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ABSTRACT

Accurate prediction of cumulative COVID-19 infected cases is essential for effectively managing the
limited healthcare resources, specifically in India. Historically, epidemiological models have helped
control such epidemics. Those models need accurate past data to predict for future. However, for
various reasons, we observe sudden drops and jumps in the number of daily reported COVID-19
infected cases on some days, not aligned with the overall trend. If we incorporate those observations
in the training data, the model’s prediction accuracy may worsen, as they do not capture the correct
trend in the training data. But it is not straightforward for the existing epidemiological models
to decide a specific day as a sudden drop or jump. We propose an algorithm that automatically
determines any drop or jump days in this work. Then, based on the overall trend in the data, we
adjust the number of daily infected cases on those days and decide on the training data based on
the adjusted observations. We have applied the proposed algorithm in a recently proposed modified
Susceptible-Infected-Susceptible (SIS) to show that adjusted training data gives better prediction
accuracy when jump and drop exist in the training data.

Keywords Adjustment · COVID-19 · Epidemiological models · Jumps and drops · Modified SIS model

1 Introduction

Researchers have used different epidemiological models to understand the dynamics of the Coronavirus disease 2019
(COVID-19) since it was first reported in Wuhan city of China [1]. The main focuses of those models are prediction
[2], estimation of the basic reproduction number (R0) [3], trend detection [4], reinfection [5], the effect of preventive
measures such as lockdown [6], social distancing [7], etc. All these approaches need high-quality training data to
develop meaningful and effective models. We have observed several waves of COVID-19 at distinct points of time in
the different parts of the world with different patterns during the last two and half years. Due to many variants of the
COVID-19 virus, it may not be wise to consider the entire history data to estimate model parameters. However, there
are not many attempts to check whether the available training data is appropriate for model building. [8] proposed an
algorithm that optimally decides the length of the training period to predict the number of cumulative infected cases
using a modified susceptible infected susceptible (SIS) model.

The daily number of reported COVID-19 infected cases may have high fluctuations due to less testing during festivals
(drops), sudden movement of a group (student/workers) people (jumps), etc. These false jumps or drops are not aligned

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 15, 2022. ; https://doi.org/10.1101/2022.07.13.22277574doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2022.07.13.22277574
http://creativecommons.org/licenses/by-nc-nd/4.0/


JUMP-DROP ADJUSTED PREDICTION OF CUMULATIVE INFECTED CASES

Figure 1: Daily infected COVID-19 cases from 14 March 2020 to 4 June 2021 in Delhi highlighting
the drop on 14 November 2020.

with the actual trend of the reported infected cases. On the contrary, we also observe genuine decline (drop) or increase
(jump) in the reported infected cases due to the actual trend of COVID-19 spread. This phenomenon is quite common
in a large country like India, with a highly dense population in cities and diversity in terms of climate and behavior
of people. It is essential to distinguish the difference between the actual trends and false drops/jumps in the reported
infected cases. A few false drops and jumps in the training data may result in the poor estimation of model parameters
and subsequently dismal prediction performance.

Figure 1 shows daily COVID-19 infected cases from 14 March 2020 to 4 June 2021 in Delhi, the capital city of India.
We observe many jumps and drops in the number of infected cases from the overall trend of the curve. There is a
visible sharp drop from 7750 to 3330 infected cases on 14 November 2020. On this day (in 2020), Diwali, a major
Indian festival, was celebrated. A possible explanation for this drop would be that people with minor symptoms did
not get tested on Diwali, or some testing centers were closed or operated only for a few hours. Therefore, this drop
can be considered a false drop that is not aligned with the actual trend of the daily infected curve. Such events are
usually one-time occurrences and seldom have any impact after they are done. However, if we consider these false
drops (or jumps) into the training data, they have the potential to drag the fitted curve towards them, ignoring the actual
overall trend. Therefore, it is essential to adjust these drops and jumps to eliminate the impact of such events in the
development of models. In other words, these drops and jumps are similar to the notion of outliers or influential points,
which may alter the model’s prediction performances. But it is not straightforward for the existing epidemiological
models to decide a specific day as a sudden drop or jump in the training data.

In this work, we propose an algorithm that automatically determines any drop or jump day in the training data. Then,
based on the overall trend in the training data, we adjust the number of daily infected cases on those days. The effective
training data becomes the adjusted daily COVID-19 infected cases. To show that the adjusted training data gives better
prediction accuracy when jump and drop exist in the training data, we have applied the proposed algorithm in a recently
proposed modified Susceptible-Infected-Susceptible (SIS) [8]. However, this algorithm is useful for any model to clean
the training data for better prediction accuracy. Note that, the algorithm will only use the adjusted training data if it has
potential to improve the prediction accuracy. Otherwise, it will consider actual training data (without any adjustment) to
build the model.

2 Methodology

2.1 Detection Methods

The three detection methods ‘C1’, ‘C2’ and ‘C3’ are used in the early aberration reporting system (EARS), the
syndromic surveillance system of Centers for Disease Control and Prevention (CDC), USA to detect deviations in
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present data compared to the historic mean [9, 10]. These methods are also used in the CDC’s BioSense system to
combat ‘health situational awareness’ and ‘event recognition and response’ [10]. They are also referred as cumulative
sum (CUSUM) methods [11, 12]. In this work, we use these three methods to determine false drop or jump days in
the training data. Once confirmed, each drop or jump day’s reported infected COVID-19 cases will be replaced by a
adjusted value. Then the training data for any model will be based on this adjusted data.

Let Y (t) denotes the number of confirmed infected cases on the tth day, then the C1 statistic refers to

C1(t) =
Y (t)− Y1(t)

S1(t)
, (1)

where, Y1(t) is the moving average and S1(t) is the standard deviation of the number of infected cases since the past
seven days. They can be calculated as

Y1(t) =
1

7

t−7∑
i=t−1

Y (i), and S1
2(t) =

1

6

t−7∑
i=t−1

(Y (i)− Y1(i))
2.

The sample average and the sample standard deviation used in the C1 are based on the 7 days prior to the current
observation. Therefore, the C1 indicates the normalized value of the present day infected cases (Y (t)) considering
the last 7 days average infected cases (Y1(t)) and the corresponding variation (S2

1(t)). In EARS system, C1(t) > 3
indicates a signals at time t. In other words, a signal means the Y (t) exceeds the three sample standard deviations
higher than the sample mean. Note that, the EARS only concerns about the higher reporting cases. However, in this
work, we are interested in both drop and jump. Therefore, in this context, C1(t) > 3 denotes a possible jump and
C1(t) < −3 refers to a possible drop. The word, "possible" means a drop (or jump) could be a natural trend or a false
drop (or false jump). We are only interested in detecting false drops or false jumps.

The C2 statistic is similar to the C1 but it also includes a 1-day lag while calculating the moving average and standard
deviation. That is

C2(t) =
Y (t)− Y2(t)

S2(t)
, (2)

where, Y2(t) =
1

7

t−8∑
i=t−2

Y (i), and S2
2(t) =

1

6

t−8∑
i=t−2

(Y (i)− Y2(i))
2.

Note that, [10] defined the C2 statistic with a 2-day lag. However, we observe better results (empirically) if a lag of
1-day is considered instead of 2 days. Hence, we have considered a 1-day lag in the C2 statistic. Similar to the C1
statistic, if |C2(t)| > 3, we will check the next subsequent days for a possible jump or drop.

The C3 statistic for the tth day uses the C2 statistics for the tth day and the previous two days, as

C3(t) =

t−2∑
i=t

max[0, |C2(i)| − 1]. (3)

We conclude there is a possible jump or drop when C3(t) > 2. In EARS, the expression of C3(t) has C2(i) instead of
its absolute value as the objective is to check a jump (increase in infected reported cases) not a drop [10].

