Supplementary files

Table of contents

Supplementary Table 1. STROBE-MR checklist of the study	2
Supplementary Table 2. Detail definitions of exposures and outcomes	5
in the MR study	
Supplementary Table 3. Data sources of IVs for the 18 modifiable	9
factors used in the MR study	9
Supplementary Table 4. Test for heterogeneity and pleiotropy in	
associations between 18 modifiable factors and GrimAgeAccel	11
Supplementary Table 5. Test for heterogeneity and pleiotropy in	12
associations between 18 modifiable factors and PhenoAgeAccel	12

Section	Item No.	Checklist item	Page No.		
Title and abstract	1	Indicate Mendelian randomization (MR) as the study's design in the title and/or the abstract if that is a main purpose of the study			
Introduction					
Background	2	Explain the scientific background and rationale for the reported study. What is the exposure? Is a potential causal relationship between exposure and outcome plausible? Justify why MR is a helpful method to address the study question	6		
Objectives	3	State specific objectives clearly, including pre-specified causal hypotheses (if any). State that MR is a method that, under specific assumptions, intends to estimate causal effects	6		
Methods					
Study design and data sources	4	Present key elements of the study design early in the article. Consider including a table listing sources of data for all phases of the study. For each data source contributing to the analysis, describe the following:			
		a) Setting: Describe the study design and the underlying population, if possible. Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection, when available.	7		
		b) Participants: Give the eligibility criteria, and the sources and methods of selection of participants. Report the sample size, and whether any power or sample size calculations were carried out prior to the main analysis	7, ST 3		
		c) Describe measurement, quality control and selection of genetic variants	7-8		
		d) For each exposure, outcome, and other relevant variables, describe methods of assessment and diagnostic criteria for diseases	7-8, ST 2		
		e) Provide details of ethics committee approval and participant informed consent, if relevant	7		
Assumptions	5	Explicitly state the three core IV assumptions for the main analysis (relevance, independence and exclusion restriction) as well assumptions for any additional or sensitivity analysis	7, Figure 1		
Statistical methods: main analysis	6	Describe statistical methods and statistics used a) Describe how quantitative variables were handled in the analysis (i.e. acale, units, model)	7, ST 3		
		the analyses (i.e., scale, units, model)b) Describe how genetic variants were handled in the analyses and, if applicable, how their weights were selected	7		
		c) Describe the MR estimator (e.g. two-stage least squares, Wald ratio) and related statistics. Detail the included covariates and, in case of two-sample MR, whether the same covariate set was used for adjustment in the two samples	9		
		d) Explain how missing data were addressed	N/A		
		e) If applicable, indicate how multiple testing was addressed	9		
Assessment of assumptions	7	Describe any methods or prior knowledge used to assess the assumptions or justify their validity	9-10		
Sensitivity analyses and additional analyses	8	Describe any sensitivity analyses or additional analyses performed (e.g. comparison of effect estimates from different approaches, independent replication, bias	9-10		

		analytic techniques, validation of instruments,	
~ ~ ~		simulations)	1.0
Software and pre- registration	9	a) Name statistical software and package(s), including version and settings used	10
		b) State whether the study protocol and details were pre- registered (as well as when and where)	N/A
Results			r
Descriptive data	10	a) Report the numbers of individuals at each stage of included studies and reasons for exclusion. Consider use of a flow diagram	8, ST 3
		b) Report summary statistics for phenotypic exposure(s), outcome(s), and other relevant variables (e.g. means, SDs, proportions)	7-8, ST 3
		c) If the data sources include meta-analyses of previous studies, provide the assessments of heterogeneity across these studies	N/A
		d) For two-sample MR:	8
		i. Provide justification of the similarity of the genetic variant-exposure associations between the exposure and outcome samples	
		ii. Provide information on the number of individuals who overlap between the exposure and outcome studies	
Main results	11	a) Report the associations between genetic variant and	10-13,
		exposure, and between genetic variant and outcome,	Table 1
		preferably on an interpretable scale	and 2
		b) Report MR estimates of the relationship between exposure and outcome, and the measures of uncertainty	10-13, Table 1
		from the MR analysis, on an interpretable scale, such as odds ratio or relative risk per SD difference	and 2
		c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	NA
		d) Consider plots to visualize results (e.g. forest plot,	Figure 2
		scatterplot of associations between genetic variants and	and 3
		outcome versus between genetic variants and exposure)	
Assessment of assumptions	12	a) Report the assessment of the validity of the assumptions	11-13
		b) Report any additional statistics (e.g., assessments of heterogeneity across genetic variants, such as I2, Q statistic or E-value)	11-13, ST 4-5
Sensitivity analyses	13	a) Report any sensitivity analyses to assess the	11-13,
and additional analyses		robustness of the main results to violations of the assumptions	Table 1 and 2
ý		b) Report results from other sensitivity analyses or	11-13,
		additional analyses	Table 1 and 2
		c) Report any assessment of direction of causal relationship (e.g., bidirectional MR)	NA
		d) When relevant, report and compare with estimates from non-MR analyses	13-16
		e) Consider additional plots to visualize results (e.g., leave-one-out analyses)	NA
Discussion			
Key results	14	Summarize key results with reference to study objectives	13
Limitations	15	Discuss limitations of the study, taking into account the validity of the IV assumptions, other sources of potential bias, and imprecision. Discuss both direction and magnitude of any potential bias and any efforts to address them	16-17

