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Deep learning for automated interictal epileptiform discharge (IED) detection has been topical with
many published papers in recent years. All existing work viewed EEG signals as time-series and devel-
oped specific models for IED classification; however, general time-series classification (TSC) methods
were not considered. Moreover, none of these methods were evaluated on any public datasets, making
direct comparisons challenging. This paper explored two state-of-the-art convolutional-based TSC al-
gorithms, InceptionTime and Minirocket, on IED detection. We fine-tuned and cross-evaluated them
on two private and public (Temple University Events - TUEV) datasets and provided ready metrics
for benchmarking future work. We observed that the optimal parameters correlated with the clinical
duration of an IED and achieved the best AUC, AUPRC and F1 scores of 0.98, 0.80 and 0.77 on the
private datasets, respectively. The AUC, AUPRC and F1 on TUEV were 0.99, 0.99 and 0.97, respec-
tively. While algorithms trained on the private sets maintained the performance when tested on the
TUEV data, those trained on TUEV could not generalise well to the private data. These results emerge
from differences in the class distributions across datasets and indicate a need for public datasets with a
better diversity of IED waveforms, background activities and artifacts to facilitate standardisation and
benchmarking of algorithms.

Keywords: Interictal epileptiform discharge; Epileptic spikes; Electroencephalogram; Clinical decision
support; Deep learning; Time-series

1. Introduction

Epilepsy diagnosis involves visual analysis of scalp

EEG recordings, in which interictal epileptiform dis-

charges (IEDs) are used as biomarkers. IEDs are

spike-wave complexes, standing out from background

activities. The duration of an epileptic spike varies

between 20 and 200 milliseconds.1 An IED with

repetitive spikes, however, can last several seconds.1

Epilepsy is broadly classified as focal or/and gener-

alised. In focal epilepsy, the epileptic activities start

in one area and may spread to other areas, while

generalised epileptic activities start in both cerebral

hemispheres at the same time. A visual example of

generalised IED wave-forms is shown in Fig. 1, which
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can be viewed as a time-series, either multivariate

(epoch-wise) or univariate (channel-wise).

Figure 1: An example of IED from a patient with

generalised epilepsy. The IED manifests across all

channels.

Manually reviewing EEG recordings to detect

IEDs is time-consuming and can take hours to anal-

yse prolonged EEG. Deep learning (DL) has been

applied to automate IED detection with promising

results in recent years.2–5 The 1D convolution neu-

ral network (CNN) is the most common architecture.

Traditional machine learning methods have

been benchmarked and outperformed by DL ap-

proaches;6 however, none of the state-of-the-art

(SOTA) methods in time-series classification (TSC)

were considered. The University of California River-

side (UCR) archive7 has been the standard corpus in

TSC for benchmarking new models. Numerous stud-

ies on this corpus, containing time-series from many

disciplines (e.g. finance, health, etc), were published.

Most of the SOTA TSC methods although

achieving high accuracy in general TSC tasks, are not

suitable for automating IED detection tasks. This is

due to the high complexity of the algorithms, with

some taking days to weeks to train on a dataset with

only 1,000 time series,8 while a typical IED dataset

contains thousands of time series.4,5, 9

Narrowing down to more scalable algorithms,

we deem the InceptionTime10 and Minirocket11 al-

gorithms to be more suitable for the IED detection

task. InceptionTime is an accurate and efficient DL

TSC algorithm that can exploit GPU power for large

datasets; Minirocket is the fastest TSC algorithm to-

date, that is able to complete training and classifying

of the whole UCR archive with 109 datasets in less

than 10 minutes without sacrificing accuracy.

Existing 1D CNN architectures for IED detec-

tion employ a static kernel size in a block of convo-

lution.2,9, 12 However, it was shown in the Inception-

Time and Minirocket work with different time-series

data that applying different large kernel sizes and

concatenating the outputs could achieve better per-

formance than a small kernel size.10,11 This might

be the case with IEDs as their duration vary. In

terms of public datasets for automated IED detec-

tion, there is only one dataset, Temple University

Events (TUEV).13 This is a subset of a large cor-

pus, Temple University EEG, prepared by Temple

University. Unlike the UCR archive, this dataset has

not yet earned much attention with only one study

having been published to date.14

To fill in the gap, we evaluated two SOTA meth-

ods from TSC, Minirocket and InceptionTime, on

TUEV and provide ready metrics for benchmark-

ing for future work. In addition, the generalisation

of these methods was tested on two private datasets

acquired at tertiary hospitals in Australia.

2. Related Work

2.1. Time-series classification

Many studies15–17 have been published on general

time-series classification since the release of the

UCR archive.7 HIVE-COTE 2.08 and TS-CHIEF17

achieved the best overall performance on the UCR

archive. These two methods are ensembles of multi-

ple models from different domains such as the tempo-

ral, frequency, shapelet, and intervals. Despite hav-

ing SOTA results, these models suffer from high

computational complexity. With the recent advance-

ments of CNN in different fields (i.e. computer vi-

sion, natural language processing), convolutional-

based methods, ROCKET, Minirocket, and Incep-

tionTime, have emerged as SOTA approaches to TSC

with high scalability. Minirocket11 is an optimized

version of ROCKET18 using a fixed set of kernels.

InceptionTime10 is a derivative of Inception, a CNN

based approach for computer vision, and employs
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large kernel sizes.

2.2. Automated IED detection

Automated IED detection employs the classification

of sequential temporal segments of EEG signals into

either background activity or containing IEDs. There

have been various studies on automated IED de-

tection using general machine learning (ML) meth-

ods.6,19,20 Existing works rely on predefined features

encapsulating characteristics of EEG signals, such as

time, frequency, and wavelet domains. As the feature

selection process is manual, these methods cannot be

scaled to large datasets. In general, it has been shown

that training on a large dataset would produce bet-

ter generalisability but require a substantial set of

features and, thereby, an expensive feature selection

process.21

In recent years, DL has received a lot of research

interest as an automated feature extraction method

for large datasets of EEG recordings for different

clinical applications.22,23 Following this success, DL

has also been applied to automated IED detec-

tion2–5,9, 12,14 and shown to outperform traditional

ML approaches.6 The most common architecture is

the 1D convolutional neural network (CNN). These

were applied on small windows of EEG recordings,

aiming to learn temporal features. The application

of DL to IED detection is still new and lacks stan-

dardization. Despite aiming to extract time-domain

features, none of the SOTA in TSC have been tested

and used as benchmarks. Furthermore, other clini-

cally relevant metrics, such as F1 or precision, were

not reported widely in the literature. The goal of au-

tomated IED detection is to reduce the review time,

and these metrics would provide an idea of how these

models could successfully accomplish this.

2.3. Datasets in deep learning for IED
detection

The majority of datasets in the literature are private

and contain three types of datasets: focal epilepsy,

generalized epilepsy, or mixed. Two studies included

private datasets on benign rolandic epilepsy with

centrotemporal spikes (BECTS), which is a type of

focal epilepsy seen only in children.24,25 Generalized

epilepsy datasets in existing work are also private

and only consist of EEG recordings from patients

with idiopathic generalized epilepsy.2,3, 26 TUEV13

is the largest public dataset containing both focal

and generalised epileptiform activities with different

EEG recording settings.14 Other studies that exper-

imented with both types of epilepsy included simi-

lar private datasets without cross-evaluating on any

external sets.4,9 The lack of benchmarking on pub-

lic datasets makes direct comparisons among studies

challenging. In addition, it is not clear in the litera-

ture if it is better to build general or specific models

for these epilepsy types.

3. Methods

Below we outline the datasets considered in this

study, preprocessing and data transformation steps,

the SOTA TSC machine learning methods employed

(InceptionTime and Minirocket), and summarise the

different classifier configurations and within- and

across- dataset evaluation approaches. Finally we

specify the computational implementation details.

3.1. Datasets

3.1.1. Temple University Events

Temple University Hospital (TUH) corpus13 is a pub-

lic corpus containing multiple EEG datasets, col-

lected from TUH and managed by Temple Univer-

sity, and released in 2016. The corpus has been up-

dated over time. The TUEV is a subset of this cor-

pus, containing labels of different IEDs, artifacts, and

background activities. There are six types of labels:

(1) spike and sharp wave (SPSW), (2) generalised

periodic epileptiform discharges (GPED), (3) peri-

odic lateralised epileptiform discharges (PLED), (4)

eye movement (EYEM), (5) artifact (ARTF) and (6)

background (BCKG). One or a set of channels was

given labels, and training is then done only using

involved channels. This will capture focal abnormal-

ities in maximally involved channels while ignoring

channels with artefacts or channels with no abnor-

malities during the same time window. The duration

of all annotations is 1s. TUEV uses the Temporal

Central Parasagittal (TCP) montage (Fig. 2). Refer

to the original paper of the TUH corpus13 for the

detailed definitions of these events.

TUEV has two sets, train and evaluation sets.

These were designed such that data from a patient

only appear in one of the 2 sets. We used TUEV

version 1.0.1 at the time of this work. Details of the

TUEV are summarised in Table 1.
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Figure 2: Electrode linkages in the Temporal Central

Parasagittal (TCP) Montage. The combined signal

from a pair of electrodes was calculated by subtract-

ing one from the other.

Table 1: Number of annotations in TUEV train &

evaluation sets
Annotations Train set Evaluation set

SPSW 645 567

GPED 11,229 4,672

PLED 5,965 1,998

ARTF 10,194 2,204

EYEM 1,069 328

BCKG 53,126 19,602

Total IEDs 17,839 7,237

Total normal 65,109 22,134

3.1.2. Private datasets

Routine EEG recordings from patients with idio-

pathic generalised epilepsy (IGE) were collected at

the Alfred Hospital (n=120) and Royal Melbourne

Hospital (RMH; n=137) in Melbourne, Australia. In

addition, normal control recordings were obtained

from these sites (n=116 and 388, respectively). Three

board-certified neurologists (MJ, LS and OG) anno-

tated the datasets. This study was conducted with

approval from the Alfred Health Ethics Committee

(Project No: 745/19).

Contrary to the channel-wise and 6 class anno-

tation of the TUEV dataset, in the private datasets

data epochs were annotated at the epoch level with

2 classes (containing IED or not). We observed that

there were fragment IEDs in our datasets which man-

ifest across both hemispheres in some but not all

channels in an epoch. The start and end of the spikes

for annotation was as follows:

• Start: Annotate 100-200 milliseconds before onset

of the first visible spike or rhythm change (mark

before the first fragment as some discharges start

with focal onset in a few channels).

• End: End of the last slow-wave and return of pre-

discharge background.

In total, there were 1,155 IEDs in the Al-

fred Hospital dataset and 1,608 IEDs in the RMH

dataset.

3.2. Preprocessing

We applied the same preprocessing steps to all

datasets. Signals from each electrode were split into

1s windows with no overlap. We standardized the

number of electrodes in our dataset by excluding the

auricular electrodes M1 and M2, as they were not

present in some of the EEG recordings in the Alfred

Hospital and RMH datasets. This left us with 19 elec-

trodes for each EEG recording. As the TUEV dataset

was labelled with the TCP montage, we applied the

same montage to all datasets. All EEG recordings

were resampled to 256 Hz using polyphase filtering.

We applied bandpass filters of 0.5-49 Hz to remove

high-frequency muscle artifacts, slow-frequency arti-

facts, and power-line noises which do not contribute

any information to the diagnosis of epilepsy.12 This

has been found effective in the literature.2,12 How-

ever, the bandpass filtering was not applied in mul-

ticlass classification (defined below) as artifacts in-

cluding high frequency signal content were one of

the classes. Finally, the inputs to all models had 256

timesteps and one or 20 channels, for channel-wise

or epoch-wise classification (defined below), respec-

tively.

3.3. Data transformation

We explored and compared two data transformation

methods, z-score normalisation and log transforma-

tion. These would help tackle the variance among

samples. The data transformation was only applied

with InceptionTime. Minirocket does not require any

data normalisation as shown in the original paper.

3.3.1. Z-score normalisation

Inputs were z-score normalised with each dataset’s

global mean and standard deviation. When train-

ing on private sets, the mean and standard devia-

tion were averaged across the two datasets. We also
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randomly added Gaussian noise to the normalised

input with zero mean. The standard deviations were

randomly sampled from {1, 2, 3, 4, 5}.

3.3.2. Log transformation

Apart from z-score normalisation, we also explored

log transformation. This is independent of the data’s

statistics. As the voltage values from our EEG

recordings are small/close to 0, we first scaled them

up by multiplying with 103. Applying the TCP

montage resulted in negative values. Therefore, we

squared the inputs and added a small value of 1e-

7 for numerical stabilisation. We observed that the

distribution of outputs from the log transformation

resembled a normal distribution.

In addition, instead of using Gaussian noise for

data augmentation in this case, we implemented the

mixup method.27 Suppose we have two raw inputs xi,

xj and their one-hot encoding labels yi, yj , mixup

creates virtual training examples by interpolating

these as follows,

x̂ = λxi + (1− λ)xj

ŷ = λyi + (1− λ)yj
(1)

where λ ∼ Beta(α, α) and α ∈ (0,∞). A benefit

of this method is it does not rely on the statistics

of the dataset. It also penalizes the targets of noisy

samples so that the model would not lean towards

these too much. In our experiments, we set α to 0.2.

3.4. SOTA TSC methods

3.4.1. InceptionTime

Inception was first introduced in28 and has been

through a few iterations of architecture change.29

The basic module of an Inception network consists

of a concatenation of outputs from different 1D con-

volutional kernels. InceptionTime10 was inspired by

this and achieved SOTA results on the UCR archive.

The InceptionTime module starts with a bottleneck

connection reducing the input features, followed by

convolutional operations with different kernel sizes.

Differences between InceptionTime and the original

Inception are the kernel sizes are longer (64 com-

pared to 3x3 and 5x5), and no pooling layers are

used to reduce the input dimensions (Fig. 3). In ad-

dition, the residual connection is applied to every

two convolutional blocks. We also applied 1D spatial

dropout30 after every convolutional block to regular-

ize the network. The 1D spatial dropout randomly

drops a set of timesteps. In addition, we followed the

average ensemble in the original paper. Inception-

Time was trained five times with different random

seeds, and the outputs of these models were aver-

aged to produce the final output.

Figure 3: A CNN block of InceptionTime where n

is the maximum kernel size. The bottleneck layer is

a 1D convolutional layer with kernel size of 1. Each

block is followed by a 1D spatial dropout layer in our

modification. A global average pooling layer is used

to reduce the dimensions before the final classifica-

tion layer.

3.4.2. Minirocket

Rocket18 is a scalable algorithm that achieved SOTA

accuracy on the UCR archive. It first transforms the

time series using 10k random convolution kernels and

computes the proportion of positive values (PPV)

statistics and maximum value of the feature maps,

creating 20k features. The transformed inputs are

then used to train a linear classifier. Minirocket11 is

an optimised and faster version of Rocket. It uses a

fixed set of 10k kernels and only computes the PPV

statistics, creating 10k features in total. The convo-

lution in both Rocket and Minirocket uses dilation,

indicating the spread of the kernel, to achieve diver-

sity and better accuracy. By default, Minirocket uses

the ridge classifier for datasets with less than 10k
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series and the logistic regression classifier for larger

datasets.

3.5. Within- and across-dataset
evaluation setup

The SOTA TSC methods were evaluated for the

TUEV and private datasets separately (i.e. within),

as well as across datasets.

3.5.1. Within-TUEV-dataset evaluation

As each label in the TUEV dataset was 1s long, we

focused on classifying these 1s epochs/windows. We

split the TUEV train set into two sets, train and

validation such that no patient existed in both sets.

The TUEV evaluation set was used as a test set. The

exact numbers of each label are described in Table

2.

Table 2: Details of TUEV dataset used for training

and evaluation in our experiments

Train Validation Test

# IED channel epochs† 16,776 1,063 7,237

# Normal channel epochs† 50,580 14,529 22,134

# IED epochs†† 6,319 231 7237

# Normal epochs†† 7,239 1,473 22,134
# EEG 291 61 159
# Patients 231 57 80

† Epochs of single channel data
†† Epochs of multichannel data

3.5.2. Within-private-dataset evaluation

In terms of our private datasets, we split each dataset

into three sets, train, validation, and test. Each set

contained a different set of EEG recordings. We ex-

tracted 1s windows with 50% overlap from these

recordings. To avoid including any IEDs that the

neurologists might have missed, we only used the sig-

nal from normal EEG as normal activities. Table 3

contains the details of the data in our experiments.

3.5.3. Across-dataset evaluation

To test the generalisability of the models trained us-

ing the training set of each dataset (i.e. TUEV or

the private data), we cross-evaluated the models on

the test set from the dataset not used for training

(e.g. Train on TUEV train set and test on Private

dataset test sets). As these datasets had different

types of EEG recordings and epileptiform discharges,

this would give us a better understanding of the gen-

eralisability of the models and how to better prepare

IED datasets for future studies aimed at finding gen-

eralisable models.

Table 3: The number of epochs of multichannel data

and EEG recordings of private datasets

Alfred Hospital dataset

Train Validation Test

# IED epochs† 1,024 229 335

# Normal epochs† 201,629 67,640 69,424
# IED labels 827 157 171
# Epileptic EEG 58 13 25
# Normal EEG 77 20 24
# Patients 133 33 48

RMH dataset

Train Validation Test

# IED epochs† 1,371 256 607

# Normal epochs† 429,726 99,166 143,007
# IED labels 1,067 165 376
# Epileptic EEG 61 16 33
# Normal EEG 255 63 79
# Patients 300 76 111

† Epochs of multichannel data

3.6. Classifier Configurations

The goal is to classify windows from EEG recordings

into either binary classes, IED or normal, or mul-

ticlass as in the TUEV dataset. This work tested

SOTA methods in TSC on the automated IED

detection task, both channel-wise and epoch-wise.

Channel-wise means the classification is performed

on channels individually. This can only be done if the

events in each channel are labelled by the clinicians.

Epoch-wise means the models would be trained ei-

ther on all channels from a given time epoch or sep-

arately on each channel and a voting mechanism is

employed to obtain the final classification for the

epoch. This requires clinician labelling of events at

the epoch level. Moreover, we performed two clas-

sification tasks, multiclass and binary classification,
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which are illustrated in Fig. 4. These approaches

were defined as follows:

Figure 4: Classification tasks in our experiments.

These were performed channel-wise and/or epoch-

wise depending on what labels were available for a

given dataset.

3.6.1. Multiclass classification

TUEV dataset had six classes as described above.

The multiclass classification was done channel-wise

with this set, given that an epoch could contain mul-

tiple class labels across the different channels.

3.6.2. Binary classification

For channel-wise binary classification for the TUEV

data we grouped SPSW, GPED, and PLED into the

IED class and EYEM, ARTF, and BCKG into the

non-IED class. For epoch-wise binary classification

with the TUEV data, if an epoch contained a channel

labelled as SPSW, GPED or PLED, the epoch would

be classified as spike, otherwise, it would be classified

as normal. To avoid including any channels without

IEDs in fragment samples, we only performed epoch-

wise binary classification on the private datasets be-

cause events in individual channels were not labelled

separately by clinicians and only IED and non-IED

class labels were provided.

We explored three strategies for binary classifi-

cation as seen in literature:9,14,26

• Multichannel: All channels in an epoch were

used in training. The inputs were multivariate

time-series.

• Maximum: We trained the models on binary la-

bels of single channels. The maximum probability

output across all channels was considered as the

final output of the epoch and used in epoch-wise

classifications.

• Aggregated: We used the same models from the

channel-wise multiclass classification task and ag-

gregated them for epoch-wise classification.

3.7. Hyperparameter search

Given the complex hyperparameter space of Incep-

tionTime, we limited the grid search for the opti-

mal hyperparameters to using only the Alfred Hos-

pital private training and validation sets. We set the

number of filters in the bottleneck layer to the same

value as within the following convolutional layers.

We also evaluated whether to use spatial dropout

and increase the number of filters every two epochs.

The model with the best set of hyperparameters was

then used for other experiments, including channel

classification. The search space is described in Table

4. The Alfred Hospital dataset was involved during

the search and normalised with the z-score normali-

sation. We employed the average ensemble in which

each combination of parameters was trained 5 times

with different random seeds and the average of these

was used as the final output. Training these mod-

els until convergence is costly. To speed up the grid

search, we trained each model for 10 epochs and used

the AUPRC on the validation set for comparison.

We did not perform the hyperparameter search for

Minirocket. Instead, we used the default number of

kernels of 10,000 in Minirocket and set the maximum

dilation to the value of the optimal maximum kernel

size of InceptionTime.

Table 4: Search values for InceptionTime’s hyperpa-

rameters. Optimal values are highlighted in bold.

Hyperparameters Search values
Maximum kernel size 32, 40*, 64
Number of filters 32*, 64
Number of convolutional blocks 4, 6*, 8
Spatial dropout rate 0, 0.1, 0.2
Increase factor for the number of filters 1, 1.5, 2

* denotes original value in the InceptionTime paper

The TUEV dataset was imbalanced with a high

number of BCKG samples and a low number of

SPSW (<1%). Our private datasets had the same

imbalance problem, with the ratio of IED windows to
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normal windows of approximately 1:1000. This might

make the model biased towards the normal class. The

imbalanced dataset is a common issue in deep learn-

ing and there have been many solutions.4,5, 31,32 In

our experiments, we employed a balanced mini-batch

strategy in which for every batch, we sampled the

same number of IED windows and normal windows.

This helped create a balanced dataset. All models

were trained with a Stochastic Gradient Descent op-

timizer with weight decay of 1e-5.33 We also used

the cyclical learning rate34 with steps of 8 times the

number of batches in one training epoch. The initial

and maximum learning rates were 1e-4 and 1e-2.

When working with all datasets, we used the op-

timal hyperparameters selected from the grid search

to train the model for more epochs, maximum of 300,

and stopped the training process if the validation

set’s AUPRC did not improve after 15 epochs.

3.8. Performance Metrics

All models were trained and evaluated on epoched

data segments. We used sensitivity to measure the

proportion of detected windowed segments contain-

ing IEDs. Sensitivity is defined as follows,

Sens =
# correctly detected IED windows

Total # annotated IED windows
(2)

The neurologists will have to verify all suggested

samples by the algorithm in practice. To measure the

percentage of detected IED windows that are true

IEDs, we used precision or positive predictive value

which is defined as follows,

Prec =
# correctly detected IED windows

Total # detected IED windows
(3)

Precision is often traded off against sensitivity.

A good algorithm should maintain high precision and

sensitivity. We used the F1 score and area under

precision-recall curve (AUPRC) obtained for differ-

ent classification thresholds to measure this. Note

recall is the same measure as sensitivity.

F1 score measures the balance between precision

and sensitivity and is defined as follows,

F1 =
2 ∗ precision ∗ sensitivity
precision+ sensitivity

(4)

Apart from these, we also computed the area

under curve (AUC) of true-positive rate (TPR) and

false-positive rate (FPR) at different thresholds. This

would give us an idea of the diagnostic ability of the

models and is the most commonly used metric in the

literature. Noting that the datasets are highly imbal-

anced, the models might be biased towards the back-

ground activities and produce low FPR, resulting in

high AUC. As such, the other clinically relevant met-

rics, F1 and AUPRC, should also be calculated.

3.9. Implementation

We extended the original code of In-

ceptionTime, which can be found at

https://github.com/hfawaz/InceptionTime, to suit

our experiments. We used two implementations of

Minirocket from sktime:35 univariate and multivari-

ate. All extensions of InceptionTime architecture

and logistic regression of Minirocket features were

implemented with Tensorflow 2.36

4. Results

4.1. Results of hyperparameter search

The best set of hyperparameters for InceptionTime

from the hyperparameter search process are high-

lighted in bold in Table 4. The maximum kernel size

of 32 meant the kernel sizes the model operated on

were 8, 16, and 32. As all input windows were 1s

long, these are equivalent to 30 to 125 ms and align

with the duration of epileptiform waves, which last

for 20 to 200 milliseconds.1 Following this, we set

the maximum dilation of Minirocket to 32 in other

experiments. As the optimal hyperparameters cor-

related with the duration of epileptiform waves, we

used the same parameters for training models on

TUEV. This would help us understand the differ-

ences among datasets in later analysis.

4.2. Performance when training with
private sets

Considering the case of epoch-wise binary classifi-

cation we first trained all models on the mixture

of the private RMH and Alfred Hospital training

sets. We tested the RMH and Alfred Hospital test

sets separately to understand the performance differ-

ence across the two hospitals. The within-dataset re-

sults of InceptionTime and Minirocket are provided

in Table 5. The F1, sensitivity and precision scores

were calculated at the probability threshold where

the validation’s F1 score was maximum. Inception-

Time with z-score normalisation had the best average
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(across the two hospital datasets) AUPRC score of

0.80 and the best average F1 score of 0.77. This was

followed by Minirocket with an average AUPRC of

0.79 and an average F1 score of 0.74.

A bootstrap pair-wise statistical comparison

with the Welch’s t-test37 of F1 scores from these

models was also employed. For each pair-wise model

comparison, we ran bootstrap 1,000 times and then

used the Bonferroni correction for multiple compar-

isons38 to reject the null hypothesis that the means

of F1 scores from a given pair of methods were the

same. Any null hypothesis with p < α
m = 0.05

3 =

0.0167 was be rejected, where m = 3 is the number

of comparisons. We found that all comparisons of

the average F1 scores of the models in Table 5 were

statistically significant.

Table 5: Alfred/RMH within-dataset epoch-wise bi-

nary classification results, and across-dataset results

for the TUEV test set.

Method Metrics Alfred RMH Avg of
private
sets

TUEV
(only

SPSW)

Inception
Time -
Z-score

AUC 0.98 0.99 0.98 0.99
AUPRC 0.72 0.87 0.80 0.76
Sens 0.60 0.79 0.69 0.65
Prec 0.90 0.86 0.88 0.88
F1 0.72 0.82 0.77 0.75

Inception
Time -
Log

AUC 0.97 0.96 0.96 0.90
AUPRC 0.66 0.70 0.68 0.64
Sens 0.49 0.75 0.62 0.54
Prec 0.88 0.90 0.89 0.93
F1 0.63 0.82 0.72 0.68

Mini
rocket

AUC 0.99 0.99 0.99 0.99
AUPRC 0.74 0.83 0.79 0.78
Sens 0.62 0.74 0.68 0.58
Prec 0.81 0.84 0.82 0.98
F1 0.70 0.78 0.74 0.73

We also evaluated across-dataset performance

by testing how well these models trained on Al-

fred Hospital and RMH training sets detected SPSW

samples from the TUEV evaluation set. All GPED

and PLED samples were removed because these dis-

charge types were not present in the private datasets

obtained from IGE patients. As indicated in Table

5, all models generalized well to TUEV test set. The

InceptionTime model with z-score normalisation out-

performed others with the highest F1 score of 0.75,

followed by Minirocket with an F1 score of 0.73.

4.3. Performance when training with
the TUEV data

4.3.1. Channel-wise Multiclass classification

The within-dataset results of channel-wise multiclass

classification on the TUEV evaluation set were sum-

marized in Table 6. We measured the precision, sen-

sitivity and F1 scores of each label. We calculated

the macro average (unweighted mean) and weighted

average (support-weighted) of all labels to obtain the

overall performance. InceptionTime with log trans-

formation had the highest weighted average F1 score

of 0.83, followed by Minirocket with a score of 0.77.

We observed that all models had trouble detecting

SPSW. This could be due to a low number of SPSW

samples in the dataset. The Minirocket models had

higher F1 scores for SPSW than all InceptionTime

models. On the other hand, these models could de-

tect eye movements and artifacts with reasonable

precision and sensitivity. This might suggest that

these models could be further developed into arti-

fact detection systems.

In addition, the InceptionTime model with z-

score normalisation had low performance. We ob-

served that the model mistook all GPED and PLED

samples for SPSW and BCKG samples for ARTF.

Note that bandpass filtering was not applied here

as we wanted to detect artifacts. This resulted in

extremely high variances in the inputs’ scales, ac-

counting for the poor performance. Despite using

batch normalisation, the model still failed to distin-

guish these classes. The proposed log transformation

rescaled the inputs, transformed them to a normal

distribution, and achieved better results.

