
 

1 
 

Brain imaging and neuropsychological assessment of individuals  

recovered from mild to moderate SARS-CoV-2 infection 

– 

Supplemental Material 

 

Marvin Petersen, MD1#; Felix Leonard Nägele, MD1#; Carola Mayer, MSc1; Maximilian Schell1; 

Elina Petersen, MSc2,3; Simone Kühn, PhD4; Jürgen Gallinat, MD4; Jens Fiehler, MD5; Ofer 

Pasternak, PhD6; Jakob Matschke, MD7; Markus Glatzel, MD7; Raphael Twerenbold, MD2,3,8,9; 

Christian Gerloff, MD1; Götz Thomalla, MD1; Bastian Cheng, MD1 

1Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany 

2Department of Cardiology, University Heart and Vascular Center, Hamburg, Germany 

3Population Health Research Department, University Heart and Vascular Center, Hamburg, Germany 

4Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Ger-
many 

5Department of Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany 

6Department of Psychiatry and Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 
USA 

7Institute of Neuropathology, University Center Hamburg-Eppendorf, Hamburg, Gemany 

8German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Luebeck, Hamburg, Germany 

9University Center of Cardiovascular Science, University Heart and Vascular Center, Hamburg, Germany 

# these authors contributed equally  

 

Content 
Methods .................................................................................................................................................................. 2 

Image acquisition ................................................................................................................................................ 2 

Image processing ................................................................................................................................................ 2 

T1-weighted MRI ............................................................................................................................................ 2 

Diffusion-weighted MRI ................................................................................................................................. 2 

Fluid-attenuated inversion recovery MRI ....................................................................................................... 6 

Quality assurance ........................................................................................................................................... 7 

Machine learning prediction ............................................................................................................................... 8 

Results ................................................................................................................................................................... 10 

Main analyses ................................................................................................................................................... 10 

Sensitivity analyses ........................................................................................................................................... 15 

Comparison of matched controls with non-hospitalized post-SARS-CoV-2 individuals ............................... 15 

Comparison of matched controls with post-SARS-CoV-2 individuals stratified by recruitment route ........ 19 

Code availability .................................................................................................................................................... 25 

References ............................................................................................................................................................ 26 



 

2 
 

Methods 

Image acquisition 

Image acquisitions were conducted on a single 3T Siemens Skyra MRI scanner (Siemens, 

Erlangen, Germany). 3D T1-weighted rapid acquisition gradient-echo sequence (MPRAGE): 

repetition time (TR) = 2500 ms, echo time (TE) = 2.12 ms, 256 axial slices, slice thickness 

(ST) = 0.94 mm, and in-plane resolution (IPR) = 0.83 x 0.83 mm; 3D T2-weighted FLAIR: TR 

= 4700 ms, TE = 392 ms, 192 axial slices, ST = 0.9 mm, and IPR = 0.75 x 0.75 mm; and sin-

gle-shell diffusion MRI: TR = 8500 ms, TE = 75 ms, 75 axial slices, ST = 2 mm, IPR = 2 x 

2mm, 64 noncollinear gradient directions with b = 1000 s/mm2, 1 image with b = 0 s/mm2. 

Image processing 

T1-weighted MRI 

Preprocessing 

Preprocessing was performed using QSIPrep 0.14.21, which is based on Nipype 1.6.12. The 

T1-weighted (T1w) image was corrected for intensity non-uniformity (INU) using N4BiasField-

Correction3 (ANTs 2.3.1, https://github.com/ANTsX/ANTs), and used as T1w-reference 

throughout the workflow. The T1w-reference was then skull-stripped using antsBrainExtrac-

tion.sh (ANTs 2.3.1), using OASIS as target template.  

Estimation of cortical thickness 

Surface-based morphometry was conducted in the Computational Anatomy Toolbox for SPM 

(CAT12)5 for cortical surface reconstruction and estimation of mean cortical thickness employ-

ing the projection-based thickness method6, as well as topology correction7 and spherical map-

ping8.  

Diffusion-weighted MRI 

Preprocessing 

QSIPrep 0.14.21 was also used for preprocessing of diffusion-weighted MRI (dMRI). MP-PCA 

denoising as implemented in MRtrix3’s dwidenoise9 was applied with a 5-voxel window. After 

https://github.com/ANTsX/ANTs
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MP-PCA, Gibbs unringing was performed using MRtrix3’s mrdegibbs.10 Following unringing, 

B1 field inhomogeneity was corrected using dwibiascorrect from MRtrix3 with the N4 algo-

rithm.3  

FSL (version 6.0.3:b862cdd5)’s eddy was used for head motion correction and eddy 

current correction.11 Eddy was configured with a 𝑞-space smoothing factor of 10, a total of 5 

iterations, and 1000 voxels used to estimate hyperparameters. A linear first level model and a 

linear second level model were used to characterize eddy current-related spatial distortion. 𝑞-

space coordinates were forcefully assigned to shells. Field offset was attempted to be sepa-

rated from subject movement. Shells were aligned post-eddy. Eddy’s outlier replacement was 

run. Data were grouped by slice, only including values from slices determined to contain at 

least 250 intracerebral voxels. Groups deviating by more than 4 standard deviations from the 

prediction had their data replaced with imputed values. Final interpolation was performed using 

the jac method. 

