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1 Abstract 

An individual’s disease risk is affected by the populations that they belong to, due to shared genetics 
and shared environment. The study of fine-scale populations in clinical care will be important for 
reducing health disparities and for developing personalized treatments. In this work, we developed 
a novel health monitoring system, which leverages biobank data and electronic medical records from 
over 40,000 UCLA patients. Using identity by descent (IBD), we analyzed one type of fine-scale 
population, an IBD cluster. In total, we identified 376 IBD clusters, including clusters characterized 

by the presence of many significantly understudied communities, such as Lebanese Christians, 
Iranian Jews, Armenians, and Gujaratis. Our analyses identified thousands of novel associations 

between IBD clusters and clinical diagnoses, physician offices, utilization of specific medical 
specialties, pathogenic allele frequencies, and changes in diagnosis frequency over time. To enhance 
the impact of the research and engage the broader community, we provide a web portal to query our 
results: www.ibd.la  

 

2 Introduction 

Individuals belong to many populations, and each population can have unique health risks. This can 
be a consequence of a population’s shared cultural or physical environment, shared genetics, or a 
combination of both. Understanding population-level differences in disease outcomes will be 

important for reducing health disparities and for developing personalized treatments [1], [2]. To this 
end, new large-scale biobanks tied to electronic health records (EHR) present an ideal opportunity to 
study the health of populations [3]–[5]. These biobanks can facilitate the study of many types of 
populations, especially groups of people who are genetically related. For example, recent work in 
biobanks has identified new genetic associations [6], examined how diseases track through families 

[7], and developed new polygenic risk scores for diverse ancestries [8]–[10].  

 
Our work [11], along with others [12]–[15], has used identity-by-descent segments (IBD) to identify 
fine-scale populations in biobanks. Here, we use one definition of population, which are clusters of 
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individuals who share IBD. IBD segments are stretches of DNA that are identical between individuals 
due to having a shared ancestor. People whose ancestors lived in the same geographic location or 

who were part of the same ethnolinguistic group tend to share more IBD [16]. These clusters of 
people may also share an environment, which can be relevant for understanding why or how patients 
visit the hospital. Indeed, our previous work demonstrated that groups of individuals who share 
elevated amounts of IBD are associated with particular diagnoses. Furthermore, IBD clusters can 
complement measures of self-reported race and ethnicity and offer additional information on genetic 
risk. IBD analysis, then, can be a powerful tool for identifying opportunities to improve health 

outcomes.  
 
Here, we extend our previous work [11], and use IBD to detect fine-scale clusters and analyze their 
health patterns within the ATLAS Community Health Initiative [17]. ATLAS is part of the University 
of Los Angeles (UCLA) Health system located in west Los Angeles, which serves a diverse population 
of patients across the greater Los Angeles area. Los Angeles is a cosmopolitan city, characterized by 

many neighborhoods whose residents represent recent and past immigration into California (Fig. 1a) 
[18]. By creating a network of IBD sharing and applying an unsupervised machine learning algorithm, 
we identified 376 distinct IBD clusters in ATLAS. IBD clusters include groups defined by the presence 
of Iranian Jews, Armenians, Lebanese Christians, Egyptian Christians, Filipinos, Puerto Ricans, 
Koreans, and Ashkenazi Jews. Many of these groups have been historically understudied in 

biomedical research. Thus, this work represents an advance in the study of the health of minority 

groups in Southern California. Note that for this work, we name the IBD clusters to facilitate 
communication. We emphasize, however, that grouping and naming are by nature, error-prone, 
especially in the context of continuous human diversity [19]. Furthermore, not all individuals within 
a cluster will share the same attributes, including self-identified race, ethnicity, language, or religion. 
As such, IBD clusters offer one lens into studying health outcomes that can be studied alongside 

socially determined concepts of race and ethnicity to better understand structural determinants of 
health [20], [21].  
 
We identified thousands of novel cluster-specific health associations, especially in the Iranian, 
Armenian, and South Asian IBD clusters. There were widespread differences in the rates and patterns 
of interaction with the healthcare system, including the observation that non-European groups were 

less likely to visit a doctor that had a primary care specialization. Differences in diagnoses between 
clusters included elevated rates of heart transplants in the Armenian cluster, eating disorders in the 
Ashkenazi Jewish cluster, and non-toxic multinodular goiters in both Iranian clusters. We also 
examined the frequencies of pathogenic alleles within IBD clusters and noted several instances of 
cluster-specific enrichment, including a high carrier rate for familial Mediterranean fever in 

Armenians, and a rare allele for GNE myopathy in Iranian Jews. Finally, we analyzed the genetic 

properties of IBD clusters. Several clusters had high within-cluster IBD sharing, indicating elevated 
relatedness. In particular, the Iranian Jewish cluster shared an average of 57.43 cM of IBD, which is 
much higher than estimates for other well-known founder groups, such as the Ashkenazi Jewish 
(26.08 cM) and Puerto Rican (23.06cM) clusters. To facilitate the use of the large set of novel 
associations, we developed a web framework allowing interactive access to the results presented 

here. Overall, this work progresses understanding of health in understudied communities, which can 
be useful in the development of precision medicine and can provide the foundation for further study 

into structural health inequities that may exist in Los Angeles.   
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3 Results 

 

3.1ATLAS  

The UCLA ATLAS Community Health Initiative aims to create a genomic resource to enable 
translational and precision medicine (see ref [17] and [6] for more details). In ATLAS, genotyping 
data is tied to de-identified EHRs as part of the UCLA Health IT Discovery Data Repository & 

Dashboard (DDR) [22]. As of 2021, there were approximately 40,000 participants with full 
genotyping and DDR data available [23]. Recruitment is ongoing. The DDR includes records from the 
large UCLA Health system, which includes two main hospital campuses, the Ronald Reagan UCLA 
Medical Center located in Westwood, and the UCLA Santa Monica Medical center UCLA Health also 
has more than 200 clinics throughout the Los Angeles area with thousands of affiliated physicians. 
The DDR includes demographics, diagnoses, records of encounters containing information on the 

provider and office of a visit, prescription medication orders, and procedures. ATLAS comprises a 

diverse set of individuals, both genetically, and in terms of demographic characteristics reported in 
the EHR (Fig. S1). A complete description of the ATLAS project and data is available in [17].  

 

3.2    Identifying fine-scale ancestry clusters 

 

3.2.1 Use of genetic ancestry in determining clusters  

 

To identify fine-scale clusters that are relevant for studying health outcomes, we focused on inferring 
relationships via IBD segments (Fig. 1b). Our previous work showed that studying IBD clusters offer 

distinct advantages over identifying patient clusters through self-reported or EHR-reported 
measures alone. This was especially true for non-European ancestry populations [11]. We find 
similar properties here. 11.6% of patients in ATLAS do not have a race/ethnicity specified. Of those 
that do have a race/ethnicity specified, 14.7% have the designation of “Other Race,” which is the 

second most common race/ethnicity designation after “White” in ATLAS. This category can 
encompass many non-European groups, including those with Middle Eastern ancestry, who are a key 

demographic group in Los Angeles. Thus, using race/ethnicity categories alone limits our ability to 
study health outcomes that may exist in non-European groups.  

 

While other characteristics, such as preferred language, could be used to study determinants of 

health, many patients do not have this information recorded in the EHR. For example, only 5.2% of 

patients prefer a language other than English, which would limit the power to detect disease 
associations. Additionally, the reasons an individual may have language, or other similar 
demographic information, included in their EHR record is complex, non-random, and not guaranteed 
to be accurate. Therefore, for this study we focus on groups identified via genetic ancestry. 
Importantly, genetic ancestry is a distinct concept from race, which is a social construct [19], [24]. 

The study of both can offer valuable and complementary perspectives toward the goal of 
understanding the reasons a group visits a hospital [25]. Future studies could focus on further 

expanding self-identification surveys in the context of EHRs, which could work in tandem with 
genetic ancestry clusters to identify health disparities.  

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 15, 2022. ; https://doi.org/10.1101/2022.07.12.22277520doi: medRxiv preprint 

https://doi.org/10.1101/2022.07.12.22277520
http://creativecommons.org/licenses/by-nd/4.0/


 
 
 

4 

 

3.2.2 Identity by descent clustering  

To define our IBD clusters, we called pairwise IBD between all ATLAS participants and reference 
individuals sourced from the 1000 Genomes Project [26], the Simons Genome Diversity Project [27], 
and the Human Genome Diversity Project [28]. IBD segments were estimated using iLASH [29], 
identifying in total, over 95 million shared IBD segments. All participants in the biobank had at least 

one IBD segment detected, with the mean amount of IBD sharing being 14.80cM (IQR: 3.84-21.57cM). 

This was similar to the amount of IBD sharing in our previous work using the BioMe biobank from 
the Mount Sinai Health System, which found a mean 19.10cM (IQR: 5.61-27.52cM) [11]. In ATLAS, 
total IBD ranged from 3cM to more than 100cM, with about 30% being less than 4cM, indicating both 
substantial ancient and recent genetic relatedness (Fig. S2a). Most pairs only shared 1 segment of 
IBD (Fig.  S2b).  