4.3.2. Binary classification

This experiment aimed to classify channels and

epochs into either normal or containing IEDs. The

TUEV within-dataset results of channel-wise binary

classification are provided in Table 7. The AUC per-

formance levels of all models are comparable. The

InceptionTime model with log transformation had

the highest AUPRC and F1 scores of 0.97 and 0.92,

respectively. Recall that, regarding epoch classifica-

tion, we employed three strategies, maximum, multi-

channel and aggregated for the binary classification.

The results of TUEV within-dataset epoch-wise bi-
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Table 6: TUEV within-dataset channel-wise multiclass classification results on the test set

Method Metrics SPSW GPED PLED EYEM ARTF BCKG Macro avg Weighted avg

Precision 0.05 0.00 0.00 0.71 0.10 0.00 0.14 0.02

Sensitivity 0.80 0.00 0.00 0.88 0.97 0.00 0.44 0.10

Inception

Time -

Z-score F1 0.10 0.00 0.00 0.78 0.19 0.00 0.18 0.02

Precision 0.55 0.79 0.44 0.75 0.62 0.93 0.68 0.84

Sensitivity 0.01 0.59 0.68 0.77 0.60 0.96 0.60 0.84
Inception

Time - Log
F1 0.02 0.68 0.53 0.76 0.61 0.95 0.59 0.83

Precision 0.34 0.78 0.33 0.18 0.68 0.92 0.54 0.82

Sensitivity 0.10 0.24 0.67 0.98 0.56 0.95 0.58 0.77Minirocket

F1 0.15 0.37 0.45 0.31 0.62 0.93 0.47 0.77

Support 567 4,672 1,998 328 2,204 19,602 29,371 29,371

nary classification are reported in Table 8. We did

not calculate the AUC and AUPRC for the aggre-

gated strategy as for each sample, we considered the

class with the highest probability as the final class

and did not apply thresholding. The F1, sensitiv-

ity and precision scores of other models were calcu-

lated at the threshold where validation’s F1 score

was maximum.

Table 7: TUEV within-dataset channel-wise binary

classification results on the test set

Method AUC AUPRC Sens Prec F1

InceptionTime
- Z-score

0.98 0.96 0.88 0.93 0.90

InceptionTime
- Log

0.99 0.97 0.90 0.93 0.92

Minirocket 0.98 0.95 0.91 0.86 0.89

All models had comparable AUC scores. Incep-

tionTime with log transformation models had higher

F1 scores than respective InceptionTime models with

z-score normalisation. We applied the same boot-

strap statistical comparisons to confirm this and

found the differences were significant. The maximum

strategy with the average ensemble outperformed

the other strategies. The InceptionTime model with

maximum strategy and either z-score normalisation

or log transformation shared the best AUPRC score

of 0.99. We noticed that the aggregated classification

models achieved higher F1 scores in binary classifica-

tion while struggling to detect individual IED labels.

This indicates that all models had trouble distin-

guishing wave-forms of different IEDs but managed

to recognise IEDs in general.

Table 8: TUEV within-dataset epoch-wise binary

classification results on the test set

InceptionTime

Method AUC AUPRC Sens Prec F1

Max - Z-
score

0.99 0.99 0.92 0.96 0.94

Multichannel
- Z-score

0.82 0.69 0.78 0.67 0.72

Aggregated
- Z-score

N/A N/A 1.00 0.60 0.75

Max - Log 0.99 0.99 0.98 0.95 0.97
Multichannel
- Log

0.96 0.91 0.92 0.83 0.87

Aggregated
- Log

N/A N/A 1.00 0.82 0.90

Minirocket

Method AUC AUPRC Sens Prec F1

Max 0.98 0.97 0.95 0.90 0.92
Multichannel 0.98 0.97 0.95 0.91 0.90
Aggregated N/A N/A 0.99 0.82 0.90

It can also be seen in Table 8, that the Inception-
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Time with log transformation and maximum strat-

egy had the highest F1 score in terms of epoch-wise

binary classification, followed by Minirocket with

maximum strategy. We applied the same bootstrap

statistical comparison used for the private data to the

TUEV data to determine if there were statistically

significant differences in the F1 score of given model

pairs. Significance occurred if p < α
m = 0.05

36 = 0.0014

using Bonferroni correction for m comparisons. Fig.

5 illustrates the F1 scores and the results of statisti-

cal comparisons among all models.

Figure 5: Results of F1 statistical compar-

isons of TUEV within-dataset epoch-wise Binary-

classification. Each method is annotated with a let-

ter between a and i, as seen on the x-axis. Symbols

above a given bar indicate if, after correcting for mul-

tiple comparisons, there was a significant difference

in the F1 score corresponding to the methods asso-

ciated with the given bar and with the symbol. E.g.

a ’g’ above the bar associated with ’i. Minirocket

- Max’ indicates that ’i. Minirocket - Max’ and ’g.

Minirocket - Multichannel’ have significantly differ-

ent F1 scores. An * above a bar indicates that the

associated method is significantly different from the

rest.

4.3.3. Test on private datasets

We also tested the generalisability of the above

TUEV trained models on the test sets from the pri-

vate Alfred Hospital and RMH datasets. Only binary

classification was tested as these sets did not include

multiclass labels.

Table 9 summarizes the average metrics across

the two private Alfred Hospital and RMH test sets.

The AUC scores and sensitivity scores are high, close

to the TUEV evaluation set results. However, the

precision and F1 scores dropped drastically and were

lower than those trained on the private sets. This

might be due to the differences between TUEV and

private sets. While TUEV contains both focal and

generalised IEDs from long-term EEG recordings,

the private sets only contain routine EEG recordings

from patients with idiopathic generalised epilepsy.