A deformation field to correct for susceptibility distortions was estimated based on fMRI-

prep’s fieldmap-less approach.12 The deformation field is results from co-registering the b0 

reference to the same-subject T1w-reference with its intensity inverted13. Registration was per-

formed with antsRegistration (ANTs 2.3.1), and the process regularized by constraining defor-

mation to be nonzero only along the phase-encoding direction and modulated with an average 

fieldmap template. Based on the estimated susceptibility distortion, an unwarped b=0 refer-

ence was calculated for a more accurate co-registration with the anatomical reference. Several 

confounding time-series were calculated based on the preprocessed DWI: framewise displace-

ment using the implementation in Nipype (following the definitions by 14). The head-motion 

estimates calculated in the correction step were also placed within the corresponding con-

founds file. Slicewise cross correlation was also calculated. The DWI time-series were 

resampled to ACPC, generating a preprocessed DWI run in ACPC space with 2mm isotropic 

voxels. 
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Many internal operations of QSIPrep use Nilearn15 and Dipy16. For more details of the 

pipeline, see the section corresponding to workflows in QSIPrep’s documentation. 

Diffusion tensor imaging and free-water imaging 

Fractional anisotropy (FA) and mean diffusivity (MD) were derived from diffusion tensors which 

were modelled based on preprocessed dMRI using a least-squares fit.17,18 Further, we em-

ployed free-water imaging, a two tensor model, modelling an extracellular compartment of iso-

tropic diffusion, as well as a cellular compartment characterized by hindered/restricted diffu-

sion.19 Thus, by means of a regularized non-linear fit, free-water, and free-water corrected 

diffusion tensors were estimated for each study participant from which FA of the tissue com-

partment was calculated (FAT).19  

Fixel-based analysis pipeline 

MRtrix3 (v.3.0.2)20 was utilized to estimate fiber density (FD), fiber cross section (FC), fiber 

density and cross section (FDC), and complexity (CX) at the voxel-level.  

First, the preprocessed DWI was upsampled to a voxel size of 1.25 x 1.25 x 1.25 mm3, 

after which multi-tissue fiber response functions were estimated using the dhollander algo-

rithm.21 Fiber orientation distributions (FODs) were subsequently estimated via constrained 

spherical deconvolution22 (CSD) using an unsupervised single-shell-optimized multi-tissue 

method (MRtrix3Tissue (https://3Tissue.github.io).23,24 FODs were intensity-normalized using 

mtnormalize25 after which a study-specific unbiased FOD template based on 20 healthy con-

trols and 20 post-SARS-CoV-2 individuals was created with MRtrix3’s population_template 

function. Next, individual FOD images and brain masks were non-linearly registered to the 

white matter FOD template. Transformed brain masks were used to compute a template mask, 

i.e. the intersection of all subject masks in template space. In the next step, fixels (= fiber 

populations within a voxel) were segmented from the FOD template within the template mask, 

resulting in a template fixel mask which was further refined to respect crossing fibers while 

excluding false positives (empirically derived crossing fiber and false positive thresholds: 0.06 

and 0.18, respectively).  

https://3tissue.github.io/
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Next, following probabilistic whole-brain tractography based on the FOD template26 (an-

gle 22.5, maxlen 250, minlen 10, power 1, 20 x 106 streamlines, cutoff 0.06) and spherical-

deconvolution informed filtering of whole-brain tractograms27, deep learning based tract seg-

mentation was performed with TractSeg28. The resulting tract segmentations were utilized to 

extract averaged diffusion indices for 72 major white matter tracts which served as features for 

logistic regression models predicting group membership.  

Moreover, the transformed individual FOD images were segmented to derive fixels and 

their apparent FD.29 Then, fixels of all subjects in template space were reoriented based on 

the local transformation at each voxel in the warps used previously. Subsequently, each sub-

ject’s fixels were assigned to template fixels enabling statistical analysis of common, i.e., cor-

responding, fiber populations. FC was derived from non-linear warps generated during regis-

tration of individual FODs to template space after which the logarithm of FC (Log. FC) was 

calculated to ensure a zero centered normal distribution.29 FDC was calculated as the product 

of FC and FD. Based on the whole-brain streamlines tractogram, a fixel-fixel connectivity ma-

trix was computed which was then used for smoothing the fixel metrics FD, Log. FC and FDC. 

In order to derive fixel metrics on the voxel-level, they were averaged across all fixels within a 

voxel using MRtrix3’s fixel2voxel function. Moreover, CX, a metric of crossing-fiber organiza-

tion, was calculated.30 

In an effort to allow for comparisons with conventional diffusion tensor imaging and 

free-water imaging markers, a study specific FA template was created. Therefore, previously 

derived individual non-linear warps from native FOD to FOD template space were used to 

register FA maps to FOD template space. These FA maps in FOD template space were then 

averaged and the resulting study-specific FA template served as the registration target for non-

linear transformations of FA images from native space to template space utilizing ANTs’ SyN 

registration.31 The resulting transformations were subsequently applied to the remaining maps 

of diffusion tensor imaging and free-water imaging metrics.  
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Tract-based spatial statistics 

In order to derive skeletonized maps of each of the estimated diffusion parameters, we con-

ducted tract-based spatial statistics (TBSS)32,33 utilizing the above described study-specific FA 

template as the registration target. Briefly, individual FA images in template space got eroded 

to exclude non-brain voxels on the outer edge of the image. Next, a valid mask containing only 

the intersection of all subjects’ brains was derived and used to mask the average of all previ-

ously eroded FA images. This mean FA image was subsequently used to derive a white matter 

skeleton which was thresholded at FA > 0.25. Next, all individual FA images were projected 

onto the mean FA skeleton. The resultant projection vectors were used to skeletonize all of the 

remaining diffusion metrics including those from free-water imaging and fixel-based analysis 

pipelines. Finally, diffusion markers were averaged across the entire white matter skeleton for 

further statistical analysis. 

Peak width of skeletonized mean diffusivity 

Peak width of skeletonized mean diffusivity (PSMD) was calculated based on standard proce-

dures34 adapted in terms of the non-linear registration step for which we used ANTs’ SyN reg-

istration.31 PSMD is calculated as the difference between the 95th and 5th percentile of MD 

values on the white matter skeleton in standard (MNI) space. A mask supplied by the devel-

opers was used to exclude white matter areas susceptible to partial volume effects of cerebro-

spinal fluid (https://github.com/miac-research/psmd/blob/main/skeleton_mask_2019.nii.gz). 

Fluid-attenuated inversion recovery MRI 

White matter hyperintensity segmentation 

FSL’s Brain Intensity AbNormality Classification Algorithm (BIANCA)35 with LOCally Adaptive 

Threshold Estimation (LOCATE)36 were applied on FLAIR images and T1w images for white 

matter hyperintensity (WMH) segmentation.  

The training dataset for the supervised k-nearest neighbor algorithm (BIANCA) com-

prised nearly 100 WMH masks manually segmented on FLAIR images by two independent 

raters. The manual segmentations of both raters were inclusively added into one binary mask 

https://github.com/miac-research/psmd/blob/main/skeleton_mask_2019.nii.gz
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for each participant and served as the training dataset for BIANCA35 and LOCATE36. For the 

training of BIANCA35, the following images were used as input: 1) a brain-extracted FLAIR 

image; 2) a transformation matrix based on a linear registration from FLAIR space to standard 

MNI space (MNI152NLin2009cAsym template) utilizing FSL’s FLIRT tool;37,38 3) a T1w image 

rigidly registered to FLAIR space with AntsRegistration;39 4) the manually segmented WMH 

masks. We used 3D patches, selected the non-lesion points from “no border”, and chose 2.000 

training points and 10.000 non-lesion points as segmentation parameters. Based on the initial 

training of BIANCA35, the testing dataset was automatically segmented using the same input 

images and parameters but without manual segmentations. Participants included in the train-

ing dataset were segmented in a leave-one-out validation by defining the query subject param-

eter in BIANCA.35  

The raw output masks of BIANCA35 were used as input for LOCATE36. In addition to 

the BIANCA35 masks, LOCATE36 further received as input brain-extracted FLAIR and rigidly 

registered T1-weighted images in FLAIR space, as also used in BIANCA35. Moreover, further 

inputs were a ventricle distancemap created based on Freesurfer v.7.1 output,40 the manual 

segmentations for training and a brain mask in FLAIR space. After training with LOCATE36, 

participants included in the training dataset were again segmented with a leave-one-out vali-

dation. The remaining participants in the testing dataset were automatically segmented.  

After application of the BIANCA35 and LOCATE36 algorithms, the segmentations were 

further refined using Freesurfer v.7.1 parcellations40 to exclude non-white matter regions. Spe-

cifically, a dilated cortical ribbon mask, an eroded ventricle mask, and parcellations from the 

corpus callosum and basal ganglia were used as exclusion masks. Lesion clusters were fil-

tered for a minimum cluster size of 5 voxels as defined by the 6-connectivity. Finally, the lesion 

load was retrieved after normalizing for intracranial volume, as calculated by Freesurfer v.7.1.40 

Quality assurance 

Quality assurance (QA) of MRI data was conducted both quantitatively and qualitatively. First, 

a neuroradiologist reviewed all imaging data for pathologies. Further, for raw data, quantitative 
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QA measures were derived for T1w and dMRI data utilizing MRIQC41, Freesurfer42 and QSI-

Prep.1 Qualitative QA of raw imaging data was subsequently performed for outliers in frame-

wise displacement and number of slices with signal dropouts (dMRI), as well as cortical thick-

ness, brain volumes and coefficient of joint variation (T1w), in each case defined by ± 2 stand-

ard deviations from the mean. The quality of FLAIR images was assessed visually. Last, all 

derivatives of neuroimaging pipelines were visually assessed in order to ensure appropriate 

processing. 

Machine learning prediction 

To further evaluate the predictive capacity of derived imaging markers, they separately served 

as input to a comparative supervised machine learning pipeline. Therefore, average cortical 

thickness within Desikan-Killiany atlas parcels43 was computed and diffusion markers were 

averaged within predefined anatomical fiber tracts from TractSeg outputs.28 Per marker, mul-

tivariate logistic regression models were trained to predict whether a participant has COVID-

19. Elastic net penalties44 were applied for model regularization and SAGA served as the un-

derlying optimization algorithm45. As a binary categorization task was performed, models were 

scored using accuracy which is also the metric we report. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Where TP = true positive, TN = true negative, FP = false positive, FN = false negative. 