 
 
Figure 1: Foreign-born residents in Los Angeles and an overview of the fine-scale cluster detection 
approach. (a) For eight relevant countries, the top five zip codes in LA county with the most individuals born 
in that country according to 2019 US Census Data. (b) A schematic of IBD calling and cluster annotation. We 

first pre-process the data and infer IBD segments for all biobank participants and reference samples (top left). 
We then identify fine-scale clusters using Louvain clustering (top right) and we use EHR data associated with 
the individuals in each IBD cluster to explore patterns of enrichment for cluster-specific health utilization 
(bottom left). Finally, we measure patterns of genetic relatedness both within and between identified clusters 
(bottom left). 

 

To infer clusters, we followed the approach of Dai et al. and used the Louvain method for cluster 
detection [30]. This method finds structure in large networks and has been shown to work well on 
genetic data [13]. We applied this algorithm to an undirected network constructed from IBD sharing, 
where each node represented an individual, and edge weights were defined as the genome-wide sum 
of IBD sharing between the nodes [31]. An advantage of the Louvain algorithm is that it can be run 
iteratively, meaning that an initial run over the entirety of the graph can be used to define broad 

substructure, which can be further resolved into more fine-scale clusters upon subsequent iterations.  
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We detected 376 IBD clusters, each of which was given a provisional identifier corresponding to the 
cluster from each of the three iterations of Louvain clustering (e.g., “UCLA_1_0_2”). The mean number 

of patients per cluster was 106.85±280.05, which was about 0.3% of ATLAS. There was substantial 
variation in the size of the estimated clusters, ranging from a minimum of 2 individuals to maximum 
2030 individuals, which was 5.6x10-5 % to 5% of ATLAS. Overall, these clusters represented 
substantial genetic diversity, with clusters characterized by a mixture of ancestries from the 
Americas, West Asia, Europe, Africa, East Asia, and South Asia (Fig. 2a, Fig. S3). Differences in cluster 
size, historic population size, and complex patterns of genetic relatedness resulted in differential 

cluster densities. Some clusters are densely connected, with nearly every individual sharing IBD with 
every other individual in the group (Fig. S4a), while others share few connections (Fig. S4b), or a 
moderate amount (Fig. S4c).  
 
To further refine our clusters, we used the approach of Dai et al. and merged subclusters with low FST 
(Hudson’s Fst < 0.001) between them [13]. This facilitated identifying clusters that were differentiated 

enough to represent the underlying diversity of ATLAS, but sufficiently large to allow for powered 
statistical analysis. This stopping point, however, is arbitrary, and finer-scale clusters might be 
interesting for future population or medical genetics research. For example, the subclusters merged 
together to make the predominantly European ancestry cluster have differing distributions of IBD. 
FST to an external dataset of UK BioBank (UKBB) participants born outside the UK suggest that these 

subclusters likely represent individuals from different geographic regions, such as Northern, 

Southern, and Eastern Europeans (Fig 2b). In total after FST merging, we identified 24 clusters of 
diverse ancestry with at least 30 ATLAS participants, representing 97.8% of ATLAS. For downstream 
analyses, we focus on these 24 clusters.  

 

3.2.3   Annotating cluster identity 

We next assigned names to each cluster. The ATLAS biobank does not contain the true country of 
origin of participants, which was used in our previous studies to annotate cluster identity [11]. 
Instead, we annotated IBD clusters by using reference data in the clustering algorithm. We also used 
additional summary statistic reference data to compute Hudson’s FST between ATLAS IBD clusters 
and external populations (Fig. 2c, Fig. S4), including IBD clusters identified in the BioMe biobank. 

This enabled additional refinement of cluster names. Whenever possible, we named the IBD clusters 
according to previously published naming conventions.  
 
Some clusters did not contain any reference data, or the reference data did not capture important 
aspects of the cluster. For example, there was no Ashkenazi Jewish reference data, only reference 
data labeled by European countries. To address this problem, we used the de-identified EHR 

demographic information to refine and confirm cluster annotations. These included EHR reported 
race and ethnicity, preferred language, and preferred religion (Fig. 2d). We emphasize that race, 
ethnicity, and religion are not determined by IBD segments, but represent sociocultural 
characteristics that may be related to cluster identity. We chose to use religion in the name of groups 
when it was relevant to identifying a historically persecuted group (i.e. ,“Lebanese Christian” instead 
of just “Lebanese”). These groups often have distinct histories and cultural practices, which can affect 

demography, environment, and disease risk. For example, it is well known that Ashkenazi Jews have 
distinct genetic risks relative to other Europeans [32]. Thus, including religion in this study may offer 
opportunities to improve the health of understudied ethnoreligious groups.  
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Most ATLAS patients are non-Hispanic, have no religious preference, and indicated that they prefer 

to speak English. We, therefore, labeled clusters using individuals who preferred a different language 
or religion or were identified as Hispanic in the EHR (note that the actual number of English speakers 
may be lower, as some patients may not, for societal or practical reasons, have this information 
included in their medical records). Importantly, the label given to a cluster serves as a broad 
interpretation of the cluster’s demographic ties and does not necessarily reflect the self-identity of 
members, see Discussion for further details. Furthermore, the clusters discussed here are specific to 

Los Angeles, especially those who visit UCLA Health, and may not be representative of the global 
population.  
 

 
 

Figure 2: Genetic and demographic properties of clusters. (a) The mean admixture fractions [33] for each 
of the UCLA ATLAS IBD clusters when K=6. Each line corresponds to the components for one ATLAS IBD cluster. 
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The components are inferred to correspond to genetic ancestry from the Middle East (red), East Asia (orange), 
Europe (green), South/Central Asia (teal), Africa (blue), and the Americas (purple). The left column indicates 

the number of the IBD cluster from the Louvain algorithm. The right column gives examples of names that were 
given to the largest Louvain IBD clusters. (b) The distribution of IBD within subclusters that were merged to 
make one cluster of predominantly European ancestry. The names on the left indicate the number of the IBD 
cluster from the Louvain algorithm, and the name on the right indicate potential names from FST analysis with 
the UKBB (Fig. S4a). (c) The Hudson’s FST value between IBD clusters identified in BioMe at Mount Sinai and 
ATLAS IBD clusters demonstrating the relationship between ATLAS and populations outside of Los Angeles. 
The darker the color, the smaller the FST value. The smallest FST value for each of the ATLAS clusters is indicated 

by a white dot. (d) For each of the largest clusters, (from left to right) the proportion of reference data by 
continent in each cluster, the proportion of the cluster that indicated they prefer a specific religion, the 
proportion of the cluster marked in the EHR as each race/ethnicity category, and the proportion of each 
language preferred by the cluster. 
 

We identified many fine-scale clusters that reflect the known demography of Los Angeles. For 

example, we identified an Iranian Jewish (n=264) and an Iranian Non-Jewish IBD cluster (n=350), 

which are groups that predominantly immigrated to Los Angeles after the 1979 Iranian Revolution 
[34]. We also identified a large Armenian cluster (n=491), consistent with Los Angeles having the 

largest population of diaspora Armenians in the US [35]. Furthermore, we identified several Asian 

clusters, including Chinese (n=1547), Filipino (n=796), Vietnamese (n=269), Japanese (n=596), and 
Korean (n=546) clusters. While Spanish-speaking reference data was lacking, we still identified IBD 

clusters characterized by the presence of Puerto Rican (n=288) and Colombian (n=49) reference 

samples. One Spanish-speaking cluster, which we call “Central/South American,” was large (n=6075), 
and contained reference data from a variety of groups, including Mexicans, and Peruvians. Subgroups 

of this cluster showed complex fine-scale structure (Fig. S4E), suggesting that in the future, it could 

be resolved into further subclusters.  

Other notable IBD clusters were named Ashkenazi Jewish (n=5309), Lebanese Christian (n=219), 

Egyptian Christian (n=92), and Telugu (n=276). We identified three Black/African American clusters. 
One cluster, termed “African American”, was the largest (n=1877). It contained individuals with 

significant admixture components of both European and African ancestry and included the 1000G 

African American reference samples. The second IBD cluster, “Afro-Caribbean” (n=39), had low FST 

to the Dominican cluster in BioMe (Fig. 2C) and other Caribbean populations in an external dataset 

of foreign-born participants in the UKBB (Fig. S4F). The third IBD cluster, which we named “West 

African” (n=281), had a large African admixture component and clustered with Yoruba reference 
samples, which suggested that this cluster represented individuals with more recent African ancestry 

than the other Black/African American IBD clusters. Further details about the cluster characteristics 

and associated reference data can be found in Supplementary Data 1. 

3.3     Health system utilization of fine-scale IBD clusters 

3.3.1 Phecodes 

Using de-identified EHR data, we sought to understand how different IBD clusters accessed the 
hospital system and what conditions they presented with. This may be of interest to health care 

practitioners seeking to improve care for diverse groups and provides an opportunity to understand 
health disparities that may exist within Los Angeles.  
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To assess whether an IBD cluster received a diagnosis at a higher or lower rate than others, we used 
a logistic regression model, regressing whether an individual received a particular diagnosis against 

the individual’s IBD cluster status. Phecodes based on ICD10 codes were used in place of diagnoses, 
as they have been shown to be good proxies for disease phenotypes [36]. To account for differences 
in diagnosis frequencies between medical contexts, we separately assessed the code assignments 
both for outpatient encounters and for emergency room (E.R.)  visits.  Age, sex, and BMI were 
controlled for in both analyses. We note that there was substantial variation between the clusters for 
all these factors (Fig. S5), further highlighting the structural and environmental factors shape health 

amongst ATLAS patients.  
 

We began by comparing phecode assignments in Ashkenazi Jews to all biobank participants in an 
outpatient setting. Ashkenazi Jews represent one of the largest IBD clusters identified (n=5309) and 
are relatively well studied, which enables validation. We tested n=1131 phecodes assigned to at least 
30 patients in outpatient encounters. 236 were significantly associated with Ashkenazi Jew IBD 

cluster status at a false discovery rate of 5% (Fig. 3a).  As reported in [11], [37], [38], we find that 
Ashkenazi Jews are more likely to be assigned phecodes for ulcerative colitis (log odds ratio: 0.81±0.2, 
p-value: 6.61e-15), chronic ulcerative colitis (log odds ratio: 0.74±0.23, p-value: 6.88e-10) and 
regional enteritis (log odds ratio: 1.08±0.20, p-value: 4.23e-27). We additionally observed strong 
associations for several mental health disorders, including obsessive-compulsive disorder (log odds 

ratio: 1.13±0.33, p-value: 2.49e-11), eating disorder (log odds ratio: 1.22±0.32, p-value: 1.02e-13), 
anxiety disorder (log odds ratio: 0.53±0.07, p-value: 8.75e-55), and major depressive disorder (log 
odds ratio: 0.48±0.1, p-value: 9.02e-23).  
 

All these associations remained significant at FDR 5% when restricting the analysis to only compare 
the Ashkenazi Jewish and European Non-Jewish IBD clusters. The mental health-related enrichments 

were especially interesting given that in E.R. visits, Ashkenazi Jewish IBD cluster status was 
significantly associated with major depression as the primary reason for visit (log odds ratio: 
0.83±0.55, p-value: 0.0034) (Fig. S7a). While these results are consistent with previous reports of 
mental illness in Jewish communities of European ancestry [39]–[41], we emphasize that this 
association does not indicate a causal relationship between Jewish IBD cluster status and these 
disorders. Instead, this association could reflect a shared environment, such as social pressure, 

including response to anti-Semitism as suggested in [42], socioeconomic status, or group norms 
around seeking psychiatric care. 
 

We confirmed several other established disease-ancestry associations. For example, we observed 
that compared to the whole biobank, individuals in the African American IBD cluster (n=1877) were 
more likely to be assigned phecodes for sickle cell anemia (log odds ratio: 3.92±0.55, p-value: 1.18e-

44) and less likely to receive phecodes for skin cancer (log odds ratio: -3.57±1.96, p-value: 3.61e-04) 
(Fig. 3b).  Both these observations are consistent with previous studies [43], [44]. Notably, this IBD 
cluster is also more likely to have pathogenic alleles in the HBB gene, which is responsible for sickle 
cell disease [45] (see Section 3.4 for further discussion). Furthermore, as with previous reports [46], 
we observed an increased number of diagnoses relating to Viral Hepatitis B in Asian IBD clusters. 

However, the effect size significantly differed (Mantel-Haenszel chi-square test, p-value=5.21e-06) 

between the Chinese (n=1547) (log odds ratio: 2.95±0.25, p-value: 1.66e-120), Korean (n=546) (log 
odds ratio: 2.16±0.37, p-value: 4.16e-31), and Filipino (n=767) (log odds ratio: 1.14±0.48, p-value: 
4.00e-06) IBD clusters, indicating the utility of fine-scale information.  
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Figure 3: Phecode associations for selected IBD clusters. (a) Manhattan plot showing associations between 
IBD cluster status and being assigned a phecode (n=1131) relative to the remaining biobank participants. 
Results are shown for (a) the Ashkenazi Jewish IBD cluster or (b) the African American IBD cluster status. 
Phecodes are grouped by phenotypic category. The top significant (FDR 5%) for each IBD cluster are labeled 
and the bonferroni significance is indicated by a grey dotted line. (c) For 7 IBD clusters, including 6 

understudied communities, the log odds ratio of the association between IBD cluster status and being assigned 
a phecode.  A log-odds ratio greater than zero means that the phecode is more likely to be given to patients of 
that IBD cluster.  The dot indicates the log odds ratio for the cluster and the bars indicate the 95% confidence 
interval. A solid dot (versus an open dot) indicates that the association between IBD cluster and phecode is 
significant at FDR 5%.  

 

Next, we focused on identifying disease associations in understudied communities (Fig. 3c). The 
Iranian Jewish (n=264) and Iranian Non-Jewish (n=351) IBD clusters shared several associations in 
outpatient diagnoses. Both communities were less likely to be diagnosed with certain types of skin 

cancer and more likely to be assigned codes relating to goiters. However, the phecode with the 
smallest p-value for each cluster- non-toxic multinodular goiter in Iranian Non-Jewish (log odds ratio: 
0.94±0.46, p-value: 4.83e-05) and adjustment disorder in Iranian Jews (log odds ratio: 1.06±0.35, p-

value: 2.04e-09) were not the same. This difference emphasizes that fine-scale information is useful 
when studying health outcomes in Los Angeles. Other notable associations we identified included an 

enrichment of phecodes relating to bacterial enteritis in the Egyptian Christian IBD cluster (n=92) (
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log odds ratio: 2.00±0.73, p-value: 9.18E-08) and phecodes relating to bronchus cancer in the Korean 
cluster (n=546) (log odds ratio: 1.03±0.43, p-value: 2.03e-06).  

 

In emergency room diagnoses, we observed a particularly high number of severe diagnoses 
associated with the African American cluster status (Fig. S7b), including phecodes relating to 
pulmonary heart disease (log odds ratio: 1.19±0.37, p-value: 4.21e-10), chronic renal failure (log 
odds ratio: 1.15±0.4, p-value: 2.50e-08), and cardiomyopathies (log odds ratio: 1.14±0.44, p-value: 
4.39e-07). All of these conditions are well documented to be at a higher prevalence in the general 

African American population in the United States [47]–[49]. The Central/South American IBD cluster 
was more likely to visit the emergency room for reasons relating to liver transplants (log odds ratio: 
1.51±0.3, p-value: 1.13e-23). Interestingly, the Chinese IBD cluster, who despite the relatively large 
cluster size, had fewer emergency room visits (log odds ratio: -0.29±0.068, p-value: 1.97e-05) 
(Supplementary Table 2) than other clusters, and no significant phecode associations against the 
entire biobank. This does not mean that Chinese individuals are less likely to have health 

emergencies, but rather, could reflect other structural factors, or that this cluster visits other 
emergency rooms that are not in the UCLA Health System. 

 
We noted that phecode associations depended strongly on the set of comparator clusters. While it is 
straightforward to consider the phecodes assigned to an IBD cluster relative to the entire biobank, 

researchers might also be interested in enrichments between clusters that are closely related. 
However, “closely related” depends on a complex interplay of culture, environment, and perception. 
For example, Armenia is in Western Asia and has a strong historical relationship with Iran [50]. 
Armenia, however, also has close ties with Europe [51], and 68% of the Armenian cluster is 
designated as “white” in the UCLA EHR. When comparing the Armenian IBD cluster (n=491) against 
the entire biobank, they were more likely to be assigned codes relating to heart transplant (log odds 

ratio: 1.39±0.5, p-value: 4.72e-08), which is consistent with previous reports of Armenian ancestry 
being a risk factor for cardiovascular disease [52] (Fig. 4a).  
 
When comparing the Armenian IBD cluster against the European Non-Jewish IBD cluster (n=17017) 
(Fig. 4b), these disorders were still significant, but many new enrichments surfaced. When comparing 
the Armenian cluster to Middle Eastern IBD clusters (Iranian Non-Jewish and Jewish, Egyptian and 

Lebanese Christians, and Arabs) (n=960) (Fig. 4c) or only the Iranian IBD clusters (n=614) (Iranian 
Non-Jewish and Iranian Jews) (Fig. 4d), we found that many phecodes that were enriched against the 
European IBD cluster were no longer significant. New phecodes were also identified, such as 
disorders of the immune mechanism (log odds ratio: 0.9±0.56, p-value: 1.49e-03). This may be due 
to reduced power but could also be a consequence of the shared genetics between Middle Easterners 
and Armenians, shared diaspora culture, or both. In sum, this example illustrates the importance of 

holistically evaluating health disparities, as they are likely determined by a multitude of structural 

forces. 
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Figure 4: Phecodes associated with the Armenian IBD cluster compared to different populations. The 

log odds ratio of a given phecode assignment is associated with membership in the Armenian cluster versus 

membership in (a) the remaining biobank at large, (b) the European Non-Jewish clusters (c) the Middle 

Eastern clusters (both Iranian IBD clusters, both Christian Arab IBD clusters, and the Arab IBD cluster) and (d) 

the Iranian IBD clusters only. A positive log odds ratio means that the phecode is more likely to be given to 
patients of that cluster. We tested only phecodes with at least 30 patients per code and corrected for age, sex, 

and BMI in these analyses. Phecodes significant at FDR 5% are shown and if there are more than 30 significant 
associations, we plot only the top 20. 

