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Deep learning for automated interictal epileptiform discharge (IED) detection has been topical with
many published papers in recent years. All existing work viewed EEG signals as time-series and devel-
oped specific models for IED classification; however, general time-series classification (TSC) methods
were not considered. Moreover, none of these methods were evaluated on any public datasets, making
direct comparisons challenging. This paper explored two state-of-the-art convolutional-based TSC al-
gorithms, InceptionTime and Minirocket, on IED detection. We fine-tuned and cross-evaluated them
on two private and public (Temple University Events - TUEV) datasets and provided ready metrics
for benchmarking future work. We observed that the optimal parameters correlated with the clinical
duration of an IED and achieved the best AUC, AUPRC and F1 scores of 0.98, 0.80 and 0.77 on the
private datasets, respectively. The AUC, AUPRC and F1 on TUEV were 0.99, 0.99 and 0.97, respec-
tively. While algorithms trained on the private sets maintained the performance when tested on the
TUEV data, those trained on TUEV could not generalise well to the private data. These results emerge
from differences in the class distributions across datasets and indicate a need for public datasets with a
better diversity of IED waveforms, background activities and artifacts to facilitate standardisation and
benchmarking of algorithms.

Keywords: Interictal epileptiform discharge; Epileptic spikes; Electroencephalogram; Clinical decision
support; Deep learning; Time-series

1. Introduction e . 1
repetitive spikes, however, can last several seconds.

Epilepsy diagnosis involves visual analysis of scalp
EEG recordings, in which interictal epileptiform dis-
charges (IEDs) are used as biomarkers. IEDs are
spike-wave complexes, standing out from background
activities. The duration of an epileptic spike varies
between 20 and 200 milliseconds.! An IED with

*Corresponding author

Epilepsy is broadly classified as focal or/and gener-
alised. In focal epilepsy, the epileptic activities start
in one area and may spread to other areas, while
generalised epileptic activities start in both cerebral
hemispheres at the same time. A visual example of
generalised IED wave-forms is shown in Fig. 1, which
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can be viewed as a time-series, either multivariate

(epoch-wise) or univariate (channel-wise).
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Figure 1: An example of IED from a patient with
generalised epilepsy. The IED manifests across all
channels.

Manually reviewing EEG recordings to detect
IEDs is time-consuming and can take hours to anal-
yse prolonged EEG. Deep learning (DL) has been
applied to automate TED detection with promising
results in recent years.?® The 1D convolution neu-
ral network (CNN) is the most common architecture.

Traditional machine learning methods have
been benchmarked and outperformed by DL ap-
proaches;® however, none of the state-of-the-art
(SOTA) methods in time-series classification (TSC)
were considered. The University of California River-
side (UCR) archive” has been the standard corpus in
TSC for benchmarking new models. Numerous stud-
ies on this corpus, containing time-series from many
disciplines (e.g. finance, health, etc), were published.

Most of the SOTA TSC methods although
achieving high accuracy in general TSC tasks, are not
suitable for automating IED detection tasks. This is
due to the high complexity of the algorithms, with
some taking days to weeks to train on a dataset with
only 1,000 time series,® while a typical IED dataset
contains thousands of time series.* %

Narrowing down to more scalable algorithms,
we deem the InceptionTime!'? and Minirocket!!' al-

gorithms to be more suitable for the IED detection
task. InceptionTime is an accurate and efficient DL
TSC algorithm that can exploit GPU power for large
datasets; Minirocket is the fastest TSC algorithm to-
date, that is able to complete training and classifying
of the whole UCR archive with 109 datasets in less
than 10 minutes without sacrificing accuracy.

Existing 1D CNN architectures for IED detec-
tion employ a static kernel size in a block of convo-
lution.? %12 However, it was shown in the Inception-
Time and Minirocket work with different time-series
data that applying different large kernel sizes and
concatenating the outputs could achieve better per-
formance than a small kernel size.'®'! This might
be the case with IEDs as their duration vary. In
terms of public datasets for automated IED detec-
tion, there is only one dataset, Temple University
Events (TUEV).!® This is a subset of a large cor-
pus, Temple University EEG, prepared by Temple
University. Unlike the UCR archive, this dataset has
not yet earned much attention with only one study
having been published to date.'

To fill in the gap, we evaluated two SOTA meth-
ods from TSC, Minirocket and InceptionTime, on
TUEV and provide ready metrics for benchmark-
ing for future work. In addition, the generalisation
of these methods was tested on two private datasets
acquired at tertiary hospitals in Australia.

2. Related Work
2.1. Time-series classification

Many studies'® 7 have been published on general
time-series classification since the release of the
UCR archive.” HIVE-COTE 2.0® and TS-CHIEF'”
achieved the best overall performance on the UCR
archive. These two methods are ensembles of multi-
ple models from different domains such as the tempo-
ral, frequency, shapelet, and intervals. Despite hav-
ing SOTA results, these models suffer from high
computational complexity. With the recent advance-
ments of CNN in different fields (i.e. computer vi-
sion, natural language processing), convolutional-
based methods, ROCKET, Minirocket, and Incep-
tionTime, have emerged as SOTA approaches to TSC
with high scalability. Minirocket!! is an optimized
version of ROCKET!® using a fixed set of kernels.
InceptionTime!? is a derivative of Inception, a CNN
based approach for computer vision, and employs
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large kernel sizes.

2.2. Automated IED detection

Automated IED detection employs the classification
of sequential temporal segments of EEG signals into
either background activity or containing IEDs. There
have been various studies on automated IED de-
tection using general machine learning (ML) meth-
0ds.%19:20 Existing works rely on predefined features
encapsulating characteristics of EEG signals, such as
time, frequency, and wavelet domains. As the feature
selection process is manual, these methods cannot be
scaled to large datasets. In general, it has been shown
that training on a large dataset would produce bet-
ter generalisability but require a substantial set of
features and, thereby, an expensive feature selection
process.?!

In recent years, DL has received a lot of research
interest as an automated feature extraction method
for large datasets of EEG recordings for different
clinical applications.??:2 Following this success, DL
has also been applied to automated IED detec-
tion? 291214 and shown to outperform traditional
ML approaches.® The most common architecture is
the 1D convolutional neural network (CNN). These
were applied on small windows of EEG recordings,
aiming to learn temporal features. The application
of DL to IED detection is still new and lacks stan-
dardization. Despite aiming to extract time-domain
features, none of the SOTA in TSC have been tested
and used as benchmarks. Furthermore, other clini-
cally relevant metrics, such as F1 or precision, were
not reported widely in the literature. The goal of au-
tomated IED detection is to reduce the review time,
and these metrics would provide an idea of how these
models could successfully accomplish this.

2.3. Datasets in deep learning for IED
detection

The majority of datasets in the literature are private
and contain three types of datasets: focal epilepsy,
generalized epilepsy, or mixed. Two studies included
private datasets on benign rolandic epilepsy with
centrotemporal spikes (BECTS), which is a type of
focal epilepsy seen only in children.?*2® Generalized
epilepsy datasets in existing work are also private
and only consist of EEG recordings from patients
with idiopathic generalized epilepsy.? 326 TUEV!3

is the largest public dataset containing both focal
and generalised epileptiform activities with different
EEG recording settings.!'* Other studies that exper-
imented with both types of epilepsy included simi-
lar private datasets without cross-evaluating on any
external sets.®® The lack of benchmarking on pub-
lic datasets makes direct comparisons among studies
challenging. In addition, it is not clear in the litera-
ture if it is better to build general or specific models
for these epilepsy types.

3. Methods

Below we outline the datasets considered in this
study, preprocessing and data transformation steps,
the SOTA TSC machine learning methods employed
(InceptionTime and Minirocket), and summarise the
different classifier configurations and within- and
across- dataset evaluation approaches. Finally we
specify the computational implementation details.

3.1. Datasets
3.1.1. Temple University Events

Temple University Hospital (TUH) corpus*® is a pub-
lic corpus containing multiple EEG datasets, col-
lected from TUH and managed by Temple Univer-
sity, and released in 2016. The corpus has been up-
dated over time. The TUEV is a subset of this cor-
pus, containing labels of different IEDs, artifacts, and
background activities. There are six types of labels:
(1) spike and sharp wave (SPSW), (2) generalised
periodic epileptiform discharges (GPED), (3) peri-
odic lateralised epileptiform discharges (PLED), (4)
eye movement (EYEM), (5) artifact (ARTF) and (6)
background (BCKG). One or a set of channels was
given labels, and training is then done only using
involved channels. This will capture focal abnormal-
ities in maximally involved channels while ignoring
channels with artefacts or channels with no abnor-
malities during the same time window. The duration
of all annotations is 1s. TUEV uses the Temporal
Central Parasagittal (TCP) montage (Fig. 2). Refer
to the original paper of the TUH corpus'® for the
detailed definitions of these events.

TUEV has two sets, train and evaluation sets.
These were designed such that data from a patient
only appear in one of the 2 sets. We used TUEV
version 1.0.1 at the time of this work. Details of the
TUEV are summarised in Table 1.
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Figure 2: Electrode linkages in the Temporal Central
Parasagittal (TCP) Montage. The combined signal
from a pair of electrodes was calculated by subtract-
ing one from the other.

Table 1: Number of annotations in TUEV train &
evaluation sets

Annotations | Train set | Evaluation set
SPSW 645 567
GPED 11,229 4,672
PLED 5,965 1,998
ARTF 10,194 2,204
EYEM 1,069 328
BCKG 53,126 19,602

Total IEDs 17,839 7,237

Total normal| 65,109 22,134

3.1.2.  Private datasets

Routine EEG recordings from patients with idio-
pathic generalised epilepsy (IGE) were collected at
the Alfred Hospital (n=120) and Royal Melbourne
Hospital (RMH; n=137) in Melbourne, Australia. In
addition, normal control recordings were obtained
from these sites (n=116 and 388, respectively). Three
board-certified neurologists (MJ, LS and OG) anno-
tated the datasets. This study was conducted with
approval from the Alfred Health Ethics Committee
(Project No: 745/19).

Contrary to the channel-wise and 6 class anno-
tation of the TUEV dataset, in the private datasets
data epochs were annotated at the epoch level with
2 classes (containing IED or not). We observed that
there were fragment IEDs in our datasets which man-
ifest across both hemispheres in some but not all
channels in an epoch. The start and end of the spikes
for annotation was as follows:

e Start: Annotate 100-200 milliseconds before onset

of the first visible spike or rhythm change (mark
before the first fragment as some discharges start
with focal onset in a few channels).

e End: End of the last slow-wave and return of pre-
discharge background.

In total, there were 1,155 IEDs in the Al-
fred Hospital dataset and 1,608 IEDs in the RMH
dataset.

3.2. Preprocessing

We applied the same preprocessing steps to all
datasets. Signals from each electrode were split into
1s windows with no overlap. We standardized the
number of electrodes in our dataset by excluding the
auricular electrodes M1 and M2, as they were not
present in some of the EEG recordings in the Alfred
Hospital and RMH datasets. This left us with 19 elec-
trodes for each EEG recording. As the TUEV dataset
was labelled with the TCP montage, we applied the
same montage to all datasets. All EEG recordings
were resampled to 256 Hz using polyphase filtering.
We applied bandpass filters of 0.5-49 Hz to remove
high-frequency muscle artifacts, slow-frequency arti-
facts, and power-line noises which do not contribute
any information to the diagnosis of epilepsy.'? This
has been found effective in the literature.? 12 How-
ever, the bandpass filtering was not applied in mul-
ticlass classification (defined below) as artifacts in-
cluding high frequency signal content were one of
the classes. Finally, the inputs to all models had 256
timesteps and one or 20 channels, for channel-wise
or epoch-wise classification (defined below), respec-
tively.

3.3. Data transformation

We explored and compared two data transformation
methods, z-score normalisation and log transforma-
tion. These would help tackle the variance among
samples. The data transformation was only applied
with InceptionTime. Minirocket does not require any
data normalisation as shown in the original paper.

3.3.1. Z-score normalisation

Inputs were z-score normalised with each dataset’s
global mean and standard deviation. When train-
ing on private sets, the mean and standard devia-
tion were averaged across the two datasets. We also
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randomly added Gaussian noise to the normalised
input with zero mean. The standard deviations were
randomly sampled from {1, 2, 3, 4, 5}.

3.3.2.  Log transformation

Apart from z-score normalisation, we also explored
log transformation. This is independent of the data’s
statistics. As the voltage values from our EEG
recordings are small/close to 0, we first scaled them
up by multiplying with 103. Applying the TCP
montage resulted in negative values. Therefore, we
squared the inputs and added a small value of le-
7 for numerical stabilisation. We observed that the
distribution of outputs from the log transformation
resembled a normal distribution.

In addition, instead of using Gaussian noise for
data augmentation in this case, we implemented the
mixup method.?” Suppose we have two raw inputs z;,
x; and their one-hot encoding labels y;, y;, mixup
creates virtual training examples by interpolating
these as follows,

&= x; + (1 - Nz

9=y + (1 =Ny, W

where A ~ Beta(a, @) and « € (0,00). A benefit
of this method is it does not rely on the statistics
of the dataset. It also penalizes the targets of noisy
samples so that the model would not lean towards
these too much. In our experiments, we set o to 0.2.

3.4. SOTA TSC methods
3.4.1. InceptionTime

Inception was first introduced in?® and has been
through a few iterations of architecture change.?’
The basic module of an Inception network consists
of a concatenation of outputs from different 1D con-
volutional kernels. InceptionTime!? was inspired by
this and achieved SOTA results on the UCR archive.
The InceptionTime module starts with a bottleneck
connection reducing the input features, followed by
convolutional operations with different kernel sizes.
Differences between InceptionTime and the original
Inception are the kernel sizes are longer (64 com-
pared to 3x3 and 5x5), and no pooling layers are
used to reduce the input dimensions (Fig. 3). In ad-
dition, the residual connection is applied to every
two convolutional blocks. We also applied 1D spatial

dropout3? after every convolutional block to regular-
ize the network. The 1D spatial dropout randomly
drops a set of timesteps. In addition, we followed the
average ensemble in the original paper. Inception-
Time was trained five times with different random
seeds, and the outputs of these models were aver-
aged to produce the final output.

Bottleneck

|
¢ 7 —T

(kernel size = 3,
stride = 1)

| l I |
v

1D convolution 1D convolution 1D convolution
(kernel size = n) (kernel size = n/2) (kernel size = n/4)

Concatenate

v

1D Spatial Dropout
(rate = 0.1)

Global average pooling

Figure 3: A CNN block of InceptionTime where n
is the maximum kernel size. The bottleneck layer is
a 1D convolutional layer with kernel size of 1. Each
block is followed by a 1D spatial dropout layer in our
modification. A global average pooling layer is used
to reduce the dimensions before the final classifica-
tion layer.

3.4.2.  Minirocket

Rocket!® is a scalable algorithm that achieved SOTA
accuracy on the UCR archive. It first transforms the
time series using 10k random convolution kernels and
computes the proportion of positive values (PPV)
statistics and maximum value of the feature maps,
creating 20k features. The transformed inputs are
then used to train a linear classifier. Minirocket!! is
an optimised and faster version of Rocket. It uses a
fixed set of 10k kernels and only computes the PPV
statistics, creating 10k features in total. The convo-
lution in both Rocket and Minirocket uses dilation,
indicating the spread of the kernel, to achieve diver-
sity and better accuracy. By default, Minirocket uses
the ridge classifier for datasets with less than 10k
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series and the logistic regression classifier for larger
datasets.

3.5. Within- and across-dataset
evaluation setup

The SOTA TSC methods were evaluated for the
TUEV and private datasets separately (i.e. within),
as well as across datasets.

3.5.1. Within-TUEV-dataset evaluation

As each label in the TUEV dataset was 1s long, we
focused on classifying these 1s epochs/windows. We
split the TUEV train set into two sets, train and
validation such that no patient existed in both sets.
The TUEV evaluation set was used as a test set. The
exact numbers of each label are described in Table
2.

Table 2: Details of TUEV dataset used for training
and evaluation in our experiments

Train Validation Test

# IED channel epochsJr 16,776 1,063 7,237
# Normal channel epochs’ 50,580 14,529 22,134
# IED epochs'T 6,319 231 7237
# Normal epochs' 7,239 1,473 22,134
# EEG 291 61 159
# Patients 231 57 80

T Epochs of single channel data
tt Epochs of multichannel data

3.5.2.  Within-private-dataset evaluation

In terms of our private datasets, we split each dataset
into three sets, train, validation, and test. Each set
contained a different set of EEG recordings. We ex-
tracted 1s windows with 50% overlap from these
recordings. To avoid including any IEDs that the
neurologists might have missed, we only used the sig-
nal from normal EEG as normal activities. Table 3
contains the details of the data in our experiments.

3.5.3. Across-dataset evaluation

To test the generalisability of the models trained us-
ing the training set of each dataset (i.e. TUEV or
the private data), we cross-evaluated the models on
the test set from the dataset not used for training

(e.g. Train on TUEV train set and test on Private
dataset test sets). As these datasets had different
types of EEG recordings and epileptiform discharges,
this would give us a better understanding of the gen-
eralisability of the models and how to better prepare
IED datasets for future studies aimed at finding gen-
eralisable models.

