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Online Supplementary Information

S1 Description of the State Variables and Parameters of the Model

Table S1: Description of the state variables of the model (2.8). The subscript j = d denotes the Delta variant and
j = o denotes the Omicron variant.

State variables Description
S Population of unvaccinated susceptible individuals (and individuals who lost their immu-

nity over time)
Vf Population of fully-vaccinated but not boosted individuals
Vb Population of fully-vaccinated individuals who received the booster dose
Ej Population of exposed (i.e., newly-infected or latent) individuals
Pj Population of pre-symptomatically infectious individuals
Aj Population of asymptomatically-infectious individuals
Qj Population of detected (positive) exposed, presymptomatic and asymptomatic individuals
Ij1 Population of symptomatically-infectious individuals within the first five days of the on-

set of SARS-CoV-2 symptoms
Ij2 Population of symptomatically-infectious individuals that survived the first five days of

the onset of SARS-CoV-2 symptoms
Hj Population of hospitalized individuals
Rj Population of recovered and successfully treated individuals
N Total population (N = S + Vf + Vb + Ed + Pd + Ad +Qd + Id1 + Id2 +Hd + Rd +

+Eo + Po +Ao +Qo + Io1 + Io2 +Ho +Ro)

*Corresponding author: Calistus N. Ngonghala, email: calistusnn@ufl.edu
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Table S2: Description of the parameters of the model (2.8). Notation: j ∈ {d, o}, where the subscript d denotes
the Delta variant and the subscript o denotes the Omicron variant.

Parameter Description
Λ Recruitment rate (by birth or immigration) into the population
µ Natural death rate
βjk Effective contact rate for infectious individuals in Pj class (k = p), Aj class (k = a), Ijk class

(k = 1, 2), and the Hj class (k = h)
q1 Modification parameter accounting for the proportion of individuals in the Qj class who are

actually infectious
ξvf Rate at which susceptible individuals are fully-vaccinated
ξvb Rate at which fully -Vaccinated individuals receive the booster dose
εjf Cross-protective efficacy of the vaccine against acquisition of the Delta (j = d) or Omicron

(j = o) variant for fully-vaccinated but not boosted individuals
εjb Cross-protective efficacy of the vaccine against acquisition of the Delta (j = d) or Omicron

(j = o) variant for boosted individuals
ωjf Rate of waning of vaccine-derived immunity for fully- vaccinated but not boosted individuals
ωjb Vaccine waning rate for fully-vaccinated and boosted individuals
ωjr Rate of loss of infection-acquired (natural) immunity
σje Progression rate of exposed humans to the presymptomatically-infectious stage
σjp Progression rate of presymptomatically-infectious individuals at the end of the incubation pe-

riod to the asymptomatically-infectious (Aj) or the first symptomatically-infectious (Id1) class
αj1 Transition rate of individuals from the Ij1 to the Ij2 class (i.e., 1/αj1 = 5 days)
ρj Detection or positivity rate of exposed, presymptomatic and asymptomatic individuals
ψj Rate at which detected individuals develop symptoms
rj(1− rj) Proportion of presymptomatically-infectious individuals who exhibit (do not exhibit) clinical

symptoms of SARS-CoV-2 at the end of the incubation period
ϕj1 (ϕj2) Hospitalization rate of individuals in the Ij1 (Ij2) class
γja γjq
(γj2) (γjh)

Natural recovery rate for individuals in the Aj (Qj) (Ij2) (Hj) class

τj1 (τj2)
(τjh)

Treatment rate of individuals in the Ij1 (Ij2) (Hj) class

δj1 (δj2) (δjh) Disease-induced death rate of symptomatically-infectious humans in the Ij1 (Ij2) (Hj) class
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S2 Baseline Values of Fixed and Estimated (Fitted) Parameters of the Model

Table S3: Baseline values of fixed parameters of the model (2.8). Apart from the vaccine efficacies (εj , εjk, j ∈
{d, o}, k ∈ {b, f}), the proportions rj , and the modification parameter q1 = 0.85, which are dimensionless, all the
other parameters have units of per day. Notation: ∗ represents “adapted from” the cited reference.

Parameter Value Source
Λ 11400 [1]
µ 3.4× 10−5 [1]
ξvf 1.9× 10−5 [2]
ξvb 2.6× 10−5 [2]
δdh 1.0× 10−4 [1]∗

δoh 5.0× 10−5 [1]∗

δd1 2.5× 10−5 [1]∗

δo1 1.3× 10−5 [1]∗

δd2 5.0× 10−5 [1]∗

δ02 2.5× 10−5 [1]∗

ρd, ρo 1.2× 10−4 [3]

Parameter Value Source
αd1, αo1 1/5 [4]
ωvf 1/274 [5]∗

ωvb 1/365 [5]∗

ωdr, ωor 1/274 [5]
rd, ro 0.200 [6, 7]
εdf 0.950 [8]
εof 0.880 [9]
εdb 0.950 [10]
εob 0.755 [9]
σde 1/5 [11]
σoe 1/3 [12]

Parameter Value Source
σdp, σop 1/2 [11]
ϕd1, ϕo1 1/5 [11]∗

ϕd2, ϕo2 1/3 [11]∗

γda 1/5 [13]
γoa 2/5 [13]∗

γdh, γdq 1/5 [13]∗

γoh, γoq 2/5 [13]∗

γd2 1/4 [13]∗

γo2 2/4 [13]∗

ψd 1/3 [11]∗

ψo 1/3 [11, 12]∗

Table S4: Baseline values of the estimated (fitted) parameters (and Confidence Intervals (CIs)) of the model (2.8)
using COVID-19 confirmed case data for the United States for the period from November 28, 2021 to February 2,
2022. The unit of each of the estimated community transmission rate is per day.

(a) Delta variant related parameters. For this baseline set
of parameter values, Rdv = 0.2782, with 95% CI
[0.1991, 0.5197]. The basic reproduction number
is R0d = 0.6929, with 95% CI [0.2914, 1.3668].

Parameter value 95% CI
βdp 0.331690 [0.14489240, 0.44988790]
βda 0.003185 [0.00024100, 0.13617420]
βd1 0.024774 [0.00151000, 0.18891280]
βd2 0.000579 [0.00000010, 0.00097120]
βdq 0.000008 [0.00000001, 0.00018700]
βdh 0.000004 [0.00000001, 0.00008820]
ξvf 0.005863 [0.00179810, 0.00643250]
ξvb 0.000992 [0.00030424, 0.00108838]

(b) Omicron variant related parameters. For this set
of parameter values, Rov = 0.9602 with 95% CI
[0.6206, 1.7509]. The basic reproduction number is
R0o = 2.0587 with 95% CI [0.8732, 3.9008].

Parameter value 95% CI
βop 0.995070 [0.43467720, 1.34966370]
βoa 0.009555 [0.00072300, 0.40852260]
βo1 0.074322 [0.00453000, 0.56673840]
βo2 0.001737 [0.00000030, 0.00291360]
βoq 0.000024 [0.00000003, 0.00056100]
βoh 0.000012 [0.00000003, 0.00026460]
ξvf 0.005863 [0.00179810, 0.00643250]
ξvb 0.000992 [0.00030424, 0.00108838]

S3 Proof of Theorem 3.2

In this section, the global asymptotic stability of the disease-free equilibrium of the model (2.8) will be established
for the special case with negligible disease-induced mortality (i.e., δj1 = δj2 = δjh = 0; where j ∈ {d, o}) and no
warning of both the vaccine-derived immunity for fully-vaccinated individuals (i.e., ωvf = 0) and natural immunity
(i.e., ωdr = ωor = 0). Before proving the global asymptotic stability of the model, it is necessary to establish the
positive-invariance and attractivity of the region Ω∗, as done below.

S3.1 Proof of positive invariance and attractivity of Ω∗

Recall the following feasible region (for the special case of the model)
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Ω∗ =
{
(S, Vf , Vb, Ed, Pd, Ad, Qd, Id1, Id2, Hd, Rd, Eo, Po, Ao, Qo, Io1, Io2, Ho, Ro) ∈ R19

+ : S ≤ S∗, Vf ≤ V ∗
f , Vb ≤ V ∗

b

}
,

with S∗, V ∗
f , and V ∗

b as given in Equation (3.1), but with ωvf = 0. We claim the following result.

Theorem S3.1. The region Ω∗ is positively-invariant and attracts all initial solutions of the special case of the
model (2.8).

Proof. It can be seen, by adding all the equations of the special case of the model (2.8), that the equation for the
rate of change of the total human population is given by:

dN

dt
= Λ− µN,

from which it follows that N(t) → Λ/µ as t → ∞. From now on, we replace N(t) with its limiting value,
N∗ = Λ/µ, in the special case of the model (i.e., the standard incidence formulation for the infection rate is now
replaced by a mass action incidence). The proof is based on the approach discussed in [14]. It can be seen from the
first equation of the special case of the model (2.8) that:

dS

dt
≤ Λ + ωvbVb − (ξvf + µ)S,

≤ Λ + ωvb

(
Λ

µ
− S

)
− (ξvf + µ)S

≤ Λ(ωvb + µ)

µ
− (ωvb + ξvf + µ)S,

≤ Λ(ωvb + µ)(ξvb + µ)

µ(ξvb + µ)
− (ωvb + ξvf + µ)S

≤ (ωvb + ξvf + µ)

[
Λ(ωvb + µ)(ξvb + µ)

µ(ωvb + ξvf + µ)(ξvb + µ)
− S

]
,

≤ (ωvb + ξvf + µ)

[
Λ(ωvb + µ)(ξvb + µ)

µ((ξvb + µ)(ωvb + µ) + ξvf (ωvb + µ) + ξvbξvf )
− S

]
= (ωvb + ξvf + µ) (S∗ − S) .