3.3.2        Department and Office Utilization 

While phecodes offer a granular look at what brings clusters to the UCLA Health system, we also 
sought to evaluate how IBD clusters access health care on a larger scale. To do this, we assessed 
whether an IBD cluster was more or less likely to visit a particular specialty using a logistic regression 
model, regressing IBD cluster status against whether that individual had ever visited a doctor with a 

given specialty in an outpatient setting. 
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We found that many non-European IBD clusters were significantly less likely to visit a routine care 
provider. For example, compared to remaining biobank participants, patients in the Central/South 

American IBD cluster were less likely to visit a physician with an OBGYN (log odds ratio: -0.14±0.08, 
p-value: 8.54e-04), internal medicine (log odds ratio: -0.25±0.06, p-value: 2.28e-15), family medicine 
(log odds ratio: -0.13±0.07, p-value: 3.18e-04), or primary care specialty (log odds ratio: -0.3±0.07, 
p-value: 2.36e-15). Likewise, belonging to the African American IBD cluster was associated with 
being less likely to see a primary care physician (log odds ratio: -0.27±0.13, p-value: 3.93e-05), 
although patients in this cluster were more likely to see a family medicine physician (log odds ratio: 

0.24±0.11, p-value: 1.77e-05) than others in ATLAS. Overall, individuals who belong to the European 
Non-Jewish IBD clusters were significantly more likely to visit a primary care physician (log odds 
ratio: 0.28±0.05, p-value:6.344e-30) (Fig. 5a). 

 

Beyond specialty, we also analyzed which offices within the UCLA Health System each cluster visited. 

The UCLA health system is large, with a network of over 2,000 physicians serving the Greater Los 

Angeles area [53]. Knowledge of which clusters attend specific practices might be useful for 
healthcare practitioners looking to better understand the populations that they serve. Furthermore, 
we hypothesized that patients would prefer to see doctors close to their homes, which could aid in 
understanding patterns of health system utilization across Los Angeles and in examining disparities 
in travel time to the main UCLA Hospitals.  

 

To do this, we used a logistic regression model to test whether a patient had an encounter in a 
particular zip code, regressing against IBD cluster status and controlling for BMI, age, and sex. 
Through this analysis, we recapitulate many known geographies (Fig. 5b). For example, individuals 
in the Chinese IBD cluster were more likely to visit a UCLA office located in the zip code 91030 (log 
odds ratio: 4.22±0.6, p-value: 1.42e-43), which is situated between the cities of Pasadena and 

Alhambra, two major Chinese neighborhoods in California [18]. Likewise, individuals in the Korean 
IBD cluster were most likely to visit offices in Downtown LA adjacent to the center of historic 
Koreatown (log odds ratio: 0.58±0.39, p-value: 3.84e-03) [54, p.]. We also identified associations that 
might be less intuitive. For example, the African American IBD cluster was most likely to visit offices 
in the zip code 90067 (log odds ratio: 1.2±0.21, p-value: 2.52e-29), which contains a UCLA Health 
office located in the Century City shopping mall. This zip code has very few Black residents, (less than 

2% in the 2020 census [55]), so this association might represent an instance of patients traveling to 
access care. 

 

By examining the subclusters produced by the Louvain algorithm, we can potentially learn about 
where highly specific groups live in LA. For example, the Central/South American cluster is 
comprised of 5 smaller clusters that were merged after FST thresholding. These clusters could 

potentially represent distinct groups, such as Mexicans, El Salvadorians, and Guatemalans that may 

be able to be resolved as sample sizes grow and additional reference data becomes available. We 
found that each of these subclusters is strongly associated with a particular zip code in LA. (Fig. S8). 
Future work can focus on understanding structural and environmental forces specific to these zip 
codes to improve health.  
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Figure 5:  Fine-scale hospital utilization in ATLAS. (a) The log odds ratio of the European Non-Jewish IBD 

cluster having a visit to a particular specialty, assessed against all other biobank participants. (b) The UCLA 
health system office zip code which is most associated with selected IBD clusters. The color indicates what zip 

code is significantly associated with that cluster.  For 6 clusters, the proportion of that IBD cluster that visited 
the UCLA Health system each year in an outpatient setting receiving (c) kidney replaced by transplant, and (d) 

major depressive disorder. 

3.3.3    Diagnoses over time 

We next examined how the different IBD clusters interact with the health system over time. We used 
phecodes as a proxy for understanding diagnoses and calculated the proportion of a cluster assigned 

a phecode each year. We then calculated the inter-year difference in the proportion of people 

diagnosed in 2020 and 2016. Since we were interested in phecodes that might have different 
trajectories between IBD clusters, we identified the phecodes that had the greatest variance in the 

inter-year difference between the 6 largest clusters. We plotted two typical codes with high variance. 

The proportion of patients assigned a phecode relating to kidney transplants (Fig. 5c) significantly 
differed between 2016 and 2019 for the Filipino (p=4.42e-05), Central/South American (p=1.77e-

31), and African American (p=5.30e-07) IBD clusters, but not in the Ashkenazi, European or Chinese 

IBD clusters (p=9.50-04). Diagnoses generally increased but dropped sharply in 2020. This might be 
attributed to the strict shelter-in-place order in Los Angeles [56] and the subsequent decrease of 

procedures performed this year.  

 
Phecodes relating to mental illness (Fig. 5d) were particularly interesting in their heterogeneity 

between clusters. The Ashkenazi Jewish IBD cluster had the highest proportion of patients diagnosed 

with major depressive disorder. By 2020, the Ashkenazi Jewish IBD cluster had five times as many 
diagnoses as the Chinese IBD cluster. The Chinese IBD cluster had a consistently low proportion 

receiving the phecode, and while most other clusters had an increasing number of diagnoses with 
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time, the Chinese IBD cluster had a slow or even decreasing proportion. It is important to note that 

for any of these diagnoses, it is not necessarily true that the rates of diagnosis indicate the actual 

prevalence of the disorders in the cluster. Receiving a phecode in a UCLA hospital is extremely 

different than actually having a disease. Instead, these results indicate the complex dynamics 

between how clusters interact with the health system, which could be a function of doctor choice, 
insurance coverage, health care practitioner perceptions, or other structural forces.  

 

3.3.4    Disease alleles 

The study of IBD clusters also presents an opportunity to identify genetic risk variants that could be 
included in screening efforts that have the goal of improving care for diverse patients. To explore 
this, we began by examining the minor allele frequency (MAF) of pathogenic mutations that have 
been previously reported to be enriched within particular groups. One example is Familial 
Mediterranean Fever, which is caused by mutations in the MEFV gene and occurs more frequently in 

people of Mediterranean descent [57]. We restricted to ClinVar pathogenic SNPs occurring in the 

MEFV gene and performed a Fisher’s exact test to compare the allele frequencies within a given IBD 
cluster relative to the MAF across all of ATLAS. We were limited to only the SNPs that occurred on 
the genotyping chip, however, which reduced the search space of pathogenic mutations. As such, 
there was only one pathogenic SNP genotyped in MEFV, (rs28940579), but it had significantly 
elevated allele frequencies in the Armenian (MAF: 0.042, Fisher’s exact test p-value: 1.72e-21), 

Lebanese Christian (MAF: 0.037,  Fisher’s exact test p-value: 1.1 × 10-8), and Egyptian Christian IBD 
clusters (MAF: 0.033, Fisher’s exact test p-value: 0.00087) compared to the rest of the biobank (MAF: 
5.5 × 10-3). This was consistent with expectation, as Armenians are known to have a particularly 
high burden of Familial Mediterranean Fever [58]. We also found that the SNP has a significantly 
higher minor allele frequency in the Ashkenazi Jewish IBD cluster (MAF: 0.029, fisher exact test p-
value: 2.61e-159). 

 
Next, we analyzed pathogenic variants in the HBB gene, which is implicated in sickle cell disease [45]. 
HBB is known to be associated with African ancestry [43]. The genotyping data contained 21 total 

ClinVar pathogenic SNPs in this region, and we identified two with significantly different MAF 
between clusters with African ancestry and the remaining biobank participants. Specifically, in the 

African American IBD cluster, we identified rs34598529 (biobank MAF: 3.023e-05, cluster MAF: 2.2 
× 10-3, fisher exact test p-value: 1.52e-09) and rs34999973 (biobank MAF: 0.00, cluster MAF: 2.89e-
4, fisher exact test p-value:  2.9 × 10-4). No variants were significant in the Afro-Caribbean cluster 
and only rs34598529 was significantly higher in the West African IBD cluster (cluster MAF: 0.014, 
fisher exact test p-value: 0.010), but this might be attributed to the much smaller sample size of these 
clusters.  

 
These examples demonstrated that IBD clusters are able to recapitulate well-known disease loci, but 
also, we wanted to examine genetic risk loci that are not currently well-screened for.  This could 
provide opportunities for expanding care. To test this, we examined all genotyped SNPs that were 
labeled in ClinVar as pathogenic and used a Fisher exact test to test for allele frequency differences 
between an IBD cluster of interest and the remaining biobank participants. One compelling result 

was rs28937594, which was significantly higher in Iranian Jews (biobank MAF: 5.80e-05, cluster 

MAF: 0.024, Fisher’s exact test p-value: 5.58e-28). Rs28937594 is in the GNE gene and implicated in 
hereditary inclusion-body myopathy, an ultra-rare recessive disease [59]. This SNP has been 
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reported to be a founder mutation in Iranian Jews [60], [61]. Interestingly, the MAF in the Iranian 
Non-Jewish cluster for this SNP was high, but not significant (cluster MAF: 0.0017, Fisher’s exact test 

p-value: 0.1512). However, participants in the Iranian Non-Jewish cluster had a significantly higher 
MAF for rs41464951 (cluster MAF: 0.0051, biobank MAF:8.79e-05, Fisher’s exact test p-value: 5.02e-
05), which has been found to be pathogenic for alpha thalassemia. This disease has been reported to 
be higher in Iranian and Middle Eastern populations [62], [63]. However, loci relating to GNE 
myopathy or alpha thalassemia are currently not regularly screened for in the UCLA Health System. 
This suggests, as others have found [64], that there are additional loci that might be included in 

genetic screening programs that could improve health outcomes for diverse populations.  
 

3.4     Genetics of IBD clusters 

3.4.1 Within cluster IBD 

We next turned to the genetics of IBD clusters. Studying the population genetics of a cluster can 

identify disease loci, as discussed in section 3.3.4, or present opportunities for learning about cultural 
or demographic forces, which can have implications for personalizing care or developing precision 
treatments [65]–[68].  
 
First, we analyzed the IBD shared between members of the largest clusters, which can be informative 
about founder effects that occurred in the cluster’s past. To do this, we calculated the distribution of 

the total shared IBD between individuals in that cluster (Fig. 6a) (Supplementary Table 3). Of the 
clusters analyzed here, the Iranian Jewish cluster had the highest level of total IBD sharing (mean = 
57.43 cM, 95% CI: [(56.80 - 58.06]). IBD segments shared between members of the Iranian Jewish 
cluster were on average 8.36cM in length (mean=8.36, 95% CI: [8.33, 8.4]) (Fig. S9). This is higher 
than other clusters that were expected to have founder effects, including the Ashkenazi Jewish (total 

pairwise IBD mean=26.08 cM, 95% CI: [26.07 - 26.09]) and the Puerto Rican IBD cluster (total 
pairwise IBD mean=23.06, 95% CI: [22.86 - 23.27]). The Iranian Non-Jewish IBD cluster also had 
relatively high IBD sharing (total pairwise IBD mean=15.70 cM, 95% CI: [14.54 - 16.86]), but not as 
high as the Iranian Jewish cluster. Other clusters with high within cluster IBD were the Lebanese and 
Egyptian Christian (total pairwise IBD mean=10.95 cM, 95% CI = [10.31 - 11.61] and mean=11.81, 
95% CI: [8.8, 14.82]), the Gujarati (total pairwise IBD mean=15.93 cM, 95% CI: [15.55, 16.3]), and the 

Armenian (total pairwise IBD mean=10.63 cM, 95% CI: [10.24, 11.02]) clusters.  
 
Additionally, we examined the distribution of runs of homozygosity (ROH) within the clusters, i.e., 
uninterrupted long runs of homozygous genotypes (Fig 6b). ROH have been shown to be directly 
implicated in risk for complex diseases [69]–[71] and relate to practices of endogamy and 
consanguinity [72], [73], which may be important for clinical geneticists to understand. We used 

PLINK to calculate the total ROH detected per individual. In doing so, we observed that 31.51% of all 
individuals exhibited at least one ROH, with an average total length of 18.22 MB (95% CI: [17.53, 
18.90]). Upon analyzing the distributions of detected ROH within IBD clusters, we found elevated 
rates of ROH in several clusters. These included the Arab (mean=88.13 MB, 95% CI: [51.5, 124.75], 
Lebanese Christian (mean=62.44 MB, 95% CI: [36.03, 88.85]), Egyptian Christian (mean=46.07 MB, 
95% CI: [32.58, 59.57]) clusters, along with several South Asian clusters. Notably, elevated cluster 

level IBD did not always correlate with high rates of ROH. For example, the Puerto Rican cluster had 

relatively low mean ROH (mean=13.27, 95% CI: [10.69, 15.85]), but high IBD. This observation may 
be attributed to differences in the historical demographic processes that have given rise to both 
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measures of cryptic relatedness in the contemporary populations, for example, practices of 
endogamy, or the timings and magnitude of historical population bottlenecks.  

 

To explore this further, we used IBDNe [74] to estimate cluster-specific historical effective population 
size and understand the population histories of clusters exhibiting high levels of IBD (Fig. 6c). This 
can further elucidate founder effects in groups that are not typically studied in population genetics, 
which can have the consequence of extending genetics care to a more diverse set of patients. 
Consistent with previous reports [75], we observed a large bottleneck in the Puerto Rican IBD cluster, 

with a minimum population size occurring around 15 generations ago. We also observed historic 
population size reduction in several other clusters, especially in the Iranian, Armenian, and Egyptian 
Christian clusters. The timing of the bottleneck in all these clusters is similar and might suggest that 
common historical events reduced population size across a region. Despite the similarity in timing of 
bottleneck, however, the estimates of the overall population size of these clusters differed. For 

example, the historic population size of the Iranian Jewish cluster was estimated to be less than 

10,000 for the last 30 generations. This extremely small size could be a consequence of the historic 
persecution of Jews, a hypothesis in line with our estimate and other published estimates [75], [76] 
of the small historic population size for Ashkenazi Jews. However, population size estimates may also 
be biased by the selective migration of clusters to Los Angeles. Forces such as these, especially those 
that would affect historic mate choice, could create ascertainment biases in the patterns of IBD 

sharing observed here.  
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Figure 6: The genetic properties of the largest IBD clusters. (a) The distribution of total pairwise IBD (cM) 

shared between individuals of a given cluster. (b) The distribution of the total amount of ROH detected in 
individuals in a cluster. (c) IBDNe estimates of historic population size for 9 selected clusters, where the line is 

the estimate of the population for each generation from present, and the shaded region indicates the 95% CI of 
the estimate. Dips in the population size can suggest founder effects. (d) Pairwise Hudson’s FST estimates 
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between UCLA ATLAS IBD clusters, where the darker color indicates lower FST, suggesting less differentiation 
between the pair of clusters. (e) A network diagram of IBD sharing between clusters, where each node is a 

cluster, and each edge is weighted by the amount of IBD shared between the clusters. The graph was visualized 
using 1000 iterations of the Fruchterman-Reingold algorithm. For clarity, the 3 edges with the largest amount 
of IBD shared per cluster are displayed.  

 

3.4.2    Between cluster IBD 

Patterns of IBD sharing between clusters can further reveal modern and historical relationships. 

These might be important to consider when analyzing health inequities as related groups might have 
similar environmental and genetic exposures. To explore this, we first computed pairwise Hudson’s 
FST in the largest IBD clusters (Fig. 6d). Consistent with other reports [77], we found that FST is large 
between IBD clusters with differential continental origins, indicating greater differentiation. In 
particular, the West African, African American, and Afro-Caribbean IBD clusters had the largest FST 

with other clusters. FST also revealed the complex sharing patterns within continental IBD clusters. 

While there was low differentiation between the Iranian Non-Jewish and Iranian Jewish IBD clusters 
(FST=0.0055), the Iranian Non-Jewish cluster exhibited a smaller FST with the Armenian cluster (FST 
=0.0015), Lebanese Christian cluster  (FST =0.0030), and Pakistani cluster (FST = 0.0038). It is 
important to note, however, that the FST estimates used here are from genotyping data and do not 
necessarily capture the effect of rare variants [77], which are important for understanding fine-scale 

relationships. 
 
To further characterize the patterns of relatedness in ATLAS, we created a network representation 
of IBD sharing. The nodes of the network were each IBD cluster, and the edges were the median IBD 
shared between clusters. This network was then visualized using 1000 iterations of the Fruchterman-
Reingold force-directed algorithm [78]. From this representation, we found that IBD relationships of 

clusters in LA recapitulated well-known relationships (Fig. 6e). We observed that geography affected 
cluster relationships. For example, clusters with Middle Eastern ancestry were close, with the 
Pakistani cluster acting as a bridge between them and the South Asian IBD clusters. The Iranian 
Jewish cluster and Iranian Non-Jewish cluster were also depicted as close, as well as the clusters of 
Ashkenazi Jews and European Non-Jews. We also observed some unexpected relationships. The 
Central/South American IBD cluster both shared more IBD on average with Ashkenazi Jews 

(mean=0.243 cM, 95% CI:[0.243, 0.244]) than European Non-Jews (mean=0.0372 cM, 95% CI: [
0.0371, 0.0373). A similar trend was observed for the Puerto Rican cluster and the Ashkenazi Jewish 
cluster (mean=0.212 cM, 95% CI: [0.212, 0.215]) vs the European Non-Jewish cluster (mean=0.495 
cM, 95% CI: [0.0489, 0.0501]). Other reports have found a contribution of Jewish ancestry to Latin 
American clusters [79]. 
  