Interpretation	16	a) Meaning: Give a cautious overall interpretation of	14-17
morprotation	10	results in the context of their limitations in comparison	1.17
		with other studies	
		b) Mechanism: Discuss underlying biological	14-17
		mechanisms that could drive a potential causal	1.17
		relationship between the investigated exposure and the	
		outcome, and whether the gene-environment equivalence	
		assumption is reasonable. Use causal language carefully,	
		clarifying that IV estimates may provide causal effects	
		only under certain assumptions	
		c) Clinical relevance: Discuss whether the results have	14-17
		clinical or public policy relevance, and to what extent	
		they inform effect sizes of possible interventions	
Generalizability	17	Discuss the generalizability of the study results (a) to	17
		other populations, (b) across other exposure	
		periods/timings, and (c) across other levels of exposure	
Other information			
Funding	18	Describe sources of funding and the role of funders in	19
		the present study and, if applicable, sources of funding	
		for the databases and original study or studies on which	
		the present study is based	
Data and data	19	Provide the data used to perform all analyses or report	19
sharing		where and how the data can be accessed, and reference	
		these sources in the article. Provide the statistical code	
		needed to reproduce the results in the article, or report	
		whether the code is publicly accessible and if so, where	
Conflicts of Interest	20	All authors should declare all potential conflicts of	19
		interest	

Abbreviations: ST=supplementary table.

Reference

1. Skrivankova VW, Richmond RC, Woolf BAR, et al. Strengthening the Reporting of Observational Studies in Epidemiology using Mendelian Randomisation (STROBE-MR): Explanation and Elaboration. BMJ. 2021;375:n2233.

Phenotype	Definition	References
Exposure		
Socioeconomic facto		
Educational attainment	Educational attainment was measured as the number of years of schooling that individuals completed (EduYears). The	1
attainment		
	EduYears phenotype was categorized according to the International Standard Classification of Education (ISCED)	
	2011, converted to US years of schooling and standardized,	
T • C 4 1 C 4	with each unit (SD) representing 4.2 years of schooling.	
Lifestyle factor		2
Smoking initiation	Smoking initiation was defined as a binary phenotype	2
	indicating whether an individual had ever smoked regularly.	
	Participants who reported ever being a regular smoker in	
	their life (current or former) were defined as smokers; the	
	remaining participants were defined as non-smokers.	
Alcohol intake	Alcohol intake was measured by drinks per week. Drinks per	2
	week was defined as the average number of drinks a	
	participant reported drinking each week, aggregated across	
	all types of alcohol.	
	If a study recorded binned response ranges (e.g., 1-4 drinks	
	per week, 5-10 drinks per week), then used the midpoint of	
	the range. This phenotype was left-anchored at 1 and log-	
	transformed prior to analysis, in order to prevent outliers	
	from having undue leverage on analyses.	
Coffee	Coffee intake was collected using a 24-hour recall	3
consumption	questionnaire (Oxford WebQ) in a subset of UK Biobank	
•	participants. The mean intake from participants who	
	completed at least two dietary recalls was used in the	
	genome-wide association study (GWAS) study.	
Daytime napping	Self-reported daytime napping was ascertained in the UK	4
5 11 0	Biobank using the question "Do you have a nap during the	
	day?" with responses options of "Never/rarely",	
	"Sometimes", "Usually" and "Prefer not to answer". Prefer	
	not to answer responses were set to missing. Responses were	
	treated as a continuous variable in the GWAS.	
Sleep duration	Study participants were asked "About how many hours sleep	5
Steep duration	do you get in every 24 h", with responses in hour increments.	0
	Sleep duration was treated as a continuous variable. Extreme	
	responses of less than 3 h or more than 18 h were excluded	
	and "Do not know or Prefer not to answer" responses were	
	set to missing. Participants who self-reported any sleep	
	medication were excluded.	
MVPA	Moderate-to-vigorous physical activity (MVPA) was	6
	calculated by taking the sum of total minutes/week of MPA	0
	multiplied by four and the total number of VPA	
	minutes/week multiplied by eight, corresponding to their	
	minutes, week multiplied by eight, corresponding to their metabolic equivalents.	
Cardiometabolic fa	1	
		7.10
Adiposity-related	GWAS data for body mass index (BMI) and waist	7-10
traits	circumference were from the Genetic Investigation of	
	Anthropometric Traits (GIANT) consortium. BMI was	
	calculated by dividing weight (kg) by height squared (m2).	
	Waist circumferences were measured or self-reported.	
	GWAS data for body fat percentage was from the UK	
	Biobank, where body fat percentage was measured using the	
	Tanita BC418MA body composition analyzer. Body fat	
	percentage (BF%) was estimated by impedance	
	measurement.	
	Childhood obesity cases were defined as participants having	

Supplementary Table 2. Detail definitions of exposures and outcomes in the MR study

≥95th percentile of BMI for age, whereas childhood normal weight controls were defined as having a BMI < 50th	
GWAS data for type 2 diabetes without adjustment for BMI was from the DIAbetes Genetics Replication And Meta- analysis (DIAGRAM) consortium. In the original GWAS, type 2 diabetes was defined by diagnostic fasting glucose, casual glucose, 2 h plasma glucose or HbA1c levels; use of glucose-lowering medication (by Anatomical Therapeutic Chemical code or self-report); or type 2 diabetes history from electronic medical records, self-report and varying	11
Data for low-density lipoprotein (LDL) cholesterol, triglycerides, and high-density lipoprotein (HDL) cholesterol were from the Million Veteran Program (MVP) and the Global Lipids Genetics Consortium (GLGR). Following extraction of prevalent laboratory measurements from the electronic health record, lipid data were evaluated for spurious values (<0 mg/dL), histograms for each lipid trait were inspected for normality, and extreme outliers (>400 mg/dL, >1000 mg/dL, >500 mg/dL, and >150 mg/dL for LDL-C, triglycerides, and HDL-C, respectively were excluded. For each phenotype: maximum LDL-C, natural log transformed maximum triglycerides, and minimum HDL-C, residuals were obtained after regressing on age, sex, and 10 principal components within each ethnic group. Residuals were subsequently inverse normal transformed for association analysis. To minimize confounding from statins and variable adherence, maximum/minimum values were used.	12
 blood pressure (DBP) were from the UK Biobank and ICBP. SBP and DBP values were the mean of two automated or two manual blood pressure measurements. The UK Biobank comprised observational and genotyping data of 502,519 people aged between 40 and 69 years. Following informed consent participants completed a standardized questionnaire on life course exposures, medical history and treatments and underwent a standardized portfolio of phenotypic tests including two blood pressure measurements taken seated after two minutes rest using an appropriate cuff and an Omron HEM-7015IT digital blood pressure monitor. A manual sphygmometer was used if the standard automated device could not be employed. The ICBP GWAS dataset consisted of 299,024 individuals of European ancestry from a total of 77 cohorts, and the assessment details of SBP and DBP varied among cohorts. Here we listed the definitions of SBP and DBP in two cohorts as examples, for more details please refer to the Supplementary Table 1b of the paper by Evangelou E, et al. (13). 1) In the AGES study, participants came in a fasting state to the clinic. The supine blood pressure was measured twice by a nurse using a mercury sphygmomanometer after a 5-min rest. 2) In the ARIC study, blood pressure was measured using a standardized Hawksley random-zero mercury column sphygmomanometer with participants in a sitting position 	
	 weight controls were defined as having a BMI < 50th percentile. GWAS data for type 2 diabetes without adjustment for BMI was from the DIAbetes Genetics Replication And Meta- analysis (DIAGRAM) consortium. In the original GWAS, type 2 diabetes was defined by diagnostic fasting glucose, casual glucose, 2 h plasma glucose or HbA1c levels; use of glucose-lowering medication (by Anatomical Therapeutic Chemical code or self-report); or type 2 diabetes history from electronic medical records, self-report and varying combinations of each, depending on the contributing cohort. Data for low-density lipoprotein (LDL) cholesterol, triglycerides, and high-density lipoprotein (HDL) cholesterol were from the Million Veteran Program (MVP) and the Global Lipids Genetics Consortium (GLGR). Following extraction of prevalent laboratory measurements from the electronic health record, lipid data were evaluated for spurious values (<0 mg/dL), histograms for each lipid trait were inspected for normality, and extreme outliers (>400 mg/dL, >1000 mg/dL, >500 mg/dL, and >150 mg/dL for LDL-C, triglycerides, and HDL-C, respectively were excluded. For each phenotype: maximum LDL-C, natural log transformed maximum triglycerides, and minimum HDL-C, residuals were obtained after regressing on age, sex, and 10 principal components within each ethnic group. Residuals were subsequently inverse normal transformed for association analysis. To minimize confounding from statins and variable adherence, maximum/minimum values were used. GWAS data for systolic blood pressure (SBP) and diastolic blood pressure (DBP) were from the UK Biobank and ICBP. SBP and DBP values were the mean of two automated or two manual blood pressure measurements. The UK Biobank comprised observational and genotyping data of 502,519 people aged between 40 and 69 years. Following informed consent participants completed a standardized questionnaire on life course exposures, medical history and treatment

