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Abstract 45 

Universities are particularly vulnerable to infectious disease outbreaks and are also ideal 46 
environments to study transmission dynamics and evaluate mitigation and surveillance 47 
measures when outbreaks occur. Here, we introduce a SARS-CoV-2 surveillance and response 48 
framework based on high-resolution, multimodal data collected during the 2020-2021 academic 49 
year at Colorado Mesa University. We analyzed epidemiological and sociobehavioral data 50 
(demographics, contact tracing, and wifi-based co-location data) alongside pathogen 51 
surveillance data (wastewater, random, and reflexive diagnostic testing; and viral genomic 52 
sequencing of wastewater and clinical specimens) to characterize outbreak dynamics and 53 
inform policy decisions. We quantified group attributes that increased disease risk, and 54 
highlighted parallels between traditional and wifi-based contact tracing. We additionally used 55 
clinical and environmental viral sequencing to identify cryptic transmission, cluster 56 
overdispersion, and novel lineages or mutations. Ultimately, we used distinct data types to 57 
identify information that may help shape institutional policy and to develop a model of pathogen 58 
surveillance suitable for the future of outbreak preparedness.  59 

Intro 60 

Infectious disease outbreaks are existential threats to congregate communities; in universities, 61 
in particular, students are susceptible because of close-quarters housing1,2, dense social 62 
networks3–5, and widespread involvement in sports teams and other student organizations5,6. 63 
Students may also be individually vulnerable to infection due to sleep deprivation7 and poor 64 
hygiene8. In addition to their own susceptibility, universities have potential to drive transmission 65 
in surrounding communities9–11.  66 
 67 
At the same time, residential universities are ideal environments for the study of pathogen 68 
transmission and the impact of interventions and surveillance thanks to their semi-insular 69 
character and their role as centers of innovation12. In response to SARS-CoV-2 they have 70 
widely employed high-cadence testing13–15, vaccination programs16,17, strict quarantine of cases 71 
in dedicated facilities18–21, and social distancing measures22–25. In addition, universities are well-72 
positioned to test and implement new surveillance methods that can subsequently be applied at 73 
greater scale. For example, they were among the first to implement wastewater surveillance for 74 
SARS-CoV-218,26, institution-wide viral sequencing21,27, and contact tracing via wifi network co-75 
location data28,29. 76 
  77 
In Fall 2020, Colorado Mesa University (CMU) committed to in-person instruction of ~8,000 78 
students for the 2020–2021 academic year, motivated by a desire to avoid amplifying resource 79 
disparities via remote learning. This decision necessitated a rigorous SARS-CoV-2 surveillance 80 
program, balancing public health goals with efficient use of limited resources. Given these 81 
considerations, CMU eschewed mandatory periodic testing of all university community members 82 
in favor of a surveillance program with randomized testing and robust reflexive testing – i.e., 83 
strategic testing of students due to symptoms (reported through the Scout web-based tool30), 84 
contact with recently diagnosed individuals, or a positive wastewater signal in their residential 85 
dorm. 86 
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 87 
CMU piloted Lookout, a tool integrating multiple data types to identify, alert, and test individuals 88 
or groups at increased risk of infection (Figure 1; demo: https://sentinel.network/lookout-demo-89 
campus). Lookout integrated numerous data types, including clinical diagnostic test results, 90 
student attributes such as residence hall and sports team affiliations, self-reported contacts of 91 
positive individuals, viral genome sequences from diagnostic specimens, and wastewater viral 92 
titers. The interactive dashboard allowed the administration to quickly identify students at risk of 93 
infection and to minimize opportunities for transmission. Here, we explore the utility of 94 
combining these and additional data types (including wifi co-location logs and genome 95 
sequences from wastewater effluent) to design effective disease surveillance systems. 96 

Results 97 

1. CMU deployed a comprehensive and effective surveillance program based on a 98 

multi-pronged testing approach 99 

Over the 2020–2021 academic year, CMU’s surveillance program identified 1,113 COVID-19 100 
cases (1,076 students, 37 faculty or staff) through randomized and targeted (i.e., symptomatic 101 
or reflexive) testing. The test positivity rate was 5.1% in Fall 2020 (August 17–November 20) 102 
and 1.5% in Spring 2021 (January 18–April 30) (Figure 2A–C); individuals who tested positive 103 
were moved to an isolation dorm. CMU’s randomized testing strategy sampled students non-104 
uniformly to test more frequently those at greater risk of onward transmission, i.e., on-campus 105 
students and athletes. Consistent with this bias, on-campus students and athletes ultimately 106 
tested positive 1.30 and 2.45 times as frequently as expected given uniform sampling (Appendix 107 
Figure 1C).  108 
 109 
In addition, CMU’s reflexive testing program tested individuals identified by institutional contact 110 
tracing as close contacts. Of the identified positive individuals, 720 (65%) reported close 111 
contacts, enabling subsequent detection of 93 distinct cases (8.4% of the total cases) within a 112 
week of the sentinel case’s positive test. These efforts identified plausible transmission links; 113 
among pairs of sequenced cases identified via contact tracing, 79% had closely related 114 
genomes (with a genetic distance of at most two mutations), compared to 10% among 115 
sequenced pairs more generally (Appendix Figure 2A).  116 
 117 
Frequent wastewater surveillance enhanced reflexive testing efforts, identifying SARS-CoV-2-118 
positive residence halls whose residents were then randomly selected for follow-up testing. The 119 
effort captured effluent from ~75% (Fall) and ~85% (Spring) of the residential student 120 
population. In response to spikes in viral titer, contributing residence halls were oversampled for 121 
testing; when warranted, up to half of the residents of a hall were tested. The success of this 122 
program is reflected in the close correlation of wastewater viral titer with contemporaneous case 123 
counts (Spearman ρ=0.40, p<.001; Figure 5AB, Appendix Figure 3). 124 
 125 
To assess the overall efficacy of CMU’s surveillance program, we compared CMU’s incidence 126 
rate to that of Mesa County, which had limited testing available at the time. CMU’s weekly 127 
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incidence exceeded county incidence rates and predicted them with a lag time of 3 days 128 
(correlation = 0.73; Appendix Figure 1AB). This is consistent with reports that adequate 129 
university testing can foreshadow community outcomes12 and highlights the ability of well-130 
designed university testing programs to serve as bellwethers. As the pandemic’s impact on the 131 
surrounding community became clearer, the university sponsored testing for external 132 
community members, both as a public benefit and to limit spread of SARS-CoV-2 into the 133 
campus31. 134 

2. Epidemiological analyses identified student attributes associated with SARS-135 

CoV-2 positivity and support a surveillance paradigm of targeted testing and risk 136 
mitigation 137 

Here we evaluate risk factors among a wide range of institutionally captured attributes for 138 
individuals who tested positive: role (i.e., student or faculty/staff), sex, class year32, test date, 139 
association with a residence hall, and membership in a sports team. Residence halls (Appendix 140 
Table 1) and sports teams (Appendix Table 2) were annotated with features, including 141 
perceived contact risk for sports teams (defined in Appendix Table 3). Our results support a two-142 
pronged surveillance strategy, in which groups at increased risk are targeted for higher-cadence 143 
testing, while putatively causal factors are mitigated via institutional policies that reduce risk. 144 
 145 
Besides athletes and on-campus students, whose higher risk of testing positive could reflect 146 
increased sampling, males, freshmen, and juniors also exhibited more cases than expected by 147 
chance (Appendix Figure 1C; Figure 2E; Appendix Table 4). These findings may underscore 148 
risk factors relevant for other universities: for example, a potential commonality between 149 
freshmen and juniors is that many students moved to new living arrangements (on-campus for 150 
freshmen, off-campus for juniors). Future surveillance efforts could target populations 151 
undergoing such transitions, though real-time epidemiology is essential to identify community-152 
specific risk factors. 153 
 154 
Looking more closely among sports teams, we identified specific attributes that further predict 155 
disease risk. High-contact sports teams had increased disease risk (Appendix Table 4), with 156 
50% more cases than expected from the risk for athletes as a whole, while low-contact teams 157 
had 47% fewer. Interestingly, risk was not uniform across teams of comparable contact level; 158 
women’s basketball had 90% more cases than expected, while men’s soccer had 16% fewer, 159 
despite both being high-contact sports (Figure 2D). We found no association between sports 160 
location (i.e., indoor vs. outdoor sports) and case counts, though sports played in both seasons 161 
had higher case incidence than fall or spring sports (Appendix Table 4). These findings are 162 
consistent with a model where individual athletes sporadically contract COVID-19, with an 163 
increased risk of further transmission and thus outbreaks on higher-contact teams or teams with 164 
longer seasons. 165 
 166 
Because COVID-19 incidence rates varied approximately three-fold from 9.7% to 27% across 167 
residence halls (Appendix Table 1), we conducted linear regression with multiple possible 168 
predictors related to halls to characterize factors that influenced case rates (Appendix Figure 169 
4AB). Two features were significant predictors: percent occupancy (i.e., number of available 170 
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beds filled) and private (vs. hallway) bathrooms (see Appendix Figure 4C-E for model 171 
validation). We included an indicator variable for fall wastewater tracking to assess whether 172 
reflexive testing biased hall incidence rates; it was dropped as a predictor and thus does not 173 
significantly bias rates. 174 
 175 
For every increase of 10% in occupancy, our model predicted an increase of 0.015 in incidence, 176 
supporting institutional de-densification measures to limit the transmission risks associated with 177 
denser populations. Strikingly, halls with en-suite or private bathrooms were predicted to have 178 
an incidence 0.059 higher than those with hallway bathrooms (Appendix Figure 4B), consistent 179 
with reports that a majority of SARS-CoV-2 transmissions occur within households (here, within 180 
suites)33. Possible explanations include compensatory protective measures (i.e., masking or 181 
social distancing) present in larger bathrooms and the increased hygiene of hallway bathrooms, 182 
which were cleaned by professional staff rather than residents. Importantly, our model does not 183 
account for possible social confounders such as clustering of certain groups (e.g., athletes or 184 
freshmen) within specific residence halls. 185 

3. Distinct interaction dynamics of positive individuals within wifi proximity dataset 186 

reveal potential for incorporation into disease surveillance 187 

Here, we explore a dataset of anonymized daily logged connection locations (i.e., access point 188 
and building) for students connected to campus wifi for at least 15 minutes, and describe how 189 
such data can be extended for real-time disease surveillance. Data were obtained from an 190 
existing program implemented in 2018 to assess facility use and student engagement, in order 191 
to aid the university in allocation of resources. All students were alerted via a campus-wide 192 
notice about the program, and could choose to opt out; an overwhelming majority (98%) 193 
participated.  194 
 195 
Through an examination of campus-wide connectivity patterns, we identified associations 196 
between student activity and CMU’s COVID-19-related policies. We found elevated on-campus 197 
presence during weekdays (vs. weekends) and in residence halls (vs. other building types) in 198 
fall 2020 (Appendix Figures 5, 6A, 6C), reflecting university policies that discouraged on-199 
campus gathering. When mitigation policies relaxed in Spring 2021, weekend presence 200 
increased relative to fall 2020 (Appendix Figure 6B and 6D). Additionally, after testing positive, 201 
individuals had 42% fewer contacts than during the preceding 10 days, indicating adherence to 202 
isolation policies (Appendix Figure 7A). This quantification of policy adherence suggests that wifi 203 
datasets can be used to assess policy implementation or to determine the effects of policy 204 
updates in real time. 205 
 206 
We found that positive individuals exhibited distinct patterns in their social networks and 207 
behaviors. Individuals who eventually tested positive exhibited larger social networks than those 208 
who remained negative: they spent more days on campus (Appendix Figure 7B), had more daily 209 
contacts (Figure 3A, left), and interacted for a longer duration with each contact (Figure 3A, 210 
right), creating more opportunities for potential viral transmission. Furthermore, in the 10 days 211 
preceding both of their positive tests, pairs of students identified via contact tracing had 212 
significantly longer daily interaction times than other pairs of positive students (e.g., median of 213 
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104 vs. 45 minutes per interaction per day in the fall; Appendix Figure 7CD). Moreover, these 214 
pairs of positive students between whom COVID-19 transmission may have occurred interacted 215 
for significantly longer than for pairs in which transmission did not or could not have occurred 216 
(i.e., pairs involving one or more students who never tested positive; Appendix Figure 7CD). 217 
These distinct qualities support supplementing, and if necessary substituting, manual contact 218 
tracing with a wifi-based system to automatically flag close contacts of positive individuals.  219 
 220 
We further explored interactions between positive and negative individuals using the attribute 221 
assortativity metric (AA), which quantifies the extent to which individuals interact within-group 222 
vs. between-group compared to random assortment (Figure 3B). We found that both positive 223 
(i.e., individuals positive at any point over the semester) and pre-positive individuals (i.e., 224 
individuals within 10 days of a positive test) were more likely to associate with one another than 225 
with negative individuals (Figure 3C, Appendix Figure 8A–C). Importantly, this relationship 226 
remained significant, albeit with a lower effect size, when removing pre-positive individuals who 227 
identified one another as close contacts, suggesting that this finding is not limited to positive 228 
individuals identified via reflexive testing secondary to manual contact tracing (Appendix Figure 229 
9). Interestingly, the AA for pre-positive individuals was a leading indicator of daily case counts, 230 
by 8 days (Fall) and 3 days (Spring; Figure 3DE, Appendix Figure 8D–F), suggesting that the 231 
degree of within-group interactions among putatively infectious individuals increases in the days 232 
leading to these individuals’ positive tests.  233 

4. Phylogenetic analysis of clinical viral genomes identified cluster size 234 

overdispersion and cryptic transmissions, leading to concrete policy decisions 235 

Viral genomic sequencing from residual biomaterial enables exploration of transmission 236 
dynamics and rapid detection and monitoring of SARS-CoV-2 variants. At CMU, sequencing 237 
facilitated detection of 18 distinct Pango lineages (Figure 4A; Appendix Figure 2BC)34. Of these, 238 
B.1.2 was the most abundant both at CMU and in Colorado, reflecting circulation between CMU 239 
and the surrounding community and highlighting the importance of CMU’s sponsored testing for 240 
Mesa County35. We identified continuous transmission of this lineage between semesters, with 7 241 
spring cases descending from 17 fall cases as the likely result of 2–3 cryptic intermediate 242 
transmissions during winter recess36. This cluster was non-significantly enriched for off-campus 243 
students relative to the remaining sequenced cases (83% vs. 70% off-campus; p = 0.15); 244 
possible off-campus continuation of the transmission chain over the break suggests that 245 
institutional surveillance programs would be wise to maintain testing availability for nearby 246 
students during school breaks. 247 
 248 
We detected overdispersion in both genomic and social clustering data, highlighting the 249 
importance of policies that minimize super-spreading events. Of 41 detected introductions to the 250 
university, onward transmission was only observed from 13, with 5 of the resulting clusters 251 
containing 80% of sequenced cases (k=0.12 in a negative binomial model, consistent with other 252 
studies37,38; Figure 4BC). We also observed overdispersion in the number of contacts between 253 
individuals in both contact tracing and wifi proximity analyses, where 80% of reported contacts 254 
were made by 33% (k=0.83) and 43% (k=0.89) of positive individuals, respectively (Figure 255 
4DE). The similar shape of these contact distributions suggests that both datasets capture the 256 
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true underlying structure of social interactions. Notably, phylogenomic cluster size demonstrates 257 
greater overdispersion than the two contact count distributions, suggesting that overdispersion 258 
in SARS-CoV-2 transmission can be partitioned into both social and biological components. 259 
Given the high variance observed amongst all three distributions, we suggest that both 260 
biological and social factors influence large SARS-CoV-2 case clusters, and that their interplay 261 
warrants further investigation. Below, we investigate the impact of a variety of variables on a 262 
distinct spring cluster.  263 

5. Contemporaneous wastewater viral sequencing supplements lineage detection 264 

and enables detection of emergent mutations 265 

During 6 weeks from February to mid-March 2021, we obtained 42 wastewater samples from 10 266 
sites for sequencing, 9 of which were sequenced in duplicate (Appendix Figure 3C). The 267 
concurrent collection of wastewater samples and clinical specimens, with high breadth of 268 
coverage among the residential population, allowed us to directly compare viral sequences from 269 
wastewater with those from contemporaneous individual cases. Through this, we validated the 270 
utility of wastewater viral sequencing as a component of a comprehensive pathogen 271 
surveillance program, as currently instantiated by Lookout. 272 
 273 
As expected, wastewater viral titers were lower than titers of clinical specimens collected from 274 
upstream individuals (Appendix Figure 10A). Wastewater and clinical samples from CMU had 275 
similar sequence coverage, suggesting that there was no particular bias in viral RNA 276 
degradation in wastewater (Appendix Figure 10B–E). This demonstrates that these wastewater 277 
samples were comparable to clinical specimens in integrity and suitable for sequencing and 278 
genomic surveillance. 279 
 280 
We used the pre-existing Freyja tool39,40 to detect 8 lineages in wastewater, 3 of which were 281 
found in concurrent clinical cases (Figure 5C, Appendix Table 6). Another 3 were observed in 282 
clinical cases prior to wastewater collection, suggesting undetected circulation on campus, 283 
shedding from previously-infected individuals, or environmental persistence. The remaining 2, 284 
B.1.533 and B.1.350, were present in the US but not the campus or state35; each was detected 285 
at low abundance in single samples and likely originated from a small number of individuals. 286 
Wastewater sequencing thus identified lineages not concurrently detected via clinical 287 
sequencing, proving itself to be particularly relevant in instances of incomplete clinical genomic 288 
sampling. 289 
 290 
In addition to detection of defined lineages, wastewater sequencing can also identify novel 291 
mutations; for this latter use case, we found that quality control mechanisms were essential to 292 
identify true variation. Of 1521 wastewater single nucleotide variants (SNVs), 85% and 68% 293 
were not found at consensus-level in CMU and Colorado clinical samples, respectively, and only 294 
4% were derived from clinical minor alleles (Figure 5D). We thus hypothesized that many 295 
mutations arose from amplification errors (e.g., formation of chimeras), a theory supported by 296 
the order-of-magnitude difference in the number of SNVs detected in wastewater vs. clinical 297 
samples as a function of sample count (Appendix Figure 11). We subsequently developed 298 
quality control methods to corroborate mutations via detection in state-wide clinical genomes. 299 
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We achieved high specificity for discarding SNVs not seen in Colorado when we required 300 
presence in both of two technical replicates (specificity = 98%) or an allele frequency exceeding 301 
25% (specificity = 92%); both methods had low sensitivity (50% and 62%, respectively; Figure 302 
5E), as each excluded SNVs corroborated by clinical viral genomes. This analysis provides real-303 
word evidence of the importance of replicates for identifying true SNVs in wastewater samples, 304 
a finding previously shown for clinical minor allele validation41. 305 
 306 
Of 68 replicate-corroborated SNVs found across 9 wastewater samples with 2 technical 307 
replicates, 11 (16%) were not seen in clinical CMU samples (Appendix Table 7). 6 of the 11 308 
were present in Colorado and had allele frequencies >96% in single wastewater specimens, 309 
likely reflecting on-campus circulation of viral genotypes unsampled by clinical sequencing. Of 310 
the 5 remaining mutations, 2 were non-synonymous mutations in ORF1ab (I1970S, T3462I) and 311 
were novel compared with published global variation35, 2 were synonymous mutations, and 1 312 
was a premature stop codon. The latter mutation, with an allele frequency of 4%, may be 313 
spurious; the other 4, with allele frequencies between 27% and 100%, could reflect either gut 314 
tropism or cryptic transmission. Though these mutations’ phenotypic effects remain unknown, 315 
their identification serves as a proof-of-concept and provides a framework for detection of novel 316 
mutations in wastewater. 317 

6. Detection of novel lineage B.1.429.1 on campus leads to high-resolution 318 

characterization of social and biological factors implicated in its spread 319 

In Spring 2021, we detected a cluster of cases on campus that was concerning due to its 320 
unprecedented size and genomic ancestry, and proceeded to characterize it analytically and 321 
experimentally to identify the social and biological factors that contributed to its rise. This 322 
B.1.429.1 cluster initiated as a single introduction to campus, which proliferated into several 323 
star-like descendant sub-clusters, consistent with clonal amplification (Figure 6A). In total, the 324 
outbreak lasted for 45 days; in its final 4 weeks, it represented 33% of sequenced clinical 325 
samples and was the most abundant lineage in 47% of wastewater samples (Figure 6AB). 326 
B.1.429.1 descended from B.1.429 – then deemed a Variant of Concern due to reduced 327 
antibody neutralization and increased viral shedding, infectivity, and transmissibility42 – but also 328 
included the recurrent S:Q677H substitution, posited to further increase transmissibility43 329 
(Appendix Table 8). 330 
 331 
We did not detect differences in interaction patterns among individuals with B.1.429.1 vs. those 332 
with other viral lineages (Appendix Figure 12AB), suggesting that its transmissibility was due to 333 
inherent qualities of the lineage rather than the specific social dynamics of the individuals within 334 
the cluster. We did find that these individuals clustered together in social networks (Figure 6C); 335 
i.e., they were on average one social connection closer to one another than to other positive 336 
individuals (p<0.001). Wifi-connected B.1.429.1 pairs also had significantly lower genetic 337 
distances between their viral genomes than non-connected B.1.429.1 pairs (Figure 6D), 338 
demonstrating that connections observed within the wifi network are enriched for genuine 339 
transmission events.  340 
 341 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 8, 2022. ; https://doi.org/10.1101/2022.07.06.22277314doi: medRxiv preprint 

https://doi.org/10.1101/2022.07.06.22277314
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 

We inferred direct transmission links among B.1.429.1 cases and found that wifi connectivity 342 
data inferred transmission networks that paralleled those constructed following traditional 343 
contact tracing. Alone, manual contact tracing or genomic sequencing resolved transmission 344 
links for 61% and 68% of individuals, respectively (Appendix Figure 12DE). We thus combined 345 
genomic data with traditional contact (2 days prior to tests) or wifi-derived contract tracing (for 346 
both 2 and 10 days prior to tests), producing transmission models connecting 82%, 87%, and 347 
74% of sequenced cases, respectively (Figure 6EF, Appendix Figure 12F). We compared the 348 
cluster topology for these networks and found that the wifi 10-day data best approximated the 349 
traditional contact tracing network (via Jaccard distance; Appendix Table 10). Due to the paucity 350 
of distinguishing mutations present between individual consensus mutations44, we used 351 
intrahost viral variation to supplement our transmission linkages. We identified a clear 352 
transmission chain where a single mutation present at low frequency in one specimen (#26 in 353 
Figure 6EF) reached fixation in two specimens (#27 & 28 in Figure 6EF) collected one week 354 
later, consistent with bottlenecked transmission. These three individuals clustered together in all 355 
reconstruction networks, but without the directionality of transmission inferred from minor alleles 356 
or phylogenetic descent, implying that transmission network reconstruction tools would benefit 357 
from further refinement. 358 
 359 
We next analyzed inherent phenotypic factors that could explain the increased transmission of 360 
B.1.429.1 on campus. We assessed the impact of the S:Q677H mutation found in B.1.429.1 on 361 
single-cycle infectivity and on cell-to-cell fusogenicity in lentiviral pseudotypes (Appendix Figure 362 
12GH). While the mutation did not alter virion spike protein levels or cell-free virion infectivity 363 
(Appendix Figure 12C), it significantly increased fusion efficiency relative to the ancestral 364 
B.1.429 spike protein (Figure 6G), likely due to proximity to the spike protein polybasic cleavage 365 
site. We found similar results for the S:Q677P mutation, which was detected in other 366 
contemporaneous CMU lineages. This finding is consistent with greater within-host 367 
dissemination of SARS-CoV-2 haplotypes bearing S:Q677H or S:Q677P.  368 
 369 
Fortunately, B.1.429.1 was minimally detected outside the campus, pointing to the success of 370 
CMU’s containment policies. This vignette highlights the power of systematic, multimodal 371 
surveillance programs to not only identify and mitigate transmission events, but also to 372 
contribute to novel biological characterization of viral lineages. 373 

Discussion 374 

In this paper, we analyzed clinical diagnostic data, case attributes, wifi co-location logs, 375 
wastewater samples, and viral genomic sequences to quantify the success of CMU’s pandemic 376 
response program and to assess the relevance of each data type for infectious disease 377 
surveillance. Our analyses showed that through contact tracing, wastewater surveillance, and 378 
increased focus on high-risk groups, CMU effectively identified positive cases. Via novel 379 
analyses of wifi connectivity, we confirmed adherence to school policies and evaluated metrics 380 
that could allow wifi data to replace or supplement traditional contact tracing. 381 
 382 
In addition, we leveraged phylogenetic and epidemiological analyses to propose future policies 383 
to limit disease spread (e.g., continued testing during school breaks, community testing, risk 384 
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prediction for testing prioritization) and to identify and mitigate specific causal factors shown to 385 
increase risk (e.g., requiring high-quality masking or increased testing to participate in high-386 
contact sports). Our sequencing of extant wastewater samples not only identified lineages 387 
independently of clinical sequencing, but also led us to apply and verify methodological 388 
procedures necessary for the detection of novel mutations from wastewater. Finally, through 389 
analysis of case cluster overdispersion and the novel lineage B.1.429.1, we highlighted the 390 
relevance of investigating both virological and sociobehavioral factors that can influence 391 
transmission. 392 
 393 
Our results lead us to formulate a framework combining the analyzed tools within an integrated 394 
disease surveillance system (described in Figure 7). First, we emphasize beginning with 395 
mitigation policies such as symptom reporting, contact tracing, and quarantine and continuing 396 
with efficient testing strategies such as wastewater surveillance. While contact tracing is 397 
essential, it is also time-intensive and expensive to maintain; with further work to address 398 
technological and privacy concerns, wifi proximity and geolocation data could supplement and 399 
perhaps ultimately replace these efforts. Gathering epidemiological metadata, symptom 400 
attestations, and diagnostic test results digitally and with programmatic synthesis is also a high 401 
priority because it can facilitate real-time analyses and subsequent policy adjustments; the 402 
Lookout system serves as a useful template (Figure 1)30. If finances allow, we would add 403 
genomic surveillance to aid identification of transmission patterns and concerning lineages or 404 
mutations. For communities with wastewater surveillance, sequencing these samples provides a 405 
cheaper alternative to clinical sequencing of all upstream individuals and still allows for 406 
identification of lineages or mutations of interest. This tool cannot wholly replace clinical 407 
sequencing due to its inability to discern transmission trends. It is important to emphasize that 408 
disease surveillance is not a one-size-fits-all endeavor; in fact, we found parallel results across 409 
data types. We suggest that automated integration of a subset of data types will more powerfully 410 
combat infectious disease outbreaks than a siloed implementation of all data types. 411 
 412 
Our findings are subject to statistical, methodological, and policy-based limitations. As with all 413 
studies of infectious disease surveillance, transmission events and clustering can violate 414 
statistical assumptions of independence among individuals. Additionally, while CMU had access 415 
to attribute data for individuals who never tested positive in the Lookout system, we were unable 416 
to access it for research under our existing regulatory approval; this impeded our ability to 417 
separate the impact that individual attributes (e.g., a particular sports team or residence hall) 418 
had on risk of infection. Moreover, incomplete sampling of residual diagnostic biospecimen and 419 
wastewater samples limited us to a partial snapshot of SARS-CoV-2 genetic diversity at CMU 420 
(Figure 2A; Appendix Figure 3C). Further, wifi co-location logs remain an underexplored data 421 
source that does not capture off-campus interactions and likely records superfluous or false 422 
interactions. As our study largely took place prior to the widespread availability of SARS-CoV-2 423 
vaccines45 and of rapid at-home antigen tests46, we cannot assess their impact on infectious 424 
disease transmission or policy. Finally, CMU’s surveillance paradigm prioritized community 425 
safety over individual privacy; thus, some of our findings may not be generalizable to institutions 426 
with different prioritizations. 427 
 428 
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Accounting for resource constraints, we built upon CMU’s community-driven mindset to develop 429 
an efficient surveillance program and lay the groundwork for future advances. While a number 430 
of analyses here were conducted only retrospectively, updates to surveillance software like 431 
Lookout30 could enable timely identification of risk factors for infection and spread, proximity and 432 
location patterns, and lineages or mutations that are rising in frequency or that have been 433 
categorized as Variants of Concern. They could further refine the accuracy of outbreak 434 
reconstruction by incorporating genomic data including major and minor alleles, and contact 435 
tracing obtained from manual efforts or wifi analyses, with reported contacts weighted by the 436 
length or nature of the interaction. In summary, we propose the seamless, automated 437 
integration of multiple data types as the most powerful way to combat infectious disease 438 
outbreaks as they unfold. 439 

Methods 440 

Code associated with the analyses of this study is available at: 441 
https://github.com/broadinstitute/sc2-cmu-study. Detailed methods are included in an appendix. 442 
 443 
We identified factors associated with testing positive for SARS-CoV-2 via calculation of 1) 444 
relative risk for athletic participation, campus residency, and sex, and 2) Pearson’s chi-square 445 
test for distinct sports teams, residence halls, and class years. We also fit a linear model to 446 
residence hall incidence rates as a function of various binary and continuous attributes of the 447 
buildings (Appendix Figure 4A). 448 
 449 
We examined differences in daily wifi connectivity patterns between subgroups defined by 450 
infection status or viral lineage and quantified differences in relevant metrics (Appendix Table 451 
11) across subgroups via the Mann-Whitney U test. We calculated attribute assortativity (AA) to 452 
assess the tendency of individuals to associate with in-group vs. across groups, and determined 453 
the lag time that maximizes the correlation between AA and case count. 454 
 455 
We constructed a network of known positive individuals, and connected pairs of individuals with 456 
interactions within 10 days of both positive tests. We compared wifi network path distances (i.e 457 
cumulative number of edges on the shortest path connecting two individuals in the network) 458 
between individuals in each pair where both were infected with B.1.429.1 lineage virus against 459 
pairs where only one individual had this viral lineage. We next compared viral genome distances 460 
(i.e., number of SNVs) within pairs of individuals infected with B.1.429.1 lineage virus that were 461 
connected by a path in the network vs. not connected. 462 
 463 
Rolling 24-hour wastewater aliquots were collected from sewer sites to (1) monitor SARS-CoV-2 464 
concentration via RT-qPCR and (2) provide source material for viral genomic sequencing. 465 
Across all collection sites, we compared weekly case counts from source buildings against daily 466 
and weekly wastewater viral titers (via Spearman correlation and Fisher’s exact test, 467 
respectively). 468 
 469 
Excess material from clinical diagnostic tests and wastewater aliquots was sequenced following 470 
enrichment via PCR with ARTICv3-tiled amplicons.  471 
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 472 
LoFreq was used to call major and minor alleles within wastewater samples. Several quality 473 
control metrics were considered to discard spurious variation: minimum allele frequency, local 474 
sequencing depth, and concordance in variation across replicates47. Freyja was used to identify 475 
and estimate the abundance of constituent SARS-CoV-2 lineages39. We determined the 476 
average number of unique SNVs that a single additional sequenced sample contributes to a set 477 
of a given number of samples, via bootstrapping of distinct subsets of clinical or wastewater 478 
samples.  479 
 480 
Clinical genomes were assembled using the Broad Institute viral-ngs pipelines and Nextstrain 481 
pipelines and assigned Pango lineages34,48. Genomes were placed in the phylogenetic context 482 
of genomes from cases outside the university community, weighted toward genomes from 483 
Colorado and surrounding states. Case clusters were identified based on a state change from 484 
not university-associated to university-associated, following ancestral state reconstruction of 485 
internal tree nodes. 486 
 487 
Negative binomial distributions were fit to distributions of cluster size, the number of contacts in 488 
the wifi data set, and the number of contacts in the standard contact tracing data set. Contacts 489 
were defined as any interaction >15 minutes in the 48-hour period prior to testing or symptom 490 
onset. 491 
 492 
Transmission networks were inferred using sequenced viral genomes and contact data using 493 
outbreaker249. 494 
 495 
Lentiviral pseudotype assays were performed to assess the functional implications of the 496 
S:Q677H substitution on infectivity and fusogenicity. 497 
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Figure 1  1 

Figure 1. The Lookout system implements real-time monitoring of COVID-19 cases, including 2 
spatial, longitudinal, and social patterns of disease burden 3 

4 
The Lookout tool integrated clinical diagnostic test results, student metadata, viral genome5 
sequences from diagnostic specimens, and wastewater viral titers. A demo with representative6 
synthetic data is available at https://sentinel.network/lookout-demo-campus/. Overview. Current7 
data on community case burden, test volume, high-incidence groups, and symptom and8 
exposure attestation. Clearance. Full-population counts of the individuals complying with the9 
training and symptom attestation requirements for campus entry. Testing. Reports of positive10 
tests in the past 7 days as well as the volume of tests scheduled, taken, and missed for the11 
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current week. Testing - Baseline. A view of “back to campus” testing measures tracking the 12 
number of tests administered over time against the amount needed to successfully test the 13 
entire population before a return to campus. Wastewater. Viral load over time, measured on a 14 
per-sewershed basis, aligned with individual test results from the same residence halls. Dorms. 15 
Views showing spatial position of residence hall cases on a per-floor basis. Individuals may be 16 
selected to view their associated membership groups (i.e., potential close contacts), present 17 
attestation, test, and isolation status. Main view page depicts campus-wide case density. Case 18 
Map. Large-area view of case locations for members of the university community who live off-19 
campus, with hot spots for locations of high case density. Sequencing. Phylogenetic tree 20 
showing the ancestry and clustering of viral genomes collected from university cases. Individual 21 
cases may be selected to view other individuals who are members of the same cluster, as well 22 
as specific attributes of the individual. Viral lineages are noted. Symptoms. Timelines depict 23 
reported symptoms for students or staff, including fever, cough, chills, sore throat, shortness of 24 
breath, loss of smell/taste, and runny nose.  Contacts. Rapid search for the list of contacts 25 
reported by cases, and their associated contact information. Lookup. Review of information in 26 
Lookout for a given individual, including group affiliations, test result history, symptom history, 27 
attestation history, and contact history. 28 

Figure 2  29 

Figure 2. Data types, incidence rates, and epidemiological risk factors for SARS-CoV-2 positivity 30 
on Colorado Mesa University’s campus 31 
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32 
A. Cohort description. A subset of students at Colorado Mesa University (CMU) tested positive33 
for COVID-19 via reflexive or random surveillance RT-qPCR testing. CMU provided34 
demographic and behavioral metadata for each case. The majority of students who tested35 
positive were enrolled in the wifi proximity program (gray). A subset of positive samples were36 
available for viral genomic sequencing (yellow). B. Timeline showing data collection timepoints37 
(black) by data type during the Fall and Spring semesters. Data not shown for November 21–38 
January 18 due to winter recess. C. Upper: Weekly COVID-19 incidence (black) and number of39 
tests conducted (blue) over the 2020–2021 academic year. Lower: Percent positivity rate. Data40 
not shown for November 21–January 18 due to winter recess. D. The difference between the41 
number of cases observed and the number of cases expected (based on sports team player42 
count and scaled by the number of cases expected; y axis) vs. the number of cases expected (x43 
axis), per sports team. The dashed line at y=0 separates teams with more (above) or fewer44 
(below) cases observed than expected. Teams are colored by contact level (legend). M refers to45 
men’s teams and W to women’s teams. E. The difference between the number of cases46 
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observed and the number of cases expected (based on class size and scaled by the number of47 
cases expected; y axis)  vs. the number of cases expected (x axis), per class year. The dashed48 
line at y = 0 separates classes with more (above) or fewer (below) cases observed than49 
expected. Classes are colored by semester (legend). 50 

Figure 3  51 

Figure 3. Social connectivity network from the wifi co-location data identifies behavioral trends52 
that correlate with case counts  53 

54 
A. Left: Distributions of daily contacts (Appendix Table 11) for students who tested positive over55 
the course of each semester (orange) vs. those who remained negative (gray) over the course56 
of each semester. Effect sizes, 9.5 (Fall; positive median = 33.5, negative median = 24), 12.557 
(Spring; positive median = 46.5, negative median = 34). Right: Distributions of average58 
exposure time per contact (Appendix Table 11), in minutes, for cases (orange) vs. those who59 
remained negative (gray). Effect sizes, 8.2 (Fall; positive median = 58, negative median = 49.8),60 
11.8 (Spring; positive median = 77, negative median = 58.8). B. Visual representation of the61 
network metric attribute assortativity (AA; described in Supplemental Methods). We depict62 
network scenarios where the AA coefficient is equal to 1, 0, or -1. When AA = 1, pre-positive63 
individuals, defined as those within 10 days prior to their positive test, have interactions only64 
with pre-positive individuals, and vice versa. When AA = 0: pre-positives individuals have an65 
equal likelihood of interactions with pