0.003 0.997 0.554 0.364 0.079 0.002 
Adaptive 0.735 0.024 0.976 0.404 0.438 0.134 0.005 

Yes Complete 0.802 0.004 0.996 0.577 0.328 0.091 0.002 
Adaptive 0.654 0.005 0.995 0.557 0.258 0.180 0.002 

Nugget 
(OR = 0.75) 

No Complete 0.761 0.675 0.325 0.034 0.056 0.235 0.015 
Adaptive 0.852 0.764 0.236 0.049 0.045 0.142 0.013 

Yes Complete 0.584 0.527 0.473 0.013 0.046 0.414 0.016 
Adaptive 0.768 0.713 0.287 0.014 0.044 0.229 0.014 

 

a. Rejection encompasses any conclusion other than superiority (continue, equivalence, or inferiority).  
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Table 3: Outcomes of trial for equivalent and effective interventions 
Covid 

Scenario 
Intervention 

Scenario1 
Time adjustment Algorithm Probability of 

being optimala  
Probability of 

being equivalent 
Sample size: 
Control arm 

Sample size: 
Intervention 2 

Sample size: 
Intervention 3 

Sample 
size: Total  

Mortality 
rate 

No surge Null 
(OR = 1) 

No Complete 0.236 0.742 1578 1114 1095 4908 0.200 
Adaptive 0.256 0.765 1334 1266 1288 5130 0.200 

Yes Complete 0.241 0.697 1575 1070 1133 4880 0.200 
Adaptive 0.243 0.724 1357 1243 1272 5163 0.200 

Nugget 
(OR = 0.75) 

No Complete 0.903 0.194 1599 1538 686 4512 0.186 
Adaptive 0.951 0.202 835 2200 702 4438 0.179 

Yes Complete 0.898 0.199 1652 1580 703 4640 0.186 
Adaptive 0.951 0.190 831 2172 700 4396 0.179 

Single 
surge 

Null 
(OR = 1) 

No Complete 0.226 0.659 1557 1062 1061 4786 0.225 
Adaptive 0.259 0.490 1222 1215 1195 4807 0.226 

Yes Complete 0.250 0.756 1570 1138 1069 4880 0.224 
Adaptive 0.248 0.763 1397 1282 1292 5264 0.222 

Nugget 
(OR = 0.75) 

No Complete 0.932 0.199 1379 1317 668 4026 0.218 
Adaptive 0.909 0.141 726 1549 647 3573 0.218 

Yes Complete 0.910 0.194 1626 1567 706 4550 0.213 
Adaptive 0.955 0.183 812 2195 677 4363 0.208 

Cyclic 
surges 

Null 
(OR = 1) 

No Complete 0.239 0.722 1561 1066 1046 4777 0.258 
Adaptive 0.244 0.661 1199 1160 1165 4712 0.259 

Yes Complete 0.241 0.750 1612 1103 1127 4963 0.258 
Adaptive 0.249 0.780 1447 1303 1334 5406 0.257 

Nugget 
(OR = 0.75) 

No Complete 0.921 0.201 1520 1459 682 4350 0.242 
Adaptive 0.929 0.183 771 1814 684 3941 0.236 

Yes Complete 0.924 0.163 1705 1654 674 4702 0.241 
Adaptive 0.962 0.175 826 2253 678 4435 0.235 

a: These results are averaged across all 1000 trials for each scenario. For example, the column “Probability of being optimal” reports the mean 
probability that intervention 2 is optimal across all 1000 trials in each scenario. 
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Figures 

Figure 1: Potential bias due to adaptive randomization in a pandemic 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 15, 2022. ; https://doi.org/10.1101/2022.07.13.22277596doi: medRxiv preprint 

https://doi.org/10.1101/2022.07.13.22277596
http://creativecommons.org/licenses/by-nc-nd/4.0/


 28 

Figure 2: Odds ratio densities for Intervention 2 by COVID scenario 

 
Figure 2 caption: This figure depicts the distribution of 1000 posterior mean odds ratios for intervention 2 according to simulation scenario, 
including COVID epidemiology (rows: no surge, single surge, or cyclic surges), intervention scenario (columns: null, nugget), adjustment for time 
trends (columns: no adjustment, with adjustment), and randomization algorithm (colour). A black vertical line marks the set odds ratio for 
intervention 2 in either the “null” (OR 1) or “nugget” (OR 0.75) intervention scenarios. The improvement in bias with adjustment for time trends 
is most evident for adaptive randomization in the single surge scenario.  
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Figure 3: Trial conclusions for equivalent and effective interventions 

 
Figure 3 caption: This figure depicts the proportion of trials that concluded continue, equivalence, inferiority, or superiority for intervention 2 
according to simulation scenario, including COVID epidemiology (rows: no surge, single surge, or cyclic surges), intervention scenario (columns: 
null, nugget), adjustment for time trends (columns: no adjustment, with adjustment), and randomization algorithm (colour). Adaptive as 
opposed to complete randomization results in a higher proportion of trials concluding that intervention 2 is superior in the nugget scenario. 
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