3.5    Website 

 

To facilitate sharing of all the associations for the major IBD clusters identified in ATLAS, we 
developed a website, www.ibd.la. This website has several pages that allow open-access exploration 

of all associations between the clusters. The pages include phecode associations for both outpatient 
and emergency room diagnoses, an interactive map of Los Angeles to visualize primary care offices 
most utilized by the clusters discussed here, and visualizations of IBD shared between clusters. 
Summary statistics can also be downloaded. 
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4 Discussion  

To reduce health disparities and ensure that precision medicine initiatives are applicable to all 

people, it is important to understand the diverse determinants of health. In this study, we analyzed 

the healthcare utilization of clusters of individuals who share genetic ancestry. This allowed for a 
more fine-scale analysis into health outcomes than using race and ethnicity information typically 

available in the EHR. Our approach thus provides a complementary lens for identifying potential 

inequities in health within Los Angeles.  
 

There are many considerations when interpreting the results of this study. It is essential to note that 
race, ethnicity, and religion are social constructs and are not determined by genetics, although they 
may be correlated [21], [24], [80], [81]. Despite this, however, it is simultaneously true that the social 

constructions of race, ethnicity, and religion affect healthcare in the United States [82]–[86].   

 
To study diverse health outcomes in the context of EHRs, we defined and named IBD clusters. 
However, defining a population or cluster is not straightforward [19], [87]. We followed recent work 
and chose a genetic similarity criterion in an unsupervised machine learning algorithm to define an 
IBD cluster [13], but any number of criteria or algorithms could have been used. Likewise, many 

different names could have been chosen for a cluster, or numeric values could have been assigned. 
The name of the IBD cluster also does not reflect the identity of individuals within that cluster, nor 
do individuals within the clusters defined here necessarily have a shared sense of identity, as with 
the traditional sociological definition of a community [88]. 
 
We were limited to labeling IBD clusters based on demographic information contained in the EHR 

and reference data, which is imperfect and does not capture the full complexity of cluster identity. 
Historical events might also affect the representativeness of the clusters. An example is that a major 
wave of Armenian immigrants in Los Angeles originated primarily from Western Armenia, because 
of the Armenian genocide and fall of the Ottoman Empire [89]. For this reason and many others, the 
Armenian IBD cluster we discussed here might not be representative of Armenians outside of Los 

Angeles. We are not able to characterize to what extent historical events bias the results for all IBD 
clusters, both in terms of the accuracy of the labels we used, and in terms of the generalizability of 
our results beyond Los Angeles.  
 
Furthermore, although we presented many IBD clusters, the clusters are not equivalent. Some IBD 

clusters identified here were tightly related in IBD network space. Others had more diffuse patterns 

of connection. In some cases, IBD clusters that were less well connected could represent an 
opportunity for further analysis. For example, China contains large genetic, linguistic, and ethnic 
diversity [90], yet in this study, we examined the Chinese cluster as a single unit. Future work with 
more data could focus on additional fine-scale clusters contained within the IBD clusters analyzed 
here.  
 

There are also limitations to our healthcare utilization results. Foremost, the reported associations 
are strictly correlative. Although we used genetics to identify clusters, genetics is not the cause of the 

associations. Instead, as demonstrated by the changes in diagnoses over time, there are likely 
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complex external processes affecting why a cluster receives a phecode or visits a specific doctor’s 
office. 

 
Another limitation is that individuals who comprise ATLAS are not random. Individuals who come to 
a hospital are usually sick. Additionally, groups who live farther away may only be showing up to 
UCLA Health, which is a nationally recognized hospital [53], because they are seeking specialty care 
due to a more severe condition. This is compounded by the fact that the main UCLA Health facilities 
are in west Los Angeles, which includes some of the wealthiest neighborhoods in Los Angeles County 

by median income, including Beverly Hills and Bel-Air [91]. Thus, poorer clusters might be traveling 
farther to access care and have greater health needs motivating the longer trip. These factors would 
directly bias the associations that we observed. Additionally, the observation that some groups have 
greater travel time to reach specialty care could be the basis of future studies on health equity.   
 
Insurance coverage dramatically influences access to care in the United States [92] and coverage 

varies by race and ethnicity [93]. As a result, some IBD clusters may have access to more 
comprehensive insurance and thus receive more specialized diagnoses, or more diagnoses in general. 
Unfortunately, detailed insurance information is not available in this data. Other socioeconomic 
factors, such as age, education, and household income are also associated with when and if patients 
receive diagnoses [94]–[96]. Therefore, differences in cluster demographics likely affect these 

results. These differences may also be exacerbated by biases that exist on the part of health 

practitioners, as implicit biases have been shown to systematically affect care [66], [97]–[100].  
 
Lastly, our results may be limited by the nature of the data used, namely, genotyping data.  There are 
other ways we could have defined clusters, such as designing self-identification surveys. For looking 

at pathogenic alleles, we were restricted in the number of sites we could consider, and potentially 

biased by the fact that genotyping chips are generally ascertained for sites that are common and 
shared between populations [101]. This could also bias our IBD detection as the density of genotyped 

sites or overall quality could affect the IBD calling [12]. Furthermore, statistical phasing with publicly 

available genetic maps may have reduced accuracy in populations that are less related to those 
contained in the reference panel [102].  

 

There are many areas of future directions for this work. Firstly, additional work should be done to 
confirm these results and design interventions that address potential inequities. IBD clusters may 

also be useful in controlling for population stratification in other studies examining the social 

determinants of health. Environmental factors were not explored in this study but could be an avenue 
for future research as they impact health, often inequitably. For example, air pollution poses a 

substantial risk to human health [103]. Air pollution levels vary substantially across the United States 

and toxic levels disproportionately affect communities of color [104]–[106]. Thus, understanding 
environmental factors could provide greater context to the health outcomes examined here.  

 

Lastly, while every participant is placed into a cluster, this approach may be limited for individuals 
with multiple ancestries. For example, someone with one parent who has predominantly Iranian 

Jewish ancestry and one parent with predominantly Japanese ancestry would be assigned to either 

the Japanese or Iranian Jewish cluster in our current approach, which would not capture the full 

complexity of their true ancestry. These individuals represent a crucial group in the advancement of 
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precision medicine [107] and future work could focus on opportunities to study the health of these 

admixed individuals.   

 

Overall, we identified and characterized the health profiles of Los Angeles IBD clusters, many of 

whom, to our knowledge, have not been studied in the context of a biobank before. This represents 
an advance toward equitable health research and, along with our website, can empower future 

studies on health outcomes in Los Angeles.   

 

5 Methods 

 

5.1        Patients and Recruitment 

 

5.2        EHR Data  
Each patient’s genotype data was tied to Electronic Health Records (EHR) using a de-identified ID. 
Patient EHR was pulled for 2016-2020 and included visit information, diagnosis information, and 
demographics. For the normal outpatient data, we restricted to visits that were labeled as scheduled 
appointments and that did not have a code associated with an inpatient, ICU, or trauma stay. 

Emergency room data was any visit that happened within an emergency room department. 
Diagnoses assigned in emergency rooms were restricted to the primary reason for the visit. Each visit 
contained information on patient weight, height, and BMI measured at the visit. We calculated the 
median BMI for a patient across all encounters and used this as the BMI for that patient in our 
association testing.  

 

Demographic information was restricted to race/ethnicity, preferred religion, preferred language, 
sex, and birth date. Sex was indicated as binary. To calculate patient age, we calculated the patient 
age at the time of each visit and took the maximum age overall for each patient. For EHR reported 
race/ethnicity, patients were designated (by themselves or a healthcare staff member) as “White,” 

“Black”, “Asian”, “Native American”, or “Pacific Islander.” Asian patients could be further designated 
as Chinese, Japanese, Korean, Thai, Filipino, Vietnamese, Taiwanese, Pakistani, Indian, or Indonesian, 
although not all Asian patients had one of these identifiers. Hispanic patients were designated as 
“Hispanic”, which was further subdivided into several other sub-identifiers, such as “Spanish origin”, 
”Chicano/a” or ”Cuban”. For visualization, we considered the main race/ethnic categories and not the 
sub-designations. There were numerous preferred languages and religions. For simplicity, we 

examined the languages that had more than 5 individuals who indicated that they preferred that 
language. Furthermore, preferred religion was restricted to consider major religions: Christianity, 
Islam, Judaism, Hinduism, Sikhism, and Buddhism. Christianity was further subdivided into 
Protestant or Catholic. Other religions were condensed into an “Other Religion” category.  
 
 

5.3        Pre-processing and quality control 
Genotyping for ATLAS was performed on a custom genotyping chip, with sites from the global 

screening array. Data was mapped to hg38 and all SNPs were mapped to the 147 build of dbSNP 
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[108]. All preprocessing and quality control steps were performed using PLINK 1.9 [109], [110], and 
bcftools v1.9 [111].   

 
For ATLAS samples, we removed any individuals whose genotyped sex mismatched their EHR 
reported sex. We did this by using the PLINK --update-sex command to update the PLINK fam files to 
contain the EHR sex and the PLINK --check-sex to identify samples with discrepancies between the 
estimated genotype sex and EHR sex.    
 

ATLAS data was merged with genotyping data from the 1000 Genome Project (1000GP) [26], the 
Simons Genome Diversity Project (SGDP) [27], and the Human Genome Diversity Project (HGDP) 
[28]. All reference data were converted to hg38 for merging using CrossMap [112]. Samples that 
overlapped between the different projects were removed using PLINK --keep. Rsids were 
harmonized across projects using bcftools annotate. Data were then standardized using bcftools 
norm and a hg38 genome reference. After merging, sites or individuals with more than 1% missing 

were removed using plink --mind and --geno. For IBD analysis, only SNPs with MAF > 5% were kept.  
 