	recordings for SBP and DBP were obtained; the mean of the	
	last two measurements was used in this analysis, discarding	
	the first reading. Outliers of >4SD were discarded.	
CRP	The data for C-reactive protein (CRP) was from the UK	14
	Biobank (Data-Field 30710). C-reactive protein (mg/L) was	
	measured by immunoturbidimetric - high sensitivity analysis	
	on a Beckman Coulter AU5800.	
Outcome		
Epigenetic age	DNAm GrimAge (in units of years), incorporates data from	15
acceleration	1,030 CpGs based on the seven plasma proteins (i.e. cystatin	
metrics	C, leptin, tissue inhibitor metalloproteinases 1,	
(GrimAgeAccel	adrenomedullin, beta-2-microglobulin, growth differentiation	
and	factor 15, and plasminogen activation inhibitor 1) and	
PhenoAgeAccel)	smoking pack-years. The GrimAge acceleration	
-	(GrimAgeAccel) is the raw residuals in the linear regression	
	models with DNAm GrimAge regressed on chronological	
	age and sex.	
	DNAm PhenoAge (in units of years) algorithm involves 513	
	CpGs based on chronological age and nine clinical	
	biomarkers (i.e. albumin, creatinine, serum glucose, C-	
	reactive protein, lymphocyte percentage, mean corpuscular	
	volume, red cell distribution width, alkaline phosphatase and	
	leukocyte count). The PhenoAge acceleration	
	(PhenoAgeAccel) is the residuals of the regression models	
	that regress DNAm PhenoAge on chronological age.	
	The meta-analysis samples with DNA methylation data were	
	from 28 cohorts of 34,710 European participants.	
	Age-adjusted DNA methylation-based estimates of GrimAge	
	and PhenoAge were calculated using the Horvath epigenetic	
	age calculator software (https://dnamage.genetics.ucla.edu/)	
	or standalone scripts. The following outputs were assessed:	
	GrimAge acceleration—"GrimAgeAccel" and PhenoAge	
	acceleration—"PhenoAgeAccel". Outlier samples with clock	
	methylation estimates of $+/-5$ standard deviations from the	
	mean were excluded from further analysis.	
	mean were excluded from further analysis.	

Abbreviations: BF%=Body fat percentage; BMI=body mass index; CRP=C-reactive protein; DBP=diastolic blood pressure; DIAGRAM=DIAbetes Genetics Replication And Meta-analysis; GrimAgeAccel=GrimAge acceleration; GIANT=Genetic Investigation of Anthropometric Traits; GLGC=Global Lipids Genetics Consortium; GWAS=genome-wide association study; HDL=highdensity lipoprotein; LDL=low-density lipoprotein; MVP=Million Veteran Program; MVPA=moderateto vigorous physical activity; PhenoAgeAccel=PhenoAge acceleration; SBP=systolic blood pressure; SD=standard deviation; VPA=vigorous physical activity.