Hence, if S(t) > S∗, then dS
dt is negative. Thus, S(t) ≤ S∗ for all t, provided that S(0) ≤ S∗. Using similar

approach for the second and the third equations of the special case of the model, and using the above bound, leads
to the following bounds:

dVf
dt

≤ ξvfS
∗ − (ξvb + µ)Vf = (ξvb + µ)(V ∗

f − Vf ),

and,
dVb
dt

≤ ξvbV
∗
f − (ωvb + µ)Vb = (ωvb + µ)(V ∗

b − Vb).

Following the same argument, we have Vf (t) ≤ V ∗
f and Vb(t) ≤ V ∗

b for all t, provided that Vf (0) ≤ V ∗
f and

Vb(0) ≤ V ∗
b . It follows from these bounds that Ω∗ is positively invariant and attracts all initial solutions of the

special case of the model (2.8).

S3.2 Next generation matrices for the special case of the model

For the aforementioned special case of the model (2.8), it can be shown that the associated next generation matrices
are given, respectively, by (note that, throughout this section, j ∈ {d, o}):
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F̂j =



0 f̂j1 f̂j2 f̂j3 f̂j4 f̂j5 f̂j6
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


,

and,

V̂j =



K̂j1 0 0 0 0 0 0

−σje K̂j2 0 0 0 0 0

0 −(1− rj)σjp K̂j3 0 0 0 0

−ρj −ρj −ρj K̂j4 0 0 0

0 −rjσjp 0 −ψj K̂j5 0 0

0 0 0 0 −αj1 K̂j6 0

0 0 0 0 −ϕj1 −ϕj2 K̂j7


,

where (with S∗, V ∗
f and V ∗

b as defined in Equation (3.1), but with ωvf = 0),

f̂j1 = βjp
(
S∗ + (1− εjf )V

∗
f + (1− εjb)V

∗
b

)
, f̂j2 = βja

(
S∗ + (1− εjf )V

∗
f + (1− εjb)V

∗
b

)
,

f̂j3 = βjq
(
S∗ + (1− εjf )V

∗
f + (1− εjb)V

∗
b

)
, f̂j4 = βj1

(
S∗ + (1− εjf )V

∗
f + (1− εjb)V

∗
b

)
,

f̂j5 = βj2
(
S∗ + (1− εjf )V

∗
f + (1− εjb)V

∗
b

)
, f̂j6 = βjh

(
S∗ + (1− εjf )V

∗
f + (1− εjb)V

∗
b

)
,

and,

K̂j1 = σje + ρj + µ, K̂j2 = σjp + ρj + µ, K̂j3 = γja + ρj + µ, K̂j4 = γjq + ψj + µ,

K̂j5 = τj1 + αj1 + ϕj1 + µ, K̂j6 = τj2 + γj2 + ϕj2 + µ, and K̂j7 = τjh + γjh + µ.

It is convenient to define the following threshold quantity:

R̂c = Rc|δj1=δj2=δjh=ωvf=0 (with Rc as defined in Equation (3.4)).

S3.3 Proof of Theorem 2.3

Proof. Consider the special case of the model (2.8) with δj1 = δj2 = δjh = 0 and ωvf = ωdr = ωor = 0.
Furthermore, let R̂c < 1. The equations for the infected compartments of this special case of the model can be
re-written in terms of the next generation matrices (F̂j and V̂j , given above) as follows:

d

dt



Ej(t)
Pj(t)
Aj(t)
Qj(t)
Ij1(t)
Ij2(t)
Hj(t)


= (F̂j − V̂j)



Ej(t)
Pj(t)
Aj(t)
Qj(t)
Ij1(t)
Ij2(t)
Hj(t)


− M̂j



Ej(t)
Pj(t)
Aj(t)
Qj(t)
Ij1(t)
Ij2(t)
Hj(t)


, (S.1)

where (with S∗, V ∗
f and V ∗

b as defined in Equation (3.1), but with ωvf = 0),
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(F̂j − V̂j) =



−K̂j1 f̂j1 f̂j2 f̂j3 f̂j4 f̂j5 f̂j6
σje −K̂j2 0 0 0 0 0

0 (1− rj)σjp −K̂j3 0 0 0 0

ρj ρj ρj −K̂j4 0 0 0

0 rjσjp 0 ψj −K̂j5 0 0

0 0 0 0 αj1 −K̂j6 0

0 0 0 0 ϕj1 ϕj2 −K̂j7


,

and,

M̂j = [(S∗ − S) + (1− εjf )(V
∗
f − Vf ) + (1− εjb)(V

∗
b − Vb)]