2.2 Adjustment

The detection methods described in the previous section are used to detect any jump or drop in the training data. This
section distinguishes between the actual trend and false drop/jump in the reported infected cases. In identifying a jump
or drop, we constrain the length of a jump or drop to be categorized as sharp. The idea behind this is that if the trend of
jump or drop continues for an extended period (number of days), it would be considered an actual trend. Hence, we do
not require any adjustment in the existing training data to eliminate its impact. Based on emperical results, we have set
this upper bound for the duration of a jump or drop to be five days. In other words, if that extended period is more than
five days, then we consider it an actual trend.

Once detection method confirms a possible jump or drop for ith day, we check the same for subsequent five days, and
identify the duration of the jump or drop as j − i, where jth day is the first day after ith day without a drop or jump.
Then, we propose using the mean of the moving average (Y1(i): as defined in the previous section) of the number of
daily confirmed cases in the last seven days and the number of infected cases just after the jump or drop (Y (j + 1)), to
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adjust a sharp jump or drop. If the number of daily confirmed cases is outside the specific cut-offs (with respect to
C-statistics) from the ith day to the jth day, and j-i ≤ 5, then Y (t) for t ∈ [i, j] would be replaced by

Yadjusted(t) =
Y1(i) + Y (j + 1)

2
.

After the adjustment, we consider the root mean square error (RMSE) calculated for the assessment period and compare
the values before and after adjusting. If the adjustment has resulted in a decreased RMSE value for the assessment
period, then we predict using the adjusted data or else use the original prediction.

Algorithm 1 shows automatic detection and adjustment of the jumps and drops in the training data using the C1, C2 or
C3 detection methods.

Algorithm 1: Algorithm to identify and adjust jumps and drops:
n = length (in days) of history data
upper-bound = 5
while 1 ≤ i ≤ n do

if CMetric(i) ≥ |threshold| then
t = i + 1
while CMetric(t) ≥ |threshold| do

t = t + 1
end
duration = t - i
if duration ≤ upper-bound then

while 1 ≤ j ≤ duration do

Y [i+ j] =
Y1(i) + Y [i+ duration+ 1]

2

end
end

end
i = i + 1

end

3 Jump-Drop Adjusted Prediction using Modified SIS Model

In this section, we show the use of jump-drop adjusted training data for prediction using a recently proposed modified
Susceptible-Infected-Susceptible (SIS) [8]. However, proposed jump-drop adjustment algorithm can be applied to
a training data required for any epidemiological model to improve the prediction accuracy. The main motivation to
consider an SIS model for COVID-19 prediction because it considers re-infection into the model. As it is evident from
several studies that re-infection is quite common in COVID-19 [13, 14, 15, 16].

The modified SIS model determines the cumulative number of infected cases (COVID-19) at a specific time point.
[8] developed a dynamic data-driven algorithm that estimates the model parameters based on an optimally chosen
training phase for prediction of the cumulative infected cases. The model also accounts for deaths due to disease. Their
estimation process is useful when the disease under study (like COVID-19) switches its spreading pattern over time.
The following equations can describe the modified SIS model proposed by [8],

dS

dt
= −β

SI

N
+ γI (4)

dI

dt
= +β

SI

N
− γI − µI (5)

dC

dt
= β

SI

N
(6)

dD

dt
= µI (7)
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Time in days

TCurrent

TCurrent - TStart +1
TCurrent - TStart  -TLimit +1

In-Sample
Assessment Period 

Training Phase (in days) Prediction Phase (in days)

TCurrent +TPred
TLimit

TStart

Figure 2: Partition of the study period into different training and prediction time points [8]

with,
dS

dt
+

dI

dt
+

dD

dt
= 0

Here t denotes the time where the smallest unit is a day. S and I denote the susceptible and the infected number of
people in the population, respectively. C denotes the cumulative infected cases (re-infection is also a count) and D
denotes the total deaths caused by the disease. We assume that the death rate from any other cause is the same as the
birth rate. The total population size is N. The parameter β denotes the average number of individuals infected per day
from an infected person [17]. In other words, it is the contact rates between infected and susceptible [18]. γ stands for
the recovery rate.