Before IBD calling, data was statistically phased using Shapeit4 [113] using default parameters and 
the hg38 map files distributed with the software. To speed up computation, one chromosome was 
phased at a time.  

 

5.4         IBD calling and processing 
For IBD calling, the genotype data were converted from PLINK bed files into PLINK ped/map files 
using a custom Python script that preserves phasing. Centimorgan information for the map files was 
pulled from the same genetic maps used in Shapeit4.  
 

IBD was called using iLASH [29] with the following parameters: slice_size 350, step_size 350, 
perm_count 20, shingle_size 15, shingle_overlap 0, bucket_count 5, max_thread 20, match_threshold 
0.99, interest_threshold 0.70, min_length 2.9, auto_slice 1, slice_length 2.9, cm_overlap 1, 
minhash_threshold 55. IBD was called for one chromosome at a time.  
 
After IBD was called, we removed outliers as in Belbin et al [11]. Firstly, any IBD segments 

overlapping centromeres or telomeres were removed. IBD tracts intersecting the HLA region were 
also removed. To find other regions of the genome that may have erroneously high IBD, we calculated 

the total amount of IBD contained at each SNP in our input file by summing all segments that 
overlapped that SNP. SNPs that had total IBD greater or less than 3 standard deviations from the 
genome-wide mean were removed. In total, 6696 were removed.  
 

For downstream analysis, IBD segment lengths were summed between individuals, meaning that for 
a given pair of individuals, all the IBD segments that they shared across all chromosomes were added 
together to create one summary number.  
 
We removed pairs of individuals who were immediate family members using two methods. Firstly, 

we used the KING relatedness inference software [114] to find any pairs of individuals who were 
closer than second-degree relatives, using the parameters --kinship --degree 2. King was run on all 

SNPs with MAF > 0.05 and after linkage pruning, using PLINK and --indep-pairwise 50 10 0.1. As KING 
may underestimate the relatedness of individuals, especially in the case of individuals with high 
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levels of autozygosity [29], we also filtered pairs based on the total amount of IBD shared. Using 
empirical data reported to DNA Painter [115], we determined a conservative threshold of second-

degree relatedness was a threshold of 1000cM. We removed any pairs with IBD higher than this 
threshold.  
 

5.5  Cluster identification and annotation 
For cluster detection, we used the Python package NetworkX [116]. We created an undirected graph 
representation of our IBD matches, where each node was an individual and an edge between 

individuals was weighted by the total amount of IBD matches shared between the two people.  
 
Louvain clustering [30], implemented in NetworkX, was used iteratively to detect fine-scale 
populations. It was first run to detect a primary set of clusters. Each cluster was then subject to 
Louvain clustering again, and these subclusters were clustered once more, for a total of three runs of 
Louvain clustering.  

 
After generating clusters with the Louvain algorithms, the clusters were merged using FST, as in Dai 
et al [13]. We used the implementation of Hudson’s FST from PLINK 2.0. It was run on all pairs of 
clusters from the third level of the Louvain clustering and clusters that had FST < 0.001 were merged. 
Since FST may perform poorly in small populations, clusters with less than 10 people were ignored 

[77]. This threshold was selected because it gave good separation of clusters on a subcontinental 
level.  
 
Once clusters were merged, they were annotated with the demographic information from the EHR. 
For the individuals in the IBD cluster that did not prefer English, we calculated the proportion of 
individuals who preferred each of the 20 languages spoken by more than 5 biobank individuals. 

Similarly, after excluding individuals who did not have information on religion in the EHR, we 
calculated the proportion of individuals in that cluster who preferred one of the major religions 
indicated in our demographic EHR data. Using this data, race/ethnicity information, and the 
reference populations that segregated in a cluster, we holistically assigned a population name to an 
IBD cluster. The names were chosen to correspond to a modern country that had historical or modern 
immigration into Los Angeles (i.e., “Chinese”), or clusters that make up well-known demographic 

slices of America (i.e. European Non-Jewish). When no country of origin or demographic was obvious 
given the available data, we named the cluster with what distinguishing information was available 

(i.e., “Central/South American”).  
 
For downstream analysis, we focused on IBD clusters that had more than 40 members to ensure large 
enough sample size for our EHR and genetic analyses.  
 

5.6      Genetic analyses 
 
To find the distribution of IBD in a cluster, we considered IBD segments of individuals assigned to the 
same cluster. We summed the IBD segments to get the total IBD shared between the pair and 

calculated the distribution of total IBD between members of the cluster.  
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For ROH, we first performed linkage pruning and MAF filtering using PLINK and the parameters --
maf 0.01 --indep-pairwise 50 10 0.1. ROH calling was also performed using PLINK and the parameters 

-homozyg --homozyg-density 200 --homozyg-gap 500 --homozyg-kb 3000 --homozyg-snp 65 --
homozyg-window-het 0 --homozyg-window-missing 3 --homozyg-window-snp 65. Detected ROH 
were summed within an individual. We then calculated the distribution of detected ROH of all 
individuals within a cluster.  
 
IBDNe was run using the IBD haplotypes estimated using iLASH [74]. We filtered the iLASH output 

for each chromosome to individuals from a single cluster. The haplotypes were combined into one 
file for IBDNe input. IBDNe was run with default parameters and the hg38 genetic map provided on 
the IBDNe website.  
 
For the heatmap of FST, we calculated the pairwise Hudson’s FST, as described in the Louvain 
clustering section. We calculated FST between the largest final clusters (after Louvain clustering and 

merging). Data was visualized using Python Seaborn clustermap with default parameters [117].  
 
The network visualization between IBD clusters was developed using NetworkX. The input was a 
matrix where each row and columns represented one of the largest clusters, and each entry was the 
mean IBD shared between the two clusters. To find this mean, we found all possible pairs of 

individuals between the two clusters. If the pair did not have any IBD detected, we set their IBD to 0 

and then calculated the mean over all possible pairs. This was to prevent biasing the mean IBD by 
limiting it to only pairs that had IBD detected. This square matrix was then used to create a weighted 
undirected graph, where the nodes were the IBD clusters, and the edges were the mean IBD between 
the clusters. We visualized the graph using 1000 iterations of the Fruchterman-Reingold force-
directed algorithm [78].  

 
5.7      EHR association analyses  
 

Statistical testing was done using the Python StatsModel package [118]. For each phecode, we 
determined whether an individual has ever had been assigned that phecode in an outpatient context, 
making the outcome binary. Cluster status was binary and could either be a particular cluster vs all 

other biobank participants, or a particular cluster compared against another cluster. We tested 
whether binary cluster status was associated with phecode assignment using the StatsModel GLM 
command with the family set to binomial. We corrected for sex, age, and BMI in these analyses. 
Specifically the command we used was:  GLM.from_formula("phecode_status  ~ cluster_status + sex 
+ age + bmi", family= sm.families.Binomial(), data=model_input).  

 

The same statistical framework was used to test for emergency room diagnoses and specialty visits, 
where instead of phecode assignment, the outcome was whether or not an individual had visited a 
doctor with a given specialty reported in the EHR. An association was considered significant after 
controlling for false discovery rate at 5%.    

 

5.8   Zip Codes   
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For analyzing the zip codes associations, each office or department visited by biobank patients was 
associated with a primary zip code. We excluded the two main UCLA hospitals, since we were looking 

for differential utilization across the greater Los Angeles area. For plotting, we associated these zip 
codes with geographic coordinates using a shapefile obtained from the Los Angeles GeoHub [119], 
which was loaded in Python using the GeoPandas package [120]. Specifically, we used the EPSG:3857 
coordinate system, which is widely used by map providers.   

 

For each zip code, the StatsModel GLM command was used to estimate the association between 
cluster status and ever visiting a particular zip code relative to the whole biobank or opposing IBD 
cluster, corrected for sex, age, and BMI. GeoPandas was used to plot, where the color of the zip code 
either corresponded to the cluster that associated with a particular zip code, or its intensity 
corresponded to the log odds ratio of the association between a particular cluster visiting offices in a 
zip code. Basemaps were added to the plot using the Python package Contextily [121] and the Toner 

Lite open-source map data from Stamen Design [122]  

  

5.9   Website  
 

The website hosting the data visualization is implemented as a single-page application [123]. The 

application is developed in the JavaScript framework React, where each graph page is implemented 
as a separate component. The map plot is powered by the deck.gl library [124] developed by Mapbox, 
which provides maps for data overlays. The other graphs are powered by the react-plotly.js library 
developed by Plotly [125], which provides a React interface to create interactive plots. The 
application has no backend, as the data is relatively small, requires no modification or manipulation 
per request, and is not subject to any privacy concerns due to its approval for release. All the data is 

stored in static JSON files that the application directly references to generate data visualizations. The 
website code and underlying data are publicly available on Github with an MIT license, which will 
allow others to contribute to the application as well as use the code to build visualizations for their 
own organizations.  

 

5.10   Data Visualization    

  
Data analysis was done in Python 3.8 [126] using Jupyter Notebooks [127]. Visualization was done 
using Seaborn [117] and Matplotlib [128].  
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7         Software 

Code for IBD calling and clustering is available at https://github.com/christacaggiano/IBD. Code for 

the website is available at https://github.com/misingnoglic/ibd.la.  
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8 Supplementary Figures 

 

Figure S1: ATLAS demographics. (A) The percentage of ATLAS that is recorded as each race, (B) the 

percentage of ATLAS recorded as Hispanic, (C) the distribution of patient age in ATLAS, and (D) the 

percentage of ATLAS recorded as each sex.  