Accuracy scores provide an intuitive measure facilitating between-marker comparison and 

evaluation of a marker’s diagnostic merit beyond abstract effect sizes derived from inferential 

statistics. Model training, corresponding parameter optimization and evaluation were con-

ducted in a 10-fold nested cross-validation setup (L1-ratios=0.1,0.5,0.7,0.9,0.95,0.99,1, 

nCs=10) to prevent data leakage and consequent overfitting. Optimization procedures were 

repeated 100 times with different random split regimens in the cross-validation to make sure 

that prediction results were not biased by a single arbitrary split.46 To assess whether prediction 
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performance was statistically significant median accuracy scores obtained from aforemen-

tioned analysis were compared to the accuracy distribution of null prediction models where 

group membership was randomly permuted (npermutations = 1000). The prediction analysis was 

performed using scikit-learn (v1.0.2).15 
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Results 

Main analyses 

Figure S1. Matching results visualized as a balance plot 

 

Figure S1 shows the standardized mean differences between the healthy control and post-SARS-CoV-2 

groups for each matching variable before (unadjusted, red) and after matching (adjusted, turquoise). The closer 

the standardized mean difference is to zero, the more similar the groups are. Each matching variable is de-

picted separately, i.e., from top to bottom, age, sex, years of education, hypertension, hyperlipidemia, smoking 

and diabetes. 
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Table S1. Results of analyses of covariance comparing averaged imaging markers between post-SARS-

CoV-2 individuals and matched controls 

Imaging metrica Post-SARS-CoV-2 Matched controls Puncorr
b Pbonf

c F 

FA 0.480 ± 0.016 (221)  0.482 ± 0.016 (206) .20 >.99 1.63 

MD (10-3 mm2/s) 0.747 ± 0.021 (221) 0.740 ± 0.020 (206) <.001 <.001*** 17.28 

FAT 0.566 ± 0.010 (221) 0.564 ± 0.011 (206) .06 .61 3.69 

FW  0.148 ± 0.018 (221) 0.142 ± 0.017 (206) <.001 <.001*** 18.47 

FD 0.526 ± 0.052 (219) 0.531 ± 0.031 (203) .18 >.99 1.84 

FDC 0.540 ± 0.076 (219) 0.551 ± 0.055 (203) .11 >.99 2.62 

Log. FC 0.008 ± 0.189 (219) 0.016 ± 0.198 (205) .80 >.99 .06 

CX 0.633 ± 0.029 (219) 0.634 ± 0.020 (203) .63 >.99 .23 

PSMD (10-3 mm2/s) 0.212 ± 0.031 (221) 0.207 ± 0.023 (206) .005 .053 8.03 

WMH Load (%) 0.105 ± 0.150 (205) 0.099 ± 0.122 (207) .39 >.99 .73 

CT (mm)  2.571 ± 0.097 (221) 2.550 ± 0.094 (221) .01 .12 6.52 

Abbreviations: CT = cortical thickness, CX = complexity, FA = fractional anisotropy, FAT = FA of the tissue, FD = 

fiber density, FDC = fiber density and cross-section, FW = free-water, Log. FC = logarithm of fiber cross-section, 

MD = mean diffusivity, post-SARS-CoV-2 = individuals who recovered from a severe acute respiratory coronavirus 

type 2 infection, PSMD = peak width of skeletonized MD, WMH = white matter hyperintensity  

 
aPresented as mean ± standard deviation (N) 
bUncorrected P values of analyses of covariance, adjusted for age, sex and years of education 
cBonferroni-corrected P values of analyses of covariance, adjusted for age, sex and years of education (considering 

11 comparisons) 

***Denotes statistical significance at Bonferroni-corrected P <.001 
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Figure S2. Boxplots of averaged imaging markers comparing post-SARS-CoV-2 individuals with 

matched controls 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S2 shows boxplots of averaged imaging measures and the corresponding statistical results (F-statistics 

and Bonferroni-corrected P values) from the ANCOVAs comparing matched controls with post-SARS-CoV-2 

individuals adjusted for age, sex, and years of education. 

 

Abbreviations: CT = cortical thickness, CX = complexity, FA = fractional anisotropy, FAT = FA of the tissue, FD 

= fiber density, FDC = fiber density and cross-section, FW = free-water, Log. FC = logarithm of fiber cross-sec-

tion, MD = mean diffusivity, post-SARS-CoV-2 = individuals who recovered from a severe acute respiratory 

coronavirus type 2 infection, PSMD = peak width of skeletonized MD, WMH = white matter hyperintensity 
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Table S2. Results of white matter voxel-wise statistics comparing 

post-SARS-CoV-2 individuals with matched controls 

Imaging metric 

All 

post-SARS-CoV-2  

(N = 221) 

Non-hospitalized  

post-SARS-CoV-2  

(N = 203) 

 
Percentage of significant voxels (PFWE < .05) 

Post-SARS-CoV-2 individuals > matched controls 

FA 0.8 0.6 

MD 41.3 40.5 

FAT 3.3 2.9 

FW 38.3 38.0 

FD 0 0 

FDC <.01 <.01 

Log. FC 0 0 

CX 0 0 

Post-SARS-CoV-2 < matched controls 

FA 1.2 1.4 

MD 1.0 0.9 

FAT 0 0 

FW 0.4 0.4 

FD 0 0 

FDC 2.5 2.7 

Log. FC 0.7 0.4 

CX <.1 <.1 

Abbreviations: CX = complexity, FA = fractional anisotropy, FAT = FA of 

the tissue, FD = fiber density, FDC = fiber density and cross-section, 

FW = free-water, FWE = family-wise error corrected, Log. FC = loga-

rithm of fiber cross-section, MD = mean diffusivity, post-SARS-CoV-2 = 

individuals who recovered from a severe acute respiratory coronavirus 

type 2 infection 

 

  



 

14 
 

Figure S3. Voxel-wise comparison of diffusion markers between post-SARS-CoV-2 individuals and 

matched controls 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Skeleton voxels that significantly differed between groups are highlighted by colors: post-SARS-CoV-2 indi-

viduals > matched controls, red; post-SARS-CoV-2 individuals < matched controls, blue. 