Equation (4) represents the rate of change in the population of susceptible compartment. Here, β SI
N is the number

of people get infected daily and are removed from the S compartment. The γI is the number of infected individuals
recover from the illness daily and are added back to the S compartment. The recovery rate, γ is assumed to be 1/T,
where T is the average duration for which infection lasts in an infected person [2, 19]. Equations (5) and (6) represent
the rate of change in population of the infected compartment and the cumulative number of cases, respectively. µ is the
mortality rate of the infection and daily µI is the number of fatal infected cases, as shown in equation (7).

As argued by [8], the SIS model parameters are generally constant for the entire duration of the study period. However,
since the contact rate can change a lot over time in the case of COVID-19, it would be more appropriate to make
predictions based on a shorter training phase. Hence, based on the historical data, the training phase has been
dynamically chosen. As illustrated in Figure 2, the study period is divided in two parts, the training and the prediction
phase. The current date is denoted by TCurrent. The minimum length of the training period is TStart and the
corresponding training interval is [TCurrent − TStart + 1, TCurrent]. For selecting the optimal training phase, at most
TLimit number of days (set by the user) can be added to the minimum training period. Therefore, the training period is
[TCurrent − TStart + 1− t, TCurrent], where 0 ≤ t ≤ TLimit. TPred denotes the length of the prediction phase.

Here, the objective is to optimally choose a training phase so that we can accurately predict the near future using proper
model parameters. To compare different models, we use the minimum training phase as the fixed in-sample assessment
period. The root mean square error (RMSE) has been used as an criteria to choose the optimal training period,

L(t, β, µ) =

√
1

TStart

∑
i

(Cp[i; t, β, µ]− C0[i])2 (8)

where TCurrent - TStart + 1 ⩽ i ⩽ TCurrent. The observed cumulative infected cases on the ith day is given by Co[i]
and Cp[i; t, β, µ] denotes the predicted cumulative infected cases on ith day from modified SIS model. The topt is
the value of t for which (8) is minimized. Similarly, β̂opt and µ̂opt are the values of β̂topt and µ̂topt , respectively. The
assessment of prediction by a model is done by using (8) but replacing TStart, t, β and µ, by TPred, topt, β̂topt and
µ̂topt , respectively; where 0 ≤ i ≤ TPred. The recovery period in India from COVID-19 infection is on an average 14
days [3]. γ can thus be calculated as 1/(duration for recovery), that is, 1/14.

4 PREDICTION OF CUMULATIVE INFECTED CASES

4.1 R-Package

For easy use of the jump-drop adjusted prediction model, an R package has been developed and is available at
https://github.com/RashiMohta/COVID-19-cases-prediction. Given the daily infected COVID-19 data
(say for a state) and other input parameter values, the R-package would predict the cumulative number of cases using
both the original data and the data adjusted using the given bound metric and return the prediction with lesser root mean
squared error in the in-sample assessment period.
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Table 1: Using the data from Delhi, the estimated optimal parameters of the modified SIS model,
RMSE of assessment and prediction periods with original training data and with adjusted training
data using C1, C2, C3 statistics. In all the six scenarios, the assessment and prediction periods are
taken as 20 days.

Graphs No. TCurrent Variable parameter Original With adjustment
in Figure 3

C1 C2 C3

(A) 12 May
2020

µ̂topt 0.063 0.053 0.048 0.06
β̂topt 0.19 0.19 0.19 0.18

Opt. training period 41 40 41 35
RMSE (Assessment) 296.70 316.10 311.60 248.02
RMSE (Prediction) 10984.22 8870.75 7395.23 1171.24

(B) 12 Jun
2020

µ̂topt 0.002 0.018 0.001 0.008
β̂topt 0.12 0.13 0.12 0.13

Opt. training period 20 20 20 24
RMSE (Assessment) 1417.65 1374.42 1291.85 1148.56
RMSE (Prediction) 12654.64 11648.56 8285.07 5105.93

(C) 12 Jul
2020

µ̂topt 0.097 0.095 0.099 0.098
β̂topt 0.14 0.14 0.14 0.15

Opt. training period 27 27 26 24
RMSE (Assessment) 2649.52 2430.44 2193.65 2381.78
RMSE (Prediction) 11092.92 10206.85 7865.84 12247.35

(D) 14 Sep
2020

µ̂topt 0.013 0.013 0.013 0.001
β̂topt 0.14 0.14 0.14 0.13

Opt. training period 20 20 20 22
RMSE (Assessment) 3350.79 3350.79 3350.79 2886.15
RMSE (Prediction) 31161.71 31161.71 31161.71 25972.73

(E) 12 Apr
2021

µ̂topt 0.008 0.006 0.007 0.069
β̂topt 0.22 0.22 0.22 0.28

Opt. training period 20 20 20 20
RMSE (Assessment) 6140.81 6162.93 6367.32 5374.55
RMSE (Prediction) 196356.66 101354.75 92301.01 73298.98

(F) 27 Apr
2021

µ̂topt 0.089 0.089 0.089 0.069
β̂topt 0.26 0.26 0.26 0.24

Opt. training period 49 49 49 49
RMSE (Assessment) 25354.74 25354.74 26088.72 23272.09
RMSE (Prediction) 443016.61 443016.61 436018.05 162015.09

4.2 Predicting the cumulative number of COVID-19 cases

To demonstrate the performance of the proposed jump-drop adjustment algorithm, we use the developed R-package to
predict the cumulative infected cases in the capital of India, Delhi. The data containing the number of daily confirmed
cases of COVID-19 is publicly available on https://www.covid19india.org/. In Table 1, we consider six different
Tcurrent as 12 May 2020 (in (A)), 12 June 2020 (in (B)), 12 July 2020 (in (C)), 14 September 2020 (in (D)), 12 April
2021 (in (E)) and 27 April 2021 (in (F)), to observe the impact of adjusting the jump drops using the proposed algorithm.
We have set the upper limit (TLimit) of the number of additional days that can be added to the minimum training period-
as 30. The prediction has been made using the original and the jump-drop adjusted data for the period TCurrent + 1 to
TCurrent+TPred

where TPred has been taken as 20 days. Table 1 shows the optimal values of µ and β calculated for
different prediction periods and the corresponding RMSE values for the assessment and the prediction period. Note
that, in all the scenarios, we have used modified SIS model described in Section 3.

In practice, when we do prediction for future, we do not have the observe infected cases for the prediction period.
Therefore, as discussed earlier, the RSME of the in-sample assessment period is used to chose between the with or
without adjustment prediction and the corresponding adjustment method (C1, C2 or C3). From Table 1, we observe that
the five out of the six scenarios the adjustment with C3 is giving the best results. Notice that, there is an increasing
trend in RMSE values over the time (calendar days). It is due to prediction of cumulative infected cases, which always
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Figure 3: Predictions made with and without adjustments for Delhi at different periods using best
performing metric.

increase over the time. For example, in the first scenario (A), the cumulative infected cases in the training period
was less than 10,000. Thus, corresponding RMSE values (for C3, RMSE-assessment: 248.02 and RMSE-prediction:
1171.24) are expected to be less. Parameters β̂opt, µ̂opt and the optimal training period are also changing for different
scenarios justifying the use of dynamic data-driven modified SIS model. Figure 3 shows the graphical comparison of
the scenarios presented in Table 1. In Figure 3, all the cases, the observed curve and adjusted prediction curve are close
to each other. Table 2 (in Appendix) shows the prediction for Maharashtra and Madhya Pradesh, the two other Indian
states.