 

Figure S2: Overall IBD length and segment distribution. (A) The distribution of total pairwise IBD 

estimated for all biobank and reference participants and (B) The distribution of the total number of 

IBD Segments shared between pairs.  
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Figure S3: Principal component analysis of ATLAS and reference data. (A) Principal component 

(PC) 1 vs PC2 and (B) PC2 versus PC3.  
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Figure S4: FST  between IBD clusters and external reference data. (a)  FST between one set of 

subclusters (subclusters UCLA_3_7_*) that made up the European Non-Jewish IBD cluster and 
samples from the UKBB [129] who were born outside the United Kingdom, combined with a random 

sample of 100 individuals born in the United Kingdom. A second set of European subclusters 

(subclusters UCLA_3_8_*) are shown in (b). (c) FST between the Greater Middle East Variome [130] 

populations and UCLA IBD clusters with Middle Eastern or Central Asian  ancestry and (d) FST 

between modern day Middle Eastern populations [131] and UCLA IBD clusters with Middle 

Eastern/Central Asian ancestry. (e) FST between UKBB participants born in the Americas and 
subclusters that made up the Central/South American cluster. (f) FST between UKBB participants 

born in Africa or the Americas and the three Black/African American clusters. For all plots, the 

country with the smallest FST to the ATLAS cluster is labelled. The ATLAS cluster name the subcluster 

belongs to is indicated in parentheses. The brighter the color, the smaller the FST value, suggesting 

less differentiation between the two groups.   
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Figure S5: Degree centrality of clusters. The degree centrality distribution (node degree divided by 

the max possible degree in the cluster) of selected clusters from the final round of Louvain clustering. 

(A) is a cluster where nearly every individual in the cluster is connected to every other member of 

the cluster. (B) is an example of a cluster where individuals share some connections, but on average 

are less connected to each other, and (C) is an example where individuals are moderately connected 

to each other.   

 

 

Figure S6: Demographics of IBD clusters. For each of the largest IBD clusters, the (a) distribution 

of median patient BMI of participants in the cluster, (b) the distribution of max patient age of 

participants in the cluster, and (c) the proportion of the cluster that is female based on EHR 

demographic records.  
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Figure S7: Phecodes associated with Armenian cluster status in different contexts. The log odds ratio of 
whether a given phecode assignment is associated with membership in the (A) Ashkenazi Jewish IBD cluster 

and the (B) African American IBD cluster versus membership in the remaining biobank, in emergency room 

settings. A log odds ratio greater than zero means that the phecode is more likely to be given to patients of that 
cluster. We tested only phecodes with at least 30 patients per code and corrected for age, sex, and BMI in these 

analyses. Phecodes significant at FDR 5% are shown and if there are more than 30 significant associations, we 
plot only the top 40 with the largest absolute log odds ratio. 

Figure S8: Central/South American IBD cluster subgroup office utilization. For three FST subgroups of the 

Central/South American IBD cluster, the offices that they are most likely to visit. The darker the color on the 

graph, the more likely that cluster is to visit that office relative to other individuals in this cluster at UCLA. 
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Figure S9: Distribution of IBD per cluster. The log-scale distribution of IBD segment lengths in 

each of the largest IBD clusters.  
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9 Supplementary Tables 

 
Cluster Name Cluster Identifier(s) Size 

European Non-Jewish 
3_5_[0-10], 3_6_[0-13], 3_7_[0-10], 3_8_[0-

11], 3_14_[0-2] 
17017 

Central/South American  
2_0_[0-8], 2_2_[0-5], 2_4_[0-7], 2_5_[0-7], 

2_8_[0-7] 
6075 

Ashkenazi Jewish 
8_0_[0-4], 8_1_[0-7], 8_2_[0-7], 8_3_0, 8_4_0, 

8_5_[0-6] 
5309 

African American  3_3_0, 3_3_3, 3_3_4 1877 

Chinese 7_0_0, 7_0_2, 7_0_3, 7_0_4, 7_0_5, 7_0_7 1547 

Filipino 7_7_0, 7_7_3, 7_7_5, 7_7_6 796 

Japanese 7_1_2, 7_1_8 596 

Korean 7_1_1 546 

Armenian  3_15_0, 3_15_2, 3_15_3, 3_15_4 491 

Iranian Non-Jewish 1_0_[0-10] 350 

Punjabi and Bengali 3_2_4 318 

Puerto Rican  2_6_1, 2_6_2, 2_6_3 288 

West African 3_3_7 281 

Telugu 3_2_12 276 

Vietnamese 7_10_3 269 

Iranian Jewish 1_1_[0-4], 1_3_[0-5], 1_5_[0-3], 1_4_[0-3] 264 

Lebanese Christian 3_15_8 219 

Pakistani 3_2_8 129 

Gujarati  3_2_7 112 

Sindhi  3_2_6 98 

Egyptian Christian  3_15_9 92 

Pacific Islander 3_9_0, 3_9_1 44 

Afro-Caribbean 3_3_11 39 

Arab  5_4_0 35 

 

Table S1: Largest ATLAS IBD clusters. For the 24 largest ATLAS IBD clusters, the identifier from the 

Louvain algorithm, the name we assigned the IBD cluster, and the total size of the IBD cluster. 
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IBD cluster p-value log odds ratio 

Korean 9.82E-01 -0.0023+/-0.1945 

Filipino 9.32E-01 0.0069+/-0.1534 

Telugu 9.25E-01 -0.017+/-0.373 

Puerto Rican 9.17E-01 -0.0178+/-0.352 

Lebanese Christian 8.45E-01 0.0296+/-0.267 

Sindhi 8.38E-01 -0.0517+/-0.5468 

Pacific Islander 8.12E-01 0.0837+/-0.6076 

Gujarati I 7.75E-01 0.0655+/-0.3838 

Japanese 7.42E-01 0.0336+/-0.1666 

Ashkenazi Jewish 5.29E-01 0.0209+/-0.0442 

Punjabi + Bengali 4.71E-01 0.1181+/-0.2033 

Pakistani  4.69E-01 0.2658+/-0.454 

Gujarati II 3.62E-01 -0.4216+/-1.3273 

Vietnamese 3.51E-01 -0.9986+/-3.0984 

West African 2.36E-01 0.3663+/-0.2394 

Colombian 1.40E-01 -0.9225+/-2.1475 

Arab 9.32E-02 0.6147+/-0.1029 

Iranian Non-Jewish 4.45E-02 0.2508+/-0.0062 

Afro-Caribbean  1.44E-02 0.857+/-0.1708 

Armenian  1.21E-02 0.2445+/-0.0534 

Egyptian Christian 9.97E-05 0.8507+/-0.4222 

Chinese 1.97E-05 -0.2919+/-0.426 

Iranian Jewish 1.33E-06 0.5753+/-0.3421 

African American 8.72E-30 0.5958+/-0.4928 

Central/South 

American  
4.74E-77 0.5957+/-0.5329 

European Non-

Jewish  
4.22E-89 -0.4902+/-0.5382 

 

Table S2: Log odds ratio of visiting an emergency room. Using a logistic regression model 

controlling for age, sex, and BMI, the p-value and log odds ratio of membership in an IBD cluster being 

associated with visits to an emergency room, relative to the remaining biobank participants. 
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Cluster  IBD (cM) IBD standard error (cM) ROH (MB) ROH standard error (MB) 

Arab  11.04 0.79 88.13 17.61 

Armenian 10.63 0.20 37.64 3.39 

Ashkenazi Jewish 26.08 0.00 12.08 0.29 

African American 6.50 0.03 25.22 2.67 

Afro-Caribbean 50.66 7.80 35.05 14.42 

West African 10.07 0.40 33.89 3.67 

Chinese 4.79 0.01 17.88 1.68 

Egyptian Christian 11.81 1.54 62.44 13.07 

European Non-Jewish 4.84 0.00 11.44 0.57 

Filipino 7.23 0.03 19.75 1.74 

Gujarati 10.03 0.71 42.48 4.34 

Iranian Jewish 57.43 0.32 53.15 3.58 

Iranian Non-Jewish 15.70 0.59 54.25 4.71 

Japanese 4.81 0.02 25.29 2.61 

Korean 4.90 0.05 27.63 3.27 

Lebanese Christian 10.95 0.33 46.07 6.78 

Central/South American 7.78 0.01 17.05 0.71 

Pacific Islander 25.74 1.15 45.60 5.29 

Pakistani 17.11 0.71 66.58 5.59 

Puerto Rican 23.06 0.11 13.27 1.31 

Punjabi + Bengali 8.27 0.42 42.77 3.96 

Sindhi  17.66 0.30 41.77 4.38 

Telugu 8.34 0.31 41.67 3.74 

Vietnamese 10.90 0.54 38.12 4.02 

 

 

Table S3: IBD and ROH within clusters. For the 24 largest ATLAS IBD clusters, the mean total 

pairwise IBD detected between individuals in the cluster and the mean ROH detected within 

individuals of the cluster.  
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