Table 3: The number of epochs of multichannel data
and EEG recordings of private datasets

Alfred Hospital dataset

Train  Validation Test

# IED epochs' 1,024 229 335
# Normal epochs’ 201,629 67,640 69,424
# IED labels 827 157 171
# Epileptic EEG 58 13 25
# Normal EEG e 20 24
# Patients 133 33 48

RMH dataset

Train Validation  Test

# IED epochs! 1,371 256 607
# Normal epochsT 429,726 99,166 143,007
# IED labels 1,067 165 376
# Epileptic EEG 61 16 33
# Normal EEG 255 63 79
# Patients 300 76 111

i Epochs of multichannel data

3.6. Classifier Configurations

The goal is to classify windows from EEG recordings
into either binary classes, IED or normal, or mul-
ticlass as in the TUEV dataset. This work tested
SOTA methods in TSC on the automated IED
detection task, both channel-wise and epoch-wise.
Channel-wise means the classification is performed
on channels individually. This can only be done if the
events in each channel are labelled by the clinicians.
Epoch-wise means the models would be trained ei-
ther on all channels from a given time epoch or sep-
arately on each channel and a voting mechanism is
employed to obtain the final classification for the
epoch. This requires clinician labelling of events at
the epoch level. Moreover, we performed two clas-
sification tasks, multiclass and binary classification,
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which are illustrated in Fig. 4. These approaches
were defined as follows:

Classification

I
v v

Binary Multiclass

¢ ¢ \ 4

Channel-wise Epoch-wise Channel-wise
TUEV TUEV Private sets TUEV

Figure 4: Classification tasks in our experiments.
These were performed channel-wise and/or epoch-
wise depending on what labels were available for a
given dataset.

3.6.1. Multiclass classification

TUEV dataset had six classes as described above.
The multiclass classification was done channel-wise
with this set, given that an epoch could contain mul-
tiple class labels across the different channels.

3.6.2. Binary classification

For channel-wise binary classification for the TUEV
data we grouped SPSW, GPED, and PLED into the
IED class and EYEM, ARTF, and BCKG into the
non-IED class. For epoch-wise binary classification
with the TUEV data, if an epoch contained a channel
labelled as SPSW, GPED or PLED, the epoch would
be classified as spike, otherwise, it would be classified
as normal. To avoid including any channels without
IEDs in fragment samples, we only performed epoch-
wise binary classification on the private datasets be-
cause events in individual channels were not labelled
separately by clinicians and only TED and non-IED
class labels were provided.
We explored three strategies for binary classifi-
cation as seen in literature:% 14,26
e Multichannel: All channels in an epoch were
used in training. The inputs were multivariate
time-series.
e Maximum: We trained the models on binary la-
bels of single channels. The maximum probability
output across all channels was considered as the

final output of the epoch and used in epoch-wise
classifications.

o Aggregated: We used the same models from the
channel-wise multiclass classification task and ag-
gregated them for epoch-wise classification.

3.7. Hyperparameter search

Given the complex hyperparameter space of Incep-
tionTime, we limited the grid search for the opti-
mal hyperparameters to using only the Alfred Hos-
pital private training and validation sets. We set the
number of filters in the bottleneck layer to the same
value as within the following convolutional layers.
We also evaluated whether to use spatial dropout
and increase the number of filters every two epochs.
The model with the best set of hyperparameters was
then used for other experiments, including channel
classification. The search space is described in Table
4. The Alfred Hospital dataset was involved during
the search and normalised with the z-score normali-
sation. We employed the average ensemble in which
each combination of parameters was trained 5 times
with different random seeds and the average of these
was used as the final output. Training these mod-
els until convergence is costly. To speed up the grid
search, we trained each model for 10 epochs and used
the AUPRC on the validation set for comparison.
We did not perform the hyperparameter search for
Minirocket. Instead, we used the default number of
kernels of 10,000 in Minirocket and set the maximum
dilation to the value of the optimal maximum kernel
size of InceptionTime.

Table 4: Search values for InceptionTime’s hyperpa-
rameters. Optimal values are highlighted in bold.

Hyperparameters Search values
Maximum kernel size 32, 40%, 64
Number of filters 32*. 64
Number of convolutional blocks 4, 6%, 8

Spatial dropout rate 0, 0.1, 0.2

Increase factor for the number of filters 1, 1.5, 2

* denotes original value in the InceptionTime paper

The TUEV dataset was imbalanced with a high
number of BCKG samples and a low number of
SPSW (<1%). Our private datasets had the same
imbalance problem, with the ratio of IED windows to
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normal windows of approximately 1:1000. This might
make the model biased towards the normal class. The
imbalanced dataset is a common issue in deep learn-
ing and there have been many solutions.* %3132 In
our experiments, we employed a balanced mini-batch
strategy in which for every batch, we sampled the
same number of IED windows and normal windows.
This helped create a balanced dataset. All models
were trained with a Stochastic Gradient Descent op-
timizer with weight decay of le-5.22 We also used
the cyclical learning rate®* with steps of 8 times the
number of batches in one training epoch. The initial
and maximum learning rates were le-4 and le-2.

When working with all datasets, we used the op-
timal hyperparameters selected from the grid search
to train the model for more epochs, maximum of 300,
and stopped the training process if the validation
set’s AUPRC did not improve after 15 epochs.

3.8. Performance Metrics

All models were trained and evaluated on epoched
data segments. We used sensitivity to measure the
proportion of detected windowed segments contain-
ing IEDs. Sensitivity is defined as follows,

# correctly detected IED windows
Total # annotated I ED windows

(2)

The neurologists will have to verify all suggested

Sens =

samples by the algorithm in practice. To measure the
percentage of detected IED windows that are true
IEDs, we used precision or positive predictive value
which is defined as follows,

# correctly detected IED windows 3)
Total # detected I ED windows

Precision is often traded off against sensitivity.

Prec =

A good algorithm should maintain high precision and
sensitivity. We used the F1 score and area under
precision-recall curve (AUPRC) obtained for differ-
ent classification thresholds to measure this. Note
recall is the same measure as sensitivity.

F1 score measures the balance between precision
and sensitivity and is defined as follows,

2 x precision x sensitivit
1= 2P Ty
precision + sensitivity

Apart from these, we also computed the area
under curve (AUC) of true-positive rate (TPR) and
false-positive rate (FPR) at different thresholds. This
would give us an idea of the diagnostic ability of the

models and is the most commonly used metric in the
literature. Noting that the datasets are highly imbal-
anced, the models might be biased towards the back-
ground activities and produce low FPR, resulting in
high AUC. As such, the other clinically relevant met-
rics, F1 and AUPRC, should also be calculated.

3.9. Implementation

We extended the original code of In-
ceptionTime, which  can  be found at
https://github.com/hfawaz/InceptionTime, to suit
our experiments. We used two implementations of

35 ynivariate and multivari-

Minirocket from sktime:
ate. All extensions of InceptionTime architecture
and logistic regression of Minirocket features were

implemented with Tensorflow 2.36

4. Results
4.1. Results of hyperparameter search

The best set of hyperparameters for InceptionTime
from the hyperparameter search process are high-
lighted in bold in Table 4. The maximum kernel size
of 32 meant the kernel sizes the model operated on
were 8, 16, and 32. As all input windows were 1s
long, these are equivalent to 30 to 125 ms and align
with the duration of epileptiform waves, which last
for 20 to 200 milliseconds.! Following this, we set
the maximum dilation of Minirocket to 32 in other
experiments. As the optimal hyperparameters cor-
related with the duration of epileptiform waves, we
used the same parameters for training models on
TUEV. This would help us understand the differ-
ences among datasets in later analysis.

4.2. Performance when training with
private sets

Considering the case of epoch-wise binary classifi-
cation we first trained all models on the mixture
of the private RMH and Alfred Hospital training
sets. We tested the RMH and Alfred Hospital test
sets separately to understand the performance differ-
ence across the two hospitals. The within-dataset re-
sults of InceptionTime and Minirocket are provided
in Table 5. The F1, sensitivity and precision scores
were calculated at the probability threshold where
the validation’s F1 score was maximum. Inception-
Time with z-score normalisation had the best average
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(across the two hospital datasets) AUPRC score of
0.80 and the best average F1 score of 0.77. This was
followed by Minirocket with an average AUPRC of
0.79 and an average F'1 score of 0.74.

A Dbootstrap pair-wise statistical comparison
with the Welch’s t-test3” of F1 scores from these
models was also employed. For each pair-wise model
comparison, we ran bootstrap 1,000 times and then
used the Bonferroni correction for multiple compar-
isons®® to reject the null hypothesis that the means
of F1 scores from a given pair of methods were the
same. Any null hypothesis with p < & = 0.3& =
0.0167 was be rejected, where m = 3 is the number
of comparisons. We found that all comparisons of
the average F1 scores of the models in Table 5 were

statistically significant.

Table 5: Alfred/RMH within-dataset epoch-wise bi-
nary classification results, and across-dataset results
for the TUEV test set.

Method Metrics Alfred RMH Avg of TUEV
private (only
sets SPSW)

AUC 0.98 0.99 0.98 0.99
Inception AUPRC 0.72 0.87 0.80 0.76

Time - Sens 0.60 0.79 0.69 0.65
Z-score  Prec 0.90 0.86 0.88 0.88
F1 0.72 0.82 0.77 0.75
AUC 0.97 0.96 0.96 0.90
Inception AUPRC 0.66 0.70 0.68 0.64
Time - Sens 0.49 0.75 0.62 0.54
Log Prec 0.88 0.90 0.89 0.93
F1 0.63 0.82 0.72 0.68
AUC 0.99 0.99 0.99 0.99
Mini AUPRC 0.74 0.83 0.79 0.78
rocket Sens 0.62 0.74 0.68 0.58
Prec 0.81 0.84 0.82 0.98
F1 0.70 0.78 0.74 0.73

We also evaluated across-dataset performance
by testing how well these models trained on Al-
fred Hospital and RMH training sets detected SPSW
samples from the TUEV evaluation set. All GPED
and PLED samples were removed because these dis-
charge types were not present in the private datasets
obtained from IGE patients. As indicated in Table
5, all models generalized well to TUEV test set. The
InceptionTime model with z-score normalisation out-
performed others with the highest F1 score of 0.75,

followed by Minirocket with an F1 score of 0.73.

4.3. Performance when training with
the TUEYV data

4.3.1. Channel-wise Multiclass classification

The within-dataset results of channel-wise multiclass
classification on the TUEV evaluation set were sum-
marized in Table 6. We measured the precision, sen-
sitivity and F1 scores of each label. We calculated
the macro average (unweighted mean) and weighted
average (support-weighted) of all labels to obtain the
overall performance. InceptionTime with log trans-
formation had the highest weighted average F1 score
of 0.83, followed by Minirocket with a score of 0.77.
We observed that all models had trouble detecting
SPSW. This could be due to a low number of SPSW
samples in the dataset. The Minirocket models had
higher F1 scores for SPSW than all InceptionTime
models. On the other hand, these models could de-
tect eye movements and artifacts with reasonable
precision and sensitivity. This might suggest that
these models could be further developed into arti-
fact detection systems.

In addition, the InceptionTime model with z-
score normalisation had low performance. We ob-
served that the model mistook all GPED and PLED
samples for SPSW and BCKG samples for ARTF.
Note that bandpass filtering was not applied here
as we wanted to detect artifacts. This resulted in
extremely high variances in the inputs’ scales, ac-
counting for the poor performance. Despite using
batch normalisation, the model still failed to distin-
guish these classes. The proposed log transformation
rescaled the inputs, transformed them to a normal
distribution, and achieved better results.

4.3.2. Binary classification

This experiment aimed to classify channels and
epochs into either normal or containing IEDs. The
TUEV within-dataset results of channel-wise binary
classification are provided in Table 7. The AUC per-
formance levels of all models are comparable. The
InceptionTime model with log transformation had
the highest AUPRC and F1 scores of 0.97 and 0.92,
respectively. Recall that, regarding epoch classifica-
tion, we employed three strategies, maximum, multi-
channel and aggregated for the binary classification.
The results of TUEV within-dataset epoch-wise bi-
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Table 6: TUEV within-dataset channel-wise multiclass classification results on the test set
Method Metrics SPSW GPED PLED EYEM ARTF BCKG Macro avg Weighted avg
Inception Precision 0.05 0.00 0.00 0.71 0.10 0.00 0.14 0.02
Time - Sensitivity 0.80 0.00 0.00 0.88 0.97 0.00 0.44 0.10
Z-score F1 0.10 0.00 0.00 0.78 0.19 0.00 0.18 0.02
. Precision 0.55 0.79 0.44 0.75 0.62 0.93 0.68 0.84
Inception e
Time - Lo Sensitivity 0.01 0.59 0.68 0.77 0.60 0.96 0.60 0.84
& F1 0.02 0.68 0.53 0.76 0.61 0.95 0.59 0.83
Precision 0.34 0.78 0.33 0.18 0.68 0.92 0.54 0.82
Minirocket  Sensitivity 0.10 0.24 0.67 0.98 0.56 0.95 0.58 0.77
F1 0.15 0.37 0.45 0.31 0.62 0.93 0.47 0.77
Support 567 4,672 1,998 328 2,204 19,602 29,371 29,371

nary classification are reported in Table 8. We did
not calculate the AUC and AUPRC for the aggre-
gated strategy as for each sample, we considered the
class with the highest probability as the final class
and did not apply thresholding. The F1, sensitiv-
ity and precision scores of other models were calcu-
lated at the threshold where validation’s F1 score
was maximum.

Table 7: TUEV within-dataset channel-wise binary
classification results on the test set

Method AUC AUPRC Sens Prec F1
InceptionTime 0.98 0.96 0.88 0.93 0.90
- Z-score

InceptionTime 0.99 0.97 0.90 0.93 0.92
- Log

Minirocket 0.98 0.95 0.91 0.86 0.89

All models had comparable AUC scores. Incep-
tionTime with log transformation models had higher
F1 scores than respective InceptionTime models with
z-score normalisation. We applied the same boot-
strap statistical comparisons to confirm this and
found the differences were significant. The maximum
strategy with the average ensemble outperformed
the other strategies. The InceptionTime model with
maximum strategy and either z-score normalisation
or log transformation shared the best AUPRC score
of 0.99. We noticed that the aggregated classification

models achieved higher F'1 scores in binary classifica-
tion while struggling to detect individual IED labels.
This indicates that all models had trouble distin-
guishing wave-forms of different IEDs but managed
to recognise IEDs in general.

Table 8: TUEV within-dataset epoch-wise binary
classification results on the test set

InceptionTime

Method AUC AUPRC Sens Prec F1

Max - Z- 0.99 0.99 0.92 096 0.94

score
Multichannel  0.82 0.69 0.78 0.67 0.72
- Z-score
Aggregated N/A N/A 1.00 0.60 0.75
- Z-score
Max - Log 0.99 0.99 0.98 0.95 0.97
Multichannel  0.96 0.91 0.92 0.83  0.87
- Log
Aggregated N/A N/A 1.00 0.82 0.90
- Log

Minirocket
Method AUC AUPRC Sens Prec F1
Max 0.98 0.97 0.95 0.90 0.92
Multichannel  0.98 0.97 0.95 0.91 0.90
Aggregated N/A N/A 099 0.82 0.90

It can also be seen in Table 8, that the Inception-
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Time with log transformation and maximum strat-
egy had the highest F1 score in terms of epoch-wise
binary classification, followed by Minirocket with
maximum strategy. We applied the same bootstrap
statistical comparison used for the private data to the
TUEV data to determine if there were statistically
significant differences in the F1 score of given model
pairs. Significance occurred if p < = = % =0.0014
using Bonferroni correction for m comparisons. Fig.
5 illustrates the F1 scores and the results of statisti-
cal comparisons among all models.

= InceptionTime
m= Minirocket
abcefgh

abeefgh

abcdei  abcdei  abcdei

Figure 5: Results of F1 statistical compar-
isons of TUEV within-dataset epoch-wise Binary-
classification. Each method is annotated with a let-
ter between a and i, as seen on the x-axis. Symbols
above a given bar indicate if, after correcting for mul-
tiple comparisons, there was a significant difference
in the F1 score corresponding to the methods asso-
ciated with the given bar and with the symbol. E.g.
a ’g’ above the bar associated with ’i. Minirocket
- Max’ indicates that ’i. Minirocket - Max’ and ’g.
Minirocket - Multichannel’ have significantly differ-
ent F1 scores. An * above a bar indicates that the
associated method is significantly different from the
rest.

4.3.3. Test on private datasets

We also tested the generalisability of the above
TUEV trained models on the test sets from the pri-
vate Alfred Hospital and RMH datasets. Only binary
classification was tested as these sets did not include
multiclass labels.

Table 9 summarizes the average metrics across

11

the two private Alfred Hospital and RMH test sets.
The AUC scores and sensitivity scores are high, close
to the TUEV evaluation set results. However, the
precision and F1 scores dropped drastically and were
lower than those trained on the private sets. This
might be due to the differences between TUEV and
private sets. While TUEV contains both focal and
generalised IEDs from long-term EEG recordings,
the private sets only contain routine EEG recordings
from patients with idiopathic generalised epilepsy.
There were no PLED and GPED samples in the pri-
vate sets. We demonstrated in the previous section
that these models had trouble detecting SPSW sam-
ples from the TUEV dataset.

Table 9: Average metrics on private test sets of mod-
els trained on TUEV

InceptionTime
Method AUC AUPRC Sens Prec F1
Max - Z- 0.94 0.24 0.64 0.10 0.18
score
Multichannel  0.91 0.03 0.96 0.02 0.03
- Z-score
Aggregated N/A N/A 098 0.01 0.03
- Z-score
Max - Log 0.97 0.26 0.78 0.07  0.12
Multichannel  0.98 0.44 0.89 0.09 0.16
- Log
Aggregated N/A N/A 087 0.04 0.08
- Log

Minirocket

Method AUC AUPRC Sens Prec F1

Max 0.95 0.06 0.37 0.20 0.10
Multichannel  0.98 0.37 0.91 0.08 0.14
Aggregated N/A N/A 077  0.07 0.13

4.4. FExploring false positives

In multiclass classification, the InceptionTime with
z-score normalisation classified GPED and PLED
samples in the TUEV evaluation set as SPSW. How-
ever, the same model performed well for binary clas-
sification, where the goal is to distinguish samples
with IEDs from any other background and artifact
activities. Other models in multiclass classification
had the same difficulty in differentiating types of
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IEDs and performed well in binary classification. On
the other hand, while models trained on the pri-
vate sets generalised well to the TUEV data, we also
saw that models trained on the TUEV dataset could
not generalise to the two private datasets. Sensitivity
scores were high, and precision scores were low.

By analysing the results from the multiclass
models, we observed that many background activ-
ities in the private datasets were mistaken for ei-
ther GPED or PLED. This might suggest that there
might be differences in the non-IED segments from
TUEV and the private datasets, or better artifact re-
moval preprocessing methods are needed. To the un-
derstand differences between the TUEV and private
datasets, and the lack of generalisation in the train
on TUEV case, we explored two common features
used in IED detection and artifact removal, spectral
entropy?’g’ 40
tures measure the complexity of the signals. Consid-

and Hurst exponent.3? 4142 These fea-

ering the trained on TUEV binary classification re-
sults, InceptionTime with z-score normalisation and
maximum strategy had the highest cross-evaluation
F1 but had the lowest sensitivity. However, we chose
the InceptionTime with log transformation and bi-
nary multichannel strategy for this experiment as it
had the second-best F1 score, and the sensitivity was
significantly higher than the other model.

For the two feature types, spectral entropy and
Hurst exponent, we compared the feature values cor-
responding to false positive and false negative epochs
detected by this model against the values observed in
each of the different classes in the different datasets
and plotted box plots in Fig. 6. As multichannel sam-
ples were used here, we calculated the feature for
each channel of a sample and took the maximum
value across all channels as the final value. We im-
plemented the algorithm for Hurst exponent from
Qian et al. (2004)*! in which the sample was divided
into 8 smaller windows of 32 time-steps, similar to
the maximum kernel size used throughout our exper-
iments. We implemented the spectral entropy calcu-
lation from Pan et al. (2009).43

Even after bandpass filtering, the private
datasets were noisier with wider ranges of spectral
entropy and Hurst exponent than the TUEV data.
This might be partly explained by the much larger
number of non-IED examples in the private datasets.
The models trained on the private datasets had the
benefit of covering more noisy samples, thus, gen-

eralized better than those trained on TUEV only.
The majority of the false positives from RMH had
higher spectral entropy than the IED samples from
TUEV. However, spectral entropy for false positives
in the Alfred data was close to that observed for
TUEV’s IEDs. While there was a large variety of
spectral entropy values across datasets (Fig. 6(a)),
we observed greater consistency of the Hurst expo-
nent values across datasets (Fig. 6(b)). In particular,
it was noticed that a lower bound could be applied
to the Hurst exponent values to remove problematic
samples and reduce false positives. We tested this
by removing any samples from private test sets with
Hurst exponent values below different lower bounds
between the minimum value and 1st quartile. The
IED samples from the TUEV train set were used to
calculate the statistics.

The algorithm was as follows: 1. Any samples
with Hurst exponent below the lower bound will be
classified as normal or without IEDs 2. Let the model
classify other samples into either with or without
IEDs.

Fig. 7 illustrates the metrics at different lower
bounds of the Hurst exponent. We observed that
with the trade-off of sensitivity, the precision score
improved. This suggests more advanced artifact re-
moval methods might be needed. It would be intu-
itive to apply this preprocessing step and then train
the model on the cleansed data; however, it was out
of the scope of this paper where we only wanted to
demonstrate the effect of artifact removal and the dif-
ferences between TUEV and private datasets when
using SOTA TSC algorithms.
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Figure 7: InceptionTime with log transformation and
epoch-wise binary multichannel classification metrics
after using the Hurst-exponent based algorithm for
different Hurst exponent lower bound values.
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Figure 6: Comparison of features for the TUEV and private datasets, and the false positives and false negatives
based on InceptionTime with log transformation and epoch-wise binary multichannel classification.

5. Discussion
5.1. OQOwerall performance

We evaluated the within- and across-dataset IED de-
tection performance for variants of InceptionTime
and Minirocket on our private datasets and the pub-
lic TUEYV dataset. For within-dataset evaluation, the
InceptionTime models with log transformation out-
performed those with z-score normalisation in most
experiments with the TUEV dataset (Tables 6, 7
and 8). By contrast, z-score normalization had bet-
ter performance on the private datasets (Table 5).
This might be due to a wider variation of background
activities/artifacts in these datasets that enable the
z-score transformation to capture the distribution
better. Moreover, Minirocket performed similarly, al-
though not necessarily better, when compared to In-
ceptionTime without the need for normalisation.
When considering across-dataset evaluation
work in the literature, the study with data from the
most clinical centres (6) is Thomas et al. (2021).°
For their proposed model their across-dataset (i.e.
across-clinical centre) performance was lower than
their within-dataset performance (i.e. within-clinical
centre). We experienced the same issue and showed
that this was due to differences in the datasets. We
demonstrated that the models trained on the pri-
vate datasets were able to generalise well to the pub-
lic TUEV dataset (Table 5), while models trained
with the TUEV did not generalise well to the private

datasets (Table 9). The better generalisation when
training on the private sets may result in part from
the much larger number of normal/non-IED epochs
available in the private sets (Table 3) when com-
pared to the TUEV data (Table 2). Interestingly, we
could improve the cross-evaluation performance by
using a simple artifact removal method that utilised
the thresholding of the Hurst exponent. This might
suggest that a better artifact removal method than
bandpass filtering is needed. Temple University also
released a corpus for artifact detection, TUH EEG
Artifact Corpus (TUAR),* which could be used as
additional data or to train an artifact detector.

5.2. Comparison with existing work

Table 10 compares our work with the literature. Gol-
mohammadi et al.'* is the only other existing work
on the TUEV dataset. This study extracted tem-
poral and spatial context within the EEG data by
applying a hybrid method combining Markov mod-
els (HMMs) for sequential decoding of EEG events,
a deep learning-based post-processing step, and a
stacked denoising autoencoder. Only two metrics
were reported, sensitivity and specificity, for channel-
wise binary classification, which were 0.91 and 0.488,
respectively. Specificity measures the true negative
rate of a classifier. The sensitivity is similar to the
best model in our TUEV within-dataset binary clas-
sification experiments, InceptionTime with log trans-
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formation. However, our specificity is significantly
higher at 0.98 (see Table 10). In addition, Thomas et
al.? applied 1D CNN to epoch-wise binary classifica-
tion on a private dataset with similar EEG recording
settings and types of epilepsy to TUEV. The pro-
posed method is similar to our maximum strategy in
which the model was trained on single channels, and
the maximum probability output across all channels
was used as the final output for the epoch. A param-
eter search was performed over several kernel sizes
ranging from 3 to 8, which were smaller than those
in our work. The reported AUC was similar to our
AUC at 0.99. The AUPRC at 0.84 was lower than
our AUPRC at 0.99. Jing et al.* employed 1D CNN
with increasing kernel size and decreasing number of
filters as the network became deeper, and reported
an AUC score of 0.98 on a similar dataset to TUEV.
Overall, this might indicate that using multiple large
kernel sizes could capture epileptic patterns better.
In addition to methods that consider both fo-
cal and generalised epilepsy patient data as in Table
10, we can also consider the results of considering
methods focused purely on IGE patient data, similar
to our private data from Alfred Hospital and RMH.
Clarke et al.?% applied 2D CNN and achieved a sensi-
tivity of 0.85. Nhu et al.2 applied Resnet, a 1D CNN,
with different strategies to tackle data imbalance,
oversampling, focal loss (FL), and FL with oversam-
pling. The best AUC score achieved was 0.87. Graph
convolutional network (GCN) was also experimented
with IGE in Nhu et al.> which transformed a mon-
tage into graph-like data and had an AUC of 0.92 and
a sensitivity of 0.60. All methods above used epoch-
wise classification. The comparisons of these results
with the performance of the best TSC method for
the private data in this paper are given in Table 11.

6. Conclusions

This study tested the SOTA TSC methods, Incep-
tionTime and Minirocket, and their variants on the
IED detection problem. Ready benchmark scores
with relevant clinical metrics on a public dataset,
TUEV, were also provided. We also showed that
models trained on private data could maintain the
performance when tested on the TUEV data. The
same was not observed when training on the TUEV
data and tested on private data. These results were
partly due to the differences in types of IED and
normal/artifact activity between TUEV and the pri-

vate sets. Better generalisation across datasets seems
achievable if more normal/artifact data is available
for training, as with private datasets. We also showed
that our results on the public dataset were compa-
rable in terms of AUC performance and better in
terms of AUPRC performance than existing work
on DL for automated IED detection. Better AUPRC
performance means higher precision, translating into
less time wasted by clinicians looking at TED detec-
tion that are not actually IEDs. Overall, this work
highlights the need for well-structured datasets to
improve across dataset generalisation. It also pro-
vides SOTA benchmarks for others to compare their
algorithms on the public TUEV data.

Table 10: Comparison with existing within-dataset
binary classification work on datasets with a mix-
ture of focal and generalized epilepsy patients

Method AUC AUPRC Sens Spec
Golmohammadi et al.™T - - 0.91 0.48
Thomas et al.®Tt 0.99 084 080 -
Jing et al At 0.98 - - -
InceptionTime - 099 0.97 090 0.98

Log! (Table 7)

InceptionTime - Max - 0.99 0.99 0.98 0.98
Log'T (Table 8)

InceptionTime - Multi- 0.96 0.91 092 0.87
channel - Log' (Table 8)

T Channel-wise. 11 Epoch-wise

Table 11: Comparison with existing within-dataset
binary epoch-wise classification work on IGE patient
only datasets

Methods AUC AUPRC Sens Spec
Clarke et al.6 - - 0.85 -
Nhu et al. - Resnet - 0.85 - - -
Oversampling? f

Nhu et al. - Resnet - 0.87 - - -
FL2T

Nhu et al. - Resnet - FL.  0.87 - - -
& Oversampling?

Nhu et al. - GCN31T 0.92 - 0.60 0.98
InceptionTime - Z-score 0.98 0.80 0.69 0.97
(Table 5)

i Only average cross-evaluation results was reported
ft Only results of the best model was reported
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