 

Abbreviations: CX = complexity, FA = fractional anisotropy, FAT = FA of the tissue, FD = fiber density, FDC 

= fiber density and cross-section, FW = free-water, FWE = family-wise error corrected, Log. FC = logarithm 

of fiber cross-section, MD = mean diffusivity, post-SARS-CoV-2 = individuals who recovered from a severe 

acute respiratory coronavirus type 2 infection 
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Sensitivity analyses 

Comparison of matched controls with non-hospitalized post-SARS-CoV-2 individuals  

Table S3. Results of analyses of covariance comparing averaged imaging markers between  

non-hospitalized post-SARS-CoV-2 individuals and matched controls 

Imaging metrica 

Non-hospitalized  

Post-SARS-CoV-2  Matched controls Puncorr
b Pbonf

c F 

FA 0.480 ± 0.016 (203) 0.482 ± 0.016 (206) .17 >.99 1.88 

MD (10-3 mm2/s) 0.747 ± 0.021 (203) 0.740 ± 0.020 (206) <.001 <.001*** 16.79 

FAT 0.566 ± 0.010 (203) 0.564 ± 0.011 (206) .09 >.99 2.85 

FW  0.148 ± 0.018 (203) 0.142 ± 0.017 (206) <.001 <.001*** 17.82 

FD 0.525 ± 0.053 (202) 0.531 ± 0.031 (203) .14 >.99 2.14 

FDC 0.538 ± 0.077 (202) 0.551 ± 0.055 (203) .09 >.99 2.87 

Log. FC 0.004 ± 0.196 (202) 0.016 ± 0.198 (205) .74 >.99 .11 

CX 0.634 ± 0.030 (202) 0.634 ± 0.020 (203) .74 >.99 .11 

PSMD (10-3 mm2/s) 0.210 ± 0.031 (203) 0.207 ± 0.023 (206) .01 .13 6.43 

WMH Load (%) 0.107 ± 0.155 (187) 0.099 ± 0.122 (207) .25 >.99 1.32 

CT (mm)  2.571 ± 0.097 (203) 2.550 ± 0.094 (221) .03 .37 4.54 

Abbreviations: CT = cortical thickness, CX = complexity, FA = fractional anisotropy, FAT = FA of the tissue, FD = 

fiber density, FDC = fiber density and cross-section, FW = free-water, Log. FC = logarithm of fiber cross-section, 

MD = mean diffusivity, post-SARS-CoV-2 = individuals who recovered from a severe acute respiratory coronavirus 

type 2 infection, PSMD = peak width of skeletonized MD, WMH = white matter hyperintensity 

 
aPresented as mean ± standard deviation (N) 
bUncorrected P values of analyses of covariance, adjusted for age, sex and years of education 
cBonferroni-corrected P values of analyses of covariance, adjusted for age, sex and years of education (considering 

11 comparisons) 

***Denotes statistical significance at bonferroni-corrected P <.001 
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Figure S4. Boxplots and statistics of averaged imaging markers comparing non-hospitalized  

post-SARS-CoV-2 individuals with matched controls 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S4 shows boxplots of averaged imaging measures and the corresponding statistical results (F-statistics 

and Bonferroni-corrected P values) from the ANCOVAs comparing matched controls with non-hospitalized 

post-SARS-CoV-2 individuals adjusted for age, sex, and years of education. 

 

Abbreviations: CT = cortical thickness, CX = complexity, FA = fractional anisotropy, FAT = FA of the tissue, FD 

= fiber density, FDC = fiber density and cross-section, FW = free-water, Log. FC = logarithm of fiber cross-sec-

tion, MD = mean diffusivity, post-SARS-CoV-2 = individuals who recovered from a severe acute respiratory 

coronavirus type 2 infection, PSMD = peak width of skeletonized MD, WMH = white matter hyperintensity 
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Table S4. Results of clinical and neuropsychological assessments of non-hospitalized  

post-SARS-CoV-2 individuals compared to matched controls 

Clinical measurea 

Non-hospitalized  

Post-SARS-CoV-2  Matched controls Puncorr
b Pbonf

c F 

Neurocognition 

TMT-A in seconds 31.41 ± 10.72 (194) 33.71 ± 11.67 (190) .07 .62 3.32 

TMT-B in seconds 67.79 ± 22.43 (194) 70.89 ± 25.57 (187) .27 >.99 1.22 

VF 28.00 ± 6.08 (194) 26.43 ± 7.15 (212) .03 .25 4.90 

WLR 8.54 ± 1.59 (193) 8.32 ± 1.61 (204) .27 >.99 1.23 

MMSE 28.44 ± 1.23 (193)  28.02 ± 1.72 (210) .009 .08 6.87 

CDT 6.76 ± 0.79 (194) 6.57 ± 1.03 (214) .05 .41 4.03 

Psychosocial symptom burden 

PHQ-9 3.88 ± 3.74 (195) 3.91 ± 3.77 (215) .83 >.99 0.05 

GAD-7 2.93 ± 3.32 (195) 2.80 ± 3.06 (215) .76 >.99 0.09 

Neurological symptom burden 

PHQ-15d 2.13 ± 1.85 (195) 1.83 ± 1.73 (215) .12 >.99 2.39 

Abbreviations: CDT = clock drawing test, GAD = General Anxiety Disorder, MMSE = Mini Mental 