References:

- Lee JJ, Wedow R, Okbay A, et al. Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals. *Nat Genet*. 2018;50(8):1112-1121.
- 2. Liu M, Jiang Y, Wedow R, et al. Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use. *Nat Genet*. 2019;51(2):237-244.
- Zhong VW, Kuang A, Danning RD, et al. A genome-wide association study of bitter and sweet beverage consumption [published correction appears in Hum Mol Genet. 2019 May 02;:]. *Hum Mol Genet*. 2019;28(14):2449-2457.
- 4. Dashti HS, Daghlas I, Lane JM, et al. Genetic determinants of daytime napping and effects on cardiometabolic health. *Nat Commun.* 2021;12(1):900.
- Dashti HS, Jones SE, Wood AR, et al. Genome-wide association study identifies genetic loci for self-reported habitual sleep duration supported by accelerometer-derived estimates. *Nat Commun.* 2019;10(1):1100.

- 6. Klimentidis YC, Raichlen DA, Bea J, et al. Genome-wide association study of habitual physical activity in over 377,000 UK Biobank participants identifies multiple variants including CADM2 and APOE. *Int J Obes (Lond)*. 2018;42(6):1161-1176.
- Yengo L, Sidorenko J, Kemper KE, et al. Meta-analysis of genome-wide association studies for height and body mass index in ~700000 individuals of European ancestry. *Hum Mol Genet*. 2018;27(20):3641-3649.
- 8. Shungin D, Winkler TW, Croteau-Chonka DC, et al. New genetic loci link adipose and insulin biology to body fat distribution. *Nature*. 2015;518(7538):187-196.
- 9. Bycroft C, Freeman C, Petkova D, et al. The UK Biobank resource with deep phenotyping and genomic data. *Nature*. 2018;562(7726):203-209.
- 10. Bradfield JP, Taal HR, Timpson NJ, et al. A genome-wide association meta-analysis identifies new childhood obesity loci. *Nat Genet*. 2012;44(5):526-531.
- Mahajan A, Taliun D, Thurner M, et al. Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. *Nat Genet*. 2018;50(11):1505-1513.
- 12. Klarin D, Damrauer SM, Cho K, et al. Genetics of blood lipids among ~300,000 multi-ethnic participants of the Million Veteran Program. *Nat Genet*. 2018;50(11):1514-1523.
- Evangelou E, Warren HR, Mosen-Ansorena D, et al. Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits [published correction appears in Nat Genet. 2018 Dec;50(12):1755]. Nat Genet. 2018;50(10):1412-1425.
- Han X, Ong JS, An J, Hewitt AW, Gharahkhani P, MacGregor S. Using Mendelian randomization to evaluate the causal relationship between serum C-reactive protein levels and age-related macular degeneration. *Eur J Epidemiol*. 2020;35(2):139-146.
- 15. McCartney DL, Min JL, Richmond RC, et al. Genome-wide association studies identify 137 genetic loci for DNA methylation biomarkers of aging. *Genome Biol.* 2021;22(1):194.

	PMID/			No. of		Р
Modifiable factor	GWAS ID	Sample size	Ancestry	SNPs ^a	Unit	$\boldsymbol{threshold}^{\mathrm{b}}$
Socioeconomic factor						
Educational attainment ¹	30038396	1131881	European	751	1-SD increase in years of schooling	P <5×10 ⁻⁸
Lifestyle behavior						
Smoking initiation ²	30643251	557337 cases and 674754 controls	European	299	log-odds (ever smoked regularly compared to never smoked)	P <5×10-8
Alcohol intake ²	30643251	941280	European	80	1-SD increase in log-transformed alcoholic drinks/week	P <5×10 ⁻⁸
Coffee consumption ³	31046077	375833	European	12	1% change	P <5×10 ⁻⁸
Sleep						
Daytime napping ⁴	33568662	452633	European	115	1 unit increase in napping category (responses "never, sometimes or usually napping" were treated as continuous variable)	
Sleep duration ⁵	30846698	446118	European	77	1 hour/day	P <5×10 ⁻⁸
MVPA ⁶	29899525	377234	European	6	1-SD increase in MET-minutes/week of MVPA	
Cardiometabolic trait						
Adiposity						
BMI ⁷	30124842	681275	European	941	1-SD increase in body mass index	
Waist circumference ⁸	25673412	224459	European	44	1-SD increase in waist circumference P	
BF%	ukb-b-8909	454633	European	641	1-SD increase in body fat percentage	P <5×10 ⁻⁸