5 Conclusion

This work established the importance of adjusting the sharp (false) jumps and drops observed in infected COVID-
19 cases while making the prediction. The proposed algorithm uses three detection methods, C1, C2, and C3, to
automatically detect these jumps and drops and adjust the corresponding values. We then made predictions using all
three methods and compared the results with the same model without making these adjustments. The RMSE values for
the considered dates supported the assumption that a decrease in RMSE in the assessment period should imply better
accuracy in the prediction. Looking at the RMSE values for the prediction period, we observed a significant increase in
accuracy.
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For a specific date (current day), the proposed algorithm will also check whether any adjustment is required or not
based on the ‘in sample assessment period.’ If so, the prediction will be made using adjusted training data. Otherwise,
the algorithm will use original training data (without adjustment). In other words, the proposed algorithm is adaptive
enough to automatically choose the right training data with or without adjustment. However, RMSE in the assessment
period may be the lowest for one detection method (say C3), but the RMSE in the prediction period (when observed data
is available for this period) is lowest for another detection method (say C1). In the last scenario of Table 2 (Appendix),
we observe this phenomena. It indicates the infection trend during the prediction period has changed substantially from
that of the training period.
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Appendix

Table 2: Using the data from Maharashtra and Madhya Pradesh, the estimated optimal parameters
of the modified SIS model, RMSE of assessment and prediction periods with original training
data and with adjusted training data using C1, C2, C3 statistics. In all the seven scenarios, the
assessment and prediction periods are taken as 20 days.

State TCurrent Variable Original With adjustment
parameter

C1 C2 C3

Maharashtra 12 May
2020

µ̂topt 0.096 0.036 0.095 0.033
β̂topt 0.23 0.16 0.22 0.16

Opt. training period 36 28 32 25
RMSE (Assessment) 1012.60 971.56 955.99 945.98
RMSE (Prediction) 56252.22 20378.43 38767.01 18147.96

Maharashtra 21 Jun
2020

µ̂topt 0.004 0.005 0.004 0.001
β̂topt 0.09 0.09 0.09 0.08

Opt. training period 27 25 25 21
RMSE (Assessment) 9155.62 9545.89 9435.10 8726.17
RMSE (Prediction) 41659.11 37311.09 37230.61 30591.41

Maharashtra 19 Sep
2020

µ̂topt 0.018 0.018 0.018 0.001
β̂topt 0.10 0.10 0.10 0.09

Opt. training period 20 20 20 21
RMSE (Assessment) 23770.72 23770.72 23770.72 21489.21
RMSE (Prediction) 171609.02 171609.02 171609.02 134484.32

Maharashtra 14 Oct
2020

µ̂topt 0.027 0.027 0.027 0.031
β̂topt 0.07 0.07 0.07 0.07

Opt. training period 25 25 25 21
RMSE (Assessment) 13876.04 13876.04 13876.04 13741.02
RMSE (Prediction) 43017.37 43017.37 43017.37 29206.76

Maharashtra 17 Apr
2021

µ̂topt 0.069 0.069 0.069 0.043
β̂topt 0.18 0.18 0.18 0.15

Opt. training period 33 33 33 25
RMSE (Assessment) 57767.96 57767.96 57767.96 57094.2
RMSE (Prediction) 884749.37 884749.37 884749.37 525393.53

Madhya
Pradesh

19 Oct
2020

µ̂topt 0.089 0.055 0.055 0.056
β̂topt 0.15 0.10 0.10 0.10

Opt. training period 43 26 25 22
RMSE (Assessment) 2141.95 1521.49 1545.69 1597.72
RMSE (Prediction) 11708.52 5065.79 5051.13 2525.85

Madhya
Pradesh

15 Aug
2021

µ̂topt 0.085 0.003 0.003 0.002
β̂topt 0.13 0.05 0.05 0.05

Opt. training period 20 48 48 48
RMSE (Assessment) 16.20 21.55 20.81 18.92
RMSE (Prediction) 29.74 2066.62 2065.15 2049.2

Madhya
Pradesh

12 May
2020

µ̂topt 0.040 0.063 0.083 0.087
β̂topt 0.12 0.15 0.17 0.20

Opt. training period 28 28 28 40
RMSE (Assessment) 129.24 139.67 142.37 88.62
RMSE (Prediction) 316.52 307.81 430.65 3126
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