State Examination, PHQ = Patient Health Questionnaire, post-SARS-CoV-2 individuals = individuals 

who recovered from a severe acute respiratory coronavirus type 2 infection, TMT-A = Trail-Making-

Test Part A, TMT-B = TMT Part B, VF = verbal fluency, WLR = word list recall 

 
aPresented as mean ± standard deviation (N) 
bUncorrected P values of analyses of covariance, adjusted for age, sex and years of education 
cBonferroni-corrected P values of analyses of covariance, adjusted for age, sex and years of educa-

tion (considering 9 comparisons) 
dPHQ-15 items: headache, dizziness, fatigue, sleep disturbances 
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Boxplots represent the accuracy of models trained in a 10-fold nested cross-validation setup. To address scor-

ing being biased by a single arbitrary split of training and test sets, predictions have been repeated 100 times 

for each marker with different random split regimens. Asterisks indicate significant difference to null-model pre-

dictions. 

 

Abbreviations: CT = cortical thickness, CX = complexity, FA = fractional anisotropy, FAT = FA of the tissue, FD 

= fiber density, FDC = fiber density and cross-section, FW = free-water, Log. FC = logarithm of fiber cross-sec-

tion, MD = mean diffusivity, post-SARS-CoV-2 = individuals who recovered from a severe acute respiratory 

coronavirus type 2 infection 

Figure S5. Machine learning prediction results excluding formerly hospitalized post-SARS-CoV-2 indi-

viduals 
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Comparison of matched controls with post-SARS-CoV-2 individuals stratified by re-

cruitment route 

Table S5. Results of analyses of covariance comparing averaged imaging markers between  

post-SARS-CoV-2 individuals identified via laboratory reports from our clinical information system and 

matched controls 

Imaging metrica 

Laboratory report- 

identified 

Post-SARS-CoV-2  Matched controls Puncorr
b Pbonf

c F 

FA 0.478 ± 0.018 (85) 0.482 ± 0.016 (206) .08 .92 3.02 

MD (10-3 mm2/s) 0.751 ± 0.023 (85) 0.740 ± 0.020 (206) <.001 <.001*** 18.86 

FAT 0.566 ± 0.011 (85) 0.564 ± 0.011 (206) .27 >.99 1.21 

FW  0.151 ± 0.020 (85) 0.142 ± 0.017 (206) <.001 <.001*** 19.19 

FD 0.527 ± 0.043 (84) 0.531 ± 0.031 (203) .32 >.99 .97 

FDC 0.541 ± 0.068 (84) 0.551 ± 0.055 (203) .13 >.99 2.21 

Log. FC 0.014 ± 0.173 (84) 0.016 ± 0.198 (205) .89 >.99 .02 

CX 0.630 ± 0.030 (84) 0.634 ± 0.020 (203) .22 >.99 1.49 

PSMD (10-3 mm2/s) 0.215 ± 0.032 (85) 0.207 ± 0.023 (206) .008 .08 7.25 

WMH Load (%) 0.110 ± 0.137 (77) 0.099 ± 0.122 (207) .50 >.99 .45 

CT (mm)  2.561 ± 0.089 (85) 2.550 ± 0.094 (221) .25 >.99 1.35 

Abbreviations: CT = cortical thickness, CX = complexity, FA = fractional anisotropy, FAT = FA of the tissue, FD = 

fiber density, FDC = fiber density and cross-section, FW = free-water, Log. FC = logarithm of fiber cross-section, 

MD = mean diffusivity, post-SARS-CoV-2 = individuals who recovered from a severe acute respiratory coronavirus 

type 2 infection, PSMD = peak width of skeletonized MD, WMH = white matter hyperintensity 

 
aPresented as mean ± standard deviation (N) 
bUncorrected P values of analyses of covariance, adjusted for age, sex and years of education 
cBonferroni-corrected P values of analyses of covariance, adjusted for age, sex and years of education (considering 

11 comparisons) 

***Denotes statistical significance at bonferroni-corrected P <.001 
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Figure S6. Boxplots and statistics of averaged imaging markers comparing post-SARS-CoV-2 individu-

als identified via laboratory reports from our clinical information system with matched controls 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S6 shows boxplots of averaged imaging measures and the corresponding statistical results (F-statistics 

and Bonferroni-corrected P values) from the ANCOVAs comparing matched controls with post-SARS-CoV-2 

individuals identified via laboratory reports, adjusted for age, sex, and years of education. 