Supplementary Table 3. Data sources of IVs for the 18 modifiable factors used in the MR study

Childhood obesity9	22484627	5530 cases and 8318 controls	European	5	log-odds	P <5×10 ⁻⁸
Type 2 diabetes ¹⁰	30297969	71124 cases and 824006 controls	European	232	log-odds	P <5×10 ⁻⁸
Lipids ¹¹						
LDL cholesterol	30275531	> 600000	mix	145	1-SD increase in LDL cholesterol	P <5×10 ⁻⁸
HDL cholesterol	30275531	> 600000	mix	222	1-SD increase in HDL cholesterol	P <5×10 ⁻⁸
Triglycerides	30275531	> 600000	mix	172	1-SD increase in triglycerides	P <5×10 ⁻⁸
Blood pressure ¹²						
SBP	30224653	>1 million	European	222	1 mmHg	P <5×10 ⁻⁸
DBP	30224653	>1 million	European	264	1 mmHg	P <5×10 ⁻⁸
CRP ¹³	31900758	418642	European	299	1-SD increase in serum CRP levels	P <5×10 ⁻⁸

^aSNPs used in the present MR analysis.

^bP threshold represents genome-wide significance threshold of genetic instruments.

Abbreviations: BF%=body fat percentage; BMI=body mass index; CRP=C-reactive protein; DBP=diastolic blood pressure; GWAS=genome-wide association study; HDL=high-density lipoprotein; IVs=instrumental variables; LDL=low-density lipoprotein; MVPA=moderate-to vigorous physical activity; MR=Mendelian randomization; No=number; SBP=systolic blood pressure; SD=standard deviation; SNP=single nucleotide polymorphism.

References:

- 1. Lee JJ, Wedow R, Okbay A, et al. Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals. Nat Genet. 2018;50(8):1112-1121.
- 2. Liu M, Jiang Y, Wedow R, et al. Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use. Nat Genet. 2019;51(2):237-244.
- 3. Zhong VW, Kuang A, Danning RD, et al. A genome-wide association study of bitter and sweet beverage consumption [published correction appears in Hum Mol Genet. 2019 May 02;;]. Hum Mol Genet. 2019;28(14):2449-2457.
- 4. Dashti HS, Daghlas I, Lane JM, et al. Genetic determinants of daytime napping and effects on cardiometabolic health. Nat Commun. 2021;12(1):900.
- 5. Dashti HS, Jones SE, Wood AR, et al. Genome-wide association study identifies genetic loci for self-reported habitual sleep duration supported by accelerometer-derived

estimates. Nat Commun. 2019;10(1):1100.

- 6. Klimentidis YC, Raichlen DA, Bea J, et al. Genome-wide association study of habitual physical activity in over 377,000 UK Biobank participants identifies multiple variants including CADM2 and APOE. Int J Obes (Lond). 2018;42(6):1161-1176.
- Yengo L, Sidorenko J, Kemper KE, et al. Meta-analysis of genome-wide association studies for height and body mass index in ~700000 individuals of European ancestry. Hum Mol Genet. 2018;27(20):3641-3649.
- 8. Shungin D, Winkler TW, Croteau-Chonka DC, et al. New genetic loci link adipose and insulin biology to body fat distribution. Nature. 2015;518(7538):187-196.
- 9. Bradfield JP, Taal HR, Timpson NJ, et al. A genome-wide association meta-analysis identifies new childhood obesity loci. Nat Genet. 2012;44(5):526-531.
- 10. Mahajan A, Taliun D, Thurner M, et al. Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. Nat Genet. 2018;50(11):1505-1513.
- 11. Klarin D, Damrauer SM, Cho K, et al. Genetics of blood lipids among ~300,000 multi-ethnic participants of the Million Veteran Program. Nat Genet. 2018;50(11):1514-1523.
- 12. Evangelou E, Warren HR, Mosen-Ansorena D, et al. Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits [published correction appears in Nat Genet. 2018 Dec;50(12):1755]. Nat Genet. 2018;50(10):1412-1425.
- 13. Han X, Ong JS, An J, Hewitt AW, Gharahkhani P, MacGregor S. Using Mendelian randomization to evaluate the causal relationship between serum C-reactive protein levels and age-related macular degeneration. Eur J Epidemiol. 2020;35(2):139-146.

	Pleiotropy te	Heterogeneity test			
Modifiable factor	Egger intercept (SE)	Pintercept	Q statistic	Ph	
Socioeconomic factor					
Educational attainment	-0.004 (0.005)	0.471	865.51	0.002	
Lifestyle factor					
Smoking initiation	-0.0004 (0.009)	0.959	324.13	0.143	
Alcohol intake	0.006 (0.009)	0.518	105.49	0.025	
Coffee consumption	0.030 (0.024)	0.249	16.07	0.138	
Sleep					
Daytime napping	0.004 (0.012)	0.740	122.38	0.279	
Sleep duration	-0.004 (0.017)	0.820	87.22	0.178	
MVPA	0.138 (0.083)	0.173	3.57	0.613	
Cardiometabolic factor					
Adiposity					
BMI	-0.003 (0.003)	0.361	1032.48	0.019	
Waist circumference	-0.003 (0.015)	0.835	49.35	0.234	
BF%	-0.001 (0.005)	0.804	756.87	0.001	
Childhood obesity	-0.115 (0.107)	0.362	3.28	0.512	
Type 2 diabetes	0.004 (0.006)	0.523	280.16	0.015	
Lipids					
LDL cholesterol	-0.006 (0.005)	0.290	203.53	8.06E-04	
HDL cholesterol	-0.004 (0.005)	0.431	311.31	7.08E-05	
Triglycerides	0.004 (0.005)	0.423	175.27	0.416	
Blood pressure					
SBP	-0.003 (0.010)	0.744	248.87	0.096	
DBP	-0.009 (0.008)	0.259	295.77	0.080	
CRP	0.013 (0.003)	7.23E-05	348.43	0.023	

Supplementary Table 4. Test for heterogeneity and pleiotropy in associations between 18 modifiable factors and GrimAgeAccel

GrimAgeAccel represents epigenetic-age acceleration obtained using the GrimAge clock. Abbreviations: BF%=body fat percentage; BMI=body mass index; CRP=C-reactive protein; DBP=diastolic blood pressure; HDL=high-density lipoprotein; LDL=low-density lipoprotein; MVPA=moderate-to vigorous physical activity; P_{intercept}=P of intercept; P_h=P of heterogeneity test; SBP=systolic blood pressure.

	Pleiotropy te	Heterogeneity test			
Modifiable factor	Egger intercept (SE)	Pintercept	Q statistic	Ph	
Socioeconomic factor					
Educational attainment	-0.004 (0.006)	0.512	838.24	0.013	
Lifestyle factor					
Smoking initiation	-0.014 (0.011)	0.220	356.87	0.011	
Alcohol intake	-0.015 (0.012)	0.210	96.19	0.091	
Coffee consumption	0.019 (0.036)	0.616	20.35	0.041	
Sleep					
Daytime napping	-0.0004 (0.016)	0.982	152.69	0.009	
Sleep duration	-0.056 (0.022)	0.013	98.52	0.042	
MVPA	0.045 (0.104)	0.691	1.63	0.898	
Cardiometabolic factor					
Adiposity					
BMI	0.001 (0.004)	0.788	1070.53	0.002	
Waist circumference	0.003 (0.022)	0.873	65.66	0.015	
BF%	-0.013 (0.006)	0.050	761.87	0.001	
Childhood obesity	0.017 (0.139)	0.909	3.12	0.538	
Type 2 diabetes	0.005 (0.007)	0.507	273.45	0.029	
Lipids					
LDL cholesterol	-0.006 (0.007)	0.393	207.96	3.90E-04	
HDL cholesterol	-0.009 (0.006)	0.131	255.49	0.061	
Triglycerides	0.005 (0.006)	0.375	192.43	0.137	
Blood pressure					
SBP	0.010 (0.013)	0.478	273.03	0.010	
DBP	-0.015 (0.011)	0.165	293.81	0.093	
CRP	0.015 (0.004)	4.56E-04	368.54	0.003	

Supplementary Table 5. Test for heterogeneity and pleiotropy in associations between 18 modifiable factors and PhenoAgeAccel

PhenoAgeAccel represents epigenetic-age acceleration obtained using the PhenoAge clock. Abbreviations: BF%=body fat percentage; BMI=body mass index; CRP=C-reactive protein; DBP=diastolic blood pressure; HDL=high-density lipoprotein; LDL=low-density lipoprotein; MVPA=moderate-to vigorous physical activity; P_{intercept}=P of intercept; P_h=P of heterogeneity test; SBP=systolic blood pressure.