0 βjp βja βjq βj1 βj2 βjh
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


. (S.2)

Since S(t) ≤ S∗, Vf (t) ≤ V ∗
f and Vb(t) ≤ V ∗

b for all t > 0 in Ω∗, it follows that the matrix M̂j , defined in (S.2),
is non-negative. Hence, the equation (S.1) can be re-written in terms of the following inequality:

d

dt



Ej(t)
Pj(t)
Aj(t)
Qj(t)
Ij1(t)
Ij2(t)
Hj(t)


≤ (F̂j − V̂j)



Ej(t)
Pj(t)
Aj(t)
Qj(t)
Ij1(t)
Ij2(t)
Hj(t)


. (S.3)

It should be recalled from Theorem 3.1 that if R̂c < 1, then all eigenvalues of the next generation matrices F̂j V̂j
−1

are negative (which is equivalent to F̂j− V̂j been stable matrices [15]). Thus, it can be concluded that the linearized
differential inequality system (S.3) is stable whenever R̂c < 1. Hence, it follows from this analysis that (for this
linear system of ordinary differential equations):

(Ej(t), Pj(t), Aj(t), Qj(t), Ij1(t), Ij2(t), Hj(t)) → (0, 0, 0, 0, 0, 0, 0), as t→ ∞.

Substituting Ej(t) = Pj(t) = Aj(t) = Qj(t) = Ij1(t) = Ij2(t) = Hj(t) = 0 into the differential equations for
the rate of change of the Rj(t), S(t), Vf (t) and Vb(t) compartments shows that:

Rj(t) → 0 and S(t) → S∗, Vf (t) → V ∗
f , Vb(t) → V ∗

b as t→ ∞.

Thus, the DFE (given in Equation (3.1) with ωvf = 0) for the special case of the model (2.8) (with δj1 = δj2 =

δjh = 0 and ωvf = ωdr = ωor = 0) is globally-asymptotically stable in Ω∗ whenever R̂c < 1.
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S4 Assessing the Combined Impact of Vaccination and Mask Usage

Figure S1: Contour plot of the control reproduction number of the model (2.8) as a function of the vaccine rate
coverage (ξvf ) and additional mask coverage (cm) for additional (a) cloth mask coverage (i.e., εm = 0.30), (b)
surgical mask coverage (i.e., εm = 0.70), and (c) N95 mask coverage (i.e., εm = 0.95). The other parameters used
are given in Tables S3 and Table S4.

S5 Assessing the Impact of Vaccination and Waning of Vaccine-derived Immu-
nity

Figure S2: Contour plot of the control reproduction number of the model (2.8) as a function vaccine-derived im-
munity waning rate for fully vaccinated individuals (ωvf per day) and the vaccination rate (ξvf per day) when there
is (a) no additional mask coverage beyond the baseline coverage, (b) a 10% increase in surgical mask compliance,
(c) a 10% increase in N95 mask compliance. The other parameters used are given in Tables S3 and Table S4.

S5.1 Assessing the Impact of Detecting Exposed, Presymptomatic, and Asymptomatic Cases

The model (2.8) is further simulated to assess the impact of detection of exposed, presymptomatic and asymp-
tomatic infectious humans (through testing) and the impact of the length of time it takes for vaccine-derived im-
munity to wane completely. For the first set of simulations, the detection rate of exposed, presymptomatic and
asymptomatic infectious individuals with the Delta or the omicron variant, which are assumed to be the same in
this study (i.e., ρd = ρo) is scaled by 25, 50, and 75. The simulation results obtained, depicted in Figure S3 (a) and
(c), show an increase in the confirmed daily (Figure S3 (a)) and cumulative (Figure S3 (c)) cases of COVID-19 in
the United States. with increasing detection of exposed, presymptomatic and asymptomatic infectious individuals.
For example, if the detection rate is 25 times the baseline value, there is a 4% increase in the peak number of
confirmed cases (magenta curve in Figure S3(a)). However, if the detection rate increases to 75 times the baseline
value, then there is a 9% increase in the peak number of confirmed cases (green curve in Figure S3(a)). Similar
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increases in cumulative cases are recorded as the detection rate of exposed, presymptomatic and asymptomatic
infectious individuals increases (Figure S3 (c)).
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Figure S3: Simulations of the model (2.8) depicting the impact of detecting exposed, presymptomatic, and asymp-
tomatic infectious individuals on the (a) the new daily and (b) cumulative COVID-19 cases in the US. The other
parameter values used for the simulations are presented in Tables S3 and S4.
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