 

Abbreviations: CT = cortical thickness, CX = complexity, FA = fractional anisotropy, FAT = FA of the tissue, FD 

= fiber density, FDC = fiber density and cross-section, FW = free-water, Log. FC = logarithm of fiber cross-sec-

tion, MD = mean diffusivity, post-SARS-CoV-2 = individuals who recovered from a severe acute respiratory 

coronavirus type 2 infection, PSMD = peak width of skeletonized MD, WMH = white matter hyperintensity 
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Table S6. Results of clinical and neuropsychological assessments of post-SARS-CoV-2 indi-

viduals identified via laboratory reports from our clinical information system compared to 

matched controls 

Clinical measurea 

Laboratory report-

identified  

Post-SARS-CoV-2  Matched controls Puncorr
b Pbonf

c F 

Neurocognition 

TMT-A in seconds 31.82 ± 9.65 (77) 33.71 ± 11.67 (190) .20 >.99 1.65 

TMT-B in seconds 67.13 ± 21.31 (77) 70.89 ± 25.57 (187) .17 >.99 1.87 

VF 27.27 ± 6.19 (77) 26.43 ± 7.15 (212) .30 >.99 1.09 

WLR 8.44 ± 1.79 (75) 8.32 ± 1.61 (204) .50 >.99 0.45 

MMSE 28.35 ± 1.23 (77) 28.02 ± 1.72 (210) .13 >.99 2.34 

CDT 6.75 ± 0.76 (77) 6.57 ± 1.03 (214) .17 >.99 1.90 

Psychosocial symptom burden 

PHQ-9 3.53 ± 3.66 (76) 3.91 ± 3.77 (215) .45 >.99 0.56 

GAD-7 2.49 ± 2.73 (76) 2.80 ± 3.06 (215) .46 >.99 0.55 

Neurological symptom burden 

PHQ-15d 1.91 ± 1.76 (76) 1.83 ± 1.73 (215) .66 >.99 0.19 

Abbreviations: CDT = clock drawing test, GAD = General Anxiety Disorder, MMSE = Mini Mental 

State Examination, PHQ = Patient Health Questionnaire, post-SARS-CoV-2 individuals = individuals 

who recovered from a severe acute respiratory coronavirus type 2 infection, TMT-A = Trail-Making-

Test Part A, TMT-B = TMT Part B, VF = verbal fluency, WLR = word list recall 

 
aPresented as mean ± standard deviation (N) 
bUncorrected P values of analyses of covariance, adjusted for age, sex and years of education 
cBonferroni-corrected P values of analyses of covariance, adjusted for age, sex and years of educa-

tion (considering 9 comparisons) 
dPHQ-15 items: headache, dizziness, fatigue, sleep disturbances 
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Table S7. Results of analyses of covariance comparing averaged imaging markers between  

post-SARS-CoV-2 individuals identified via a newspaper announcement and matched controls 

Imaging metrica 

Newspaper-identified 

Post-SARS-CoV-2  Matched controls Puncorr
b Pbonf

c F 

FA 0.481 ± 0.015 (148) 0.482 ± 0.016 (206) .62 >.99 .24 

MD (10-3 mm2/s) 0.745 ± 0.019 (148) 0.740 ± 0.020 (206) .006 .06 7.79 

FAT 0.566 ± 0.009 (148) 0.564 ± 0.011 (206) .04 .49 4.07 

FW  0.147 ± 0.016 (148) 0.142 ± 0.017 (206) .003 .035* 8.82 

FD 0.525 ± 0.055 (147) 0.531 ± 0.031 (203) .20 >.99 1.65 

FDC 0.539 ± 0.077 (147) 0.551 ± 0.055 (203) .19 >.99 1.74 

Log. FC 0.006 ± 0.191 (147) 0.016 ± 0.198 (205) .89 >.99 .02 

CX 0.634 ± 0.029 (147) 0.634 ± 0.020 (203) .70 >.99 .15 

PSMD (10-3 mm2/s) 0.210 ± 0.030 (148) 0.207 ± 0.023 (206) .045 .50 4.04 

WMH Load (%) 0.101 ± 0.152 (148) 0.099 ± 0.122 (207) .65 >.99 .20 

CT (mm)  2.577 ± 0.010 (139) 2.550 ± 0.094 (221) .008 .09 7.17 

Abbreviations: CT = cortical thickness, CX = complexity, FA = fractional anisotropy, FAT = FA of the tissue, FD = 

fiber density, FDC = fiber density and cross-section, FW = free-water, Log. FC = logarithm of fiber cross-section, 

MD = mean diffusivity, post-SARS-CoV-2 = individuals who recovered from a severe acute respiratory coronavirus 

type 2 infection, PSMD = peak width of skeletonized MD, WMH = white matter hyperintensity 

 
aPresented as mean ± standard deviation (N) 
bUncorrected P values of analyses of covariance, adjusted for age, sex and years of education 
cBonferroni-corrected P values of analyses of covariance, adjusted for age, sex and years of education (considering 

11 comparisons) 

*Denotes statistical significance at bonferroni-corrected P <.05 
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Figure S7. Boxplots and statistics of averaged imaging markers comparing post-SARS-CoV-2 individu-

als identified via a newspaper announcement with matched controls  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S7 shows boxplots of averaged imaging measures and the corresponding statistical results (F-statistics 

and Bonferroni-corrected P values) from the ANCOVAs comparing matched controls with post-SARS-CoV-2 

individuals identified via newspaper announcement, adjusted for age, sex, and years of education. 

 

Abbreviations: CT = cortical thickness, CX = complexity, FA = fractional anisotropy, FAT = FA of the tissue, FD 

= fiber density, FDC = fiber density and cross-section, FW = free-water, Log. FC = logarithm of fiber cross-sec-

tion, MD = mean diffusivity, post-SARS-CoV-2 = individuals who recovered from a severe acute respiratory 

coronavirus type 2 infection, PSMD = peak width of skeletonized MD, WMH = white matter hyperintensity 
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Table S8. Results of clinical and neuropsychological assessments of post-SARS-CoV-2 indi-

viduals identified via a newspaper announcement compared to matched controls 

Clinical measurea 

Newspaper- 

identified  

Post-SARS-CoV-2  Matched controls Puncorr
b Pbonf

c F 

Neurocognition 

TMT-A in seconds 31.93 ± 11.13 (135) 33.71 ± 11.67 (190) .22 >.99 1.52 

TMT-B in seconds 69.29 ± 23.49 (135) 70.89 ± 25.57 (187) .75 >.99 0.10 

VF 28.46 ± 5.94 (135) 26.43 ± 7.15 (212) .01 .10 6.45 

WLR 8.56 ± 1.55 (135) 8.32 ± 1.61 (204) .27 >.99 1.21 

MMSE 

 

28.39 ± 1.29 (134) 28.02 ± 1.72 (210) .05 .43 3.95 

CDT 

 

6.76 ± 0.79 (135) 6.57 ± 1.03 (214) .07 .65 3.25 

Psychosocial symptom burden 

PHQ-9 4.18 ± 3.77 (136) 3.91 ± 3.77 (215) .60 >.99 0.28 

GAD-7 3.20 ± 3.53 (136) 2.80 ± 3.06 (215) .31 >.99 1.04 

Neurological symptom burden 

PHQ-15d 2.25 ± 1.86 (136) 1.83 ± 1.73 (215) .04 .40 4.07 

Abbreviations: CDT = clock drawing test, GAD = General Anxiety Disorder, MMSE = Mini Mental 

State Examination, PHQ = Patient Health Questionnaire, post-SARS-CoV-2 individuals = individuals 

who recovered from a severe acute respiratory coronavirus type 2 infection, TMT-A = Trail-Making-

Test Part A, TMT-B = TMT Part B, VF = verbal fluency, WLR = word list recall 

 
aPresented as mean ± standard deviation (N) 
bUncorrected P values of analyses of covariance, adjusted for age, sex and years of education 
cBonferroni-corrected P values of analyses of covariance, adjusted for age, sex and years of educa-

tion (considering 9 comparisons) 
dPHQ-15 items: headache, dizziness, fatigue, sleep disturbances 
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Code availability 

Table S9. URLs to GitHub repositories containing analysis code 

Analysis step Code URL 

DWI preprocessing 

with QSIPrep 

https://github.com/csi-ham-

burg/CSIframe/blob/709275c816b7746bf7168f69b652b2aec569b838/pipe-

lines/qsiprep/qsiprep.sh 

Fixel-based analysis https://github.com/csi-hamburg/CSIframe/tree/main/pipelines/fba 

Free-water and diffu-

sion tensor imaging 

https://github.com/csi-hamburg/CSIframe/blob/main/pipelines/free-

water/freewater.sh 

Peak-width of skeleton-

ized mean diffusivity 

https://github.com/csi-hamburg/CSIframe/blob/main/pipe-

lines/psmd/psmd_csi.sh 

Statistics https://github.com/csi-hamburg/2022_petersen_naegele_postcovid_imaging 

Structural processing 

with CAT 

https://github.com/csi-ham-

burg/CSIframe/blob/709275c816b7746bf7168f69b652b2aec569b838/pipe-

lines/cat12/cat12.sh 

Tract-based spatial sta-

tistics 
https://github.com/csi-hamburg/CSIframe/tree/main/pipelines/tbss 

Voxel-wise statistics of 

diffusion markers 
https://github.com/csi-hamburg/CSIframe/tree/main/pipelines/statistics 

White matter hyperin-

tensity segmentation 
https://github.com/csi-hamburg/CSIframe/tree/main/pipelines/wmh 

  

https://github.com/csi-hamburg/CSIframe/blob/709275c816b7746bf7168f69b652b2aec569b838/pipelines/qsiprep/qsiprep.sh
https://github.com/csi-hamburg/CSIframe/blob/709275c816b7746bf7168f69b652b2aec569b838/pipelines/qsiprep/qsiprep.sh
https://github.com/csi-hamburg/CSIframe/blob/709275c816b7746bf7168f69b652b2aec569b838/pipelines/qsiprep/qsiprep.sh
https://github.com/csi-hamburg/CSIframe/tree/main/pipelines/fba
https://github.com/csi-hamburg/CSIframe/blob/main/pipelines/freewater/freewater.sh
https://github.com/csi-hamburg/CSIframe/blob/main/pipelines/freewater/freewater.sh
https://github.com/csi-hamburg/CSIframe/blob/main/pipelines/psmd/psmd_csi.sh
https://github.com/csi-hamburg/CSIframe/blob/main/pipelines/psmd/psmd_csi.sh
https://github.com/csi-hamburg/2022_petersen_naegele_postcovid_imaging
https://github.com/csi-hamburg/CSIframe/blob/709275c816b7746bf7168f69b652b2aec569b838/pipelines/cat12/cat12.sh
https://github.com/csi-hamburg/CSIframe/blob/709275c816b7746bf7168f69b652b2aec569b838/pipelines/cat12/cat12.sh
https://github.com/csi-hamburg/CSIframe/blob/709275c816b7746bf7168f69b652b2aec569b838/pipelines/cat12/cat12.sh
https://github.com/csi-hamburg/CSIframe/tree/main/pipelines/tbss
https://github.com/csi-hamburg/CSIframe/tree/main/pipelines/statistics
https://github.com/csi-hamburg/CSIframe/tree/main/pipelines/wmh
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