There were no PLED and GPED samples in the pri-

vate sets. We demonstrated in the previous section

that these models had trouble detecting SPSW sam-

ples from the TUEV dataset.

Table 9: Average metrics on private test sets of mod-

els trained on TUEV

InceptionTime

Method AUC AUPRC Sens Prec F1

Max - Z-
score

0.94 0.24 0.64 0.10 0.18

Multichannel
- Z-score

0.91 0.03 0.96 0.02 0.03

Aggregated
- Z-score

N/A N/A 0.98 0.01 0.03

Max - Log 0.97 0.26 0.78 0.07 0.12
Multichannel
- Log

0.98 0.44 0.89 0.09 0.16

Aggregated
- Log

N/A N/A 0.87 0.04 0.08

Minirocket

Method AUC AUPRC Sens Prec F1

Max 0.95 0.06 0.37 0.20 0.10
Multichannel 0.98 0.37 0.91 0.08 0.14
Aggregated N/A N/A 0.77 0.07 0.13

4.4. Exploring false positives

In multiclass classification, the InceptionTime with

z-score normalisation classified GPED and PLED

samples in the TUEV evaluation set as SPSW. How-

ever, the same model performed well for binary clas-

sification, where the goal is to distinguish samples

with IEDs from any other background and artifact

activities. Other models in multiclass classification

had the same difficulty in differentiating types of
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IEDs and performed well in binary classification. On

the other hand, while models trained on the pri-

vate sets generalised well to the TUEV data, we also

saw that models trained on the TUEV dataset could

not generalise to the two private datasets. Sensitivity

scores were high, and precision scores were low.

By analysing the results from the multiclass

models, we observed that many background activ-

ities in the private datasets were mistaken for ei-

ther GPED or PLED. This might suggest that there

might be differences in the non-IED segments from

TUEV and the private datasets, or better artifact re-

moval preprocessing methods are needed. To the un-

derstand differences between the TUEV and private

datasets, and the lack of generalisation in the train

on TUEV case, we explored two common features

used in IED detection and artifact removal, spectral

entropy39,40 and Hurst exponent.39,41,42 These fea-

tures measure the complexity of the signals. Consid-

ering the trained on TUEV binary classification re-

sults, InceptionTime with z-score normalisation and

maximum strategy had the highest cross-evaluation

F1 but had the lowest sensitivity. However, we chose

the InceptionTime with log transformation and bi-

nary multichannel strategy for this experiment as it

had the second-best F1 score, and the sensitivity was

significantly higher than the other model.

For the two feature types, spectral entropy and

Hurst exponent, we compared the feature values cor-

responding to false positive and false negative epochs

detected by this model against the values observed in

each of the different classes in the different datasets

and plotted box plots in Fig. 6. As multichannel sam-

ples were used here, we calculated the feature for

each channel of a sample and took the maximum

value across all channels as the final value. We im-

plemented the algorithm for Hurst exponent from

Qian et al. (2004)41 in which the sample was divided

into 8 smaller windows of 32 time-steps, similar to

the maximum kernel size used throughout our exper-

iments. We implemented the spectral entropy calcu-

lation from Pan et al. (2009).43

Even after bandpass filtering, the private

datasets were noisier with wider ranges of spectral

entropy and Hurst exponent than the TUEV data.

This might be partly explained by the much larger

number of non-IED examples in the private datasets.

The models trained on the private datasets had the

benefit of covering more noisy samples, thus, gen-

eralized better than those trained on TUEV only.

The majority of the false positives from RMH had

higher spectral entropy than the IED samples from

TUEV. However, spectral entropy for false positives

in the Alfred data was close to that observed for

TUEV’s IEDs. While there was a large variety of

spectral entropy values across datasets (Fig. 6(a)),

we observed greater consistency of the Hurst expo-

nent values across datasets (Fig. 6(b)). In particular,

it was noticed that a lower bound could be applied

to the Hurst exponent values to remove problematic

samples and reduce false positives. We tested this

by removing any samples from private test sets with

Hurst exponent values below different lower bounds

between the minimum value and 1st quartile. The

IED samples from the TUEV train set were used to

calculate the statistics.

The algorithm was as follows: 1. Any samples

with Hurst exponent below the lower bound will be

classified as normal or without IEDs 2. Let the model

classify other samples into either with or without

IEDs.

Fig. 7 illustrates the metrics at different lower

bounds of the Hurst exponent. We observed that

with the trade-off of sensitivity, the precision score

improved. This suggests more advanced artifact re-

moval methods might be needed. It would be intu-

itive to apply this preprocessing step and then train

the model on the cleansed data; however, it was out

of the scope of this paper where we only wanted to

demonstrate the effect of artifact removal and the dif-

ferences between TUEV and private datasets when

using SOTA TSC algorithms.

Figure 7: InceptionTime with log transformation and

epoch-wise binary multichannel classification metrics

after using the Hurst-exponent based algorithm for

different Hurst exponent lower bound values.
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(a) Comparison of spectral entropy. (b) Comparison of Hurst exponent.

Figure 6: Comparison of features for the TUEV and private datasets, and the false positives and false negatives

based on InceptionTime with log transformation and epoch-wise binary multichannel classification.

5. Discussion

5.1. Overall performance

We evaluated the within- and across-dataset IED de-

tection performance for variants of InceptionTime

and Minirocket on our private datasets and the pub-

lic TUEV dataset. For within-dataset evaluation, the

InceptionTime models with log transformation out-

performed those with z-score normalisation in most

experiments with the TUEV dataset (Tables 6, 7

and 8). By contrast, z-score normalization had bet-

ter performance on the private datasets (Table 5).

This might be due to a wider variation of background

activities/artifacts in these datasets that enable the

z-score transformation to capture the distribution

better. Moreover, Minirocket performed similarly, al-

though not necessarily better, when compared to In-

ceptionTime without the need for normalisation.

When considering across-dataset evaluation

work in the literature, the study with data from the

most clinical centres (6) is Thomas et al. (2021).5

For their proposed model their across-dataset (i.e.

across-clinical centre) performance was lower than

their within-dataset performance (i.e. within-clinical

centre). We experienced the same issue and showed

that this was due to differences in the datasets. We

demonstrated that the models trained on the pri-

vate datasets were able to generalise well to the pub-

lic TUEV dataset (Table 5), while models trained

with the TUEV did not generalise well to the private

datasets (Table 9). The better generalisation when

training on the private sets may result in part from

the much larger number of normal/non-IED epochs

available in the private sets (Table 3) when com-

pared to the TUEV data (Table 2). Interestingly, we

could improve the cross-evaluation performance by

using a simple artifact removal method that utilised

the thresholding of the Hurst exponent. This might

suggest that a better artifact removal method than

bandpass filtering is needed. Temple University also

released a corpus for artifact detection, TUH EEG

Artifact Corpus (TUAR),44 which could be used as

additional data or to train an artifact detector.

5.2. Comparison with existing work

Table 10 compares our work with the literature. Gol-

mohammadi et al.14 is the only other existing work

on the TUEV dataset. This study extracted tem-

poral and spatial context within the EEG data by

applying a hybrid method combining Markov mod-

els (HMMs) for sequential decoding of EEG events,

a deep learning-based post-processing step, and a

stacked denoising autoencoder. Only two metrics

were reported, sensitivity and specificity, for channel-

wise binary classification, which were 0.91 and 0.488,

respectively. Specificity measures the true negative

rate of a classifier. The sensitivity is similar to the

best model in our TUEV within-dataset binary clas-

sification experiments, InceptionTime with log trans-
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formation. However, our specificity is significantly

higher at 0.98 (see Table 10). In addition, Thomas et

al.9 applied 1D CNN to epoch-wise binary classifica-

tion on a private dataset with similar EEG recording

settings and types of epilepsy to TUEV. The pro-

posed method is similar to our maximum strategy in

which the model was trained on single channels, and

the maximum probability output across all channels

was used as the final output for the epoch. A param-

eter search was performed over several kernel sizes

ranging from 3 to 8, which were smaller than those

in our work. The reported AUC was similar to our

AUC at 0.99. The AUPRC at 0.84 was lower than

our AUPRC at 0.99. Jing et al.4 employed 1D CNN

with increasing kernel size and decreasing number of

filters as the network became deeper, and reported

an AUC score of 0.98 on a similar dataset to TUEV.

Overall, this might indicate that using multiple large

kernel sizes could capture epileptic patterns better.

In addition to methods that consider both fo-

cal and generalised epilepsy patient data as in Table

10, we can also consider the results of considering

methods focused purely on IGE patient data, similar

to our private data from Alfred Hospital and RMH.

Clarke et al.26 applied 2D CNN and achieved a sensi-

tivity of 0.85. Nhu et al.2 applied Resnet, a 1D CNN,

with different strategies to tackle data imbalance,

oversampling, focal loss (FL), and FL with oversam-

pling. The best AUC score achieved was 0.87. Graph

convolutional network (GCN) was also experimented

with IGE in Nhu et al.3 which transformed a mon-

tage into graph-like data and had an AUC of 0.92 and

a sensitivity of 0.60. All methods above used epoch-

wise classification. The comparisons of these results

with the performance of the best TSC method for

the private data in this paper are given in Table 11.

6. Conclusions

This study tested the SOTA TSC methods, Incep-

tionTime and Minirocket, and their variants on the

IED detection problem. Ready benchmark scores

with relevant clinical metrics on a public dataset,

TUEV, were also provided. We also showed that

models trained on private data could maintain the

performance when tested on the TUEV data. The

same was not observed when training on the TUEV

data and tested on private data. These results were

partly due to the differences in types of IED and

normal/artifact activity between TUEV and the pri-

vate sets. Better generalisation across datasets seems

achievable if more normal/artifact data is available

for training, as with private datasets. We also showed

that our results on the public dataset were compa-

rable in terms of AUC performance and better in

terms of AUPRC performance than existing work

on DL for automated IED detection. Better AUPRC

performance means higher precision, translating into

less time wasted by clinicians looking at IED detec-

tion that are not actually IEDs. Overall, this work

highlights the need for well-structured datasets to

improve across dataset generalisation. It also pro-

vides SOTA benchmarks for others to compare their

algorithms on the public TUEV data.

Table 10: Comparison with existing within-dataset

binary classification work on datasets with a mix-

ture of focal and generalized epilepsy patients

Method AUC AUPRC Sens Spec

Golmohammadi et al.14† - - 0.91 0.48

Thomas et al.9†† 0.99 0.84 0.80 -

Jing et al.4†† 0.98 - - -
InceptionTime -
Log†(Table 7)

0.99 0.97 0.90 0.98

InceptionTime - Max -
Log††(Table 8)

0.99 0.99 0.98 0.98

InceptionTime - Multi-
channel - Log††(Table 8)

0.96 0.91 0.92 0.87

† Channel-wise. †† Epoch-wise

Table 11: Comparison with existing within-dataset

binary epoch-wise classification work on IGE patient

only datasets

Methods AUC AUPRC Sens Spec

Clarke et al.26 - - 0.85 -
Nhu et al. - Resnet -
Oversampling2†

0.85 - - -

Nhu et al. - Resnet -
FL2†

0.87 - - -

Nhu et al. - Resnet - FL
& Oversampling2†

0.87 - - -

Nhu et al. - GCN3†† 0.92 - 0.60 0.98
InceptionTime - Z-score
(Table 5)

0.98 0.80 0.69 0.97

† Only average cross-evaluation results was reported
†† Only results of the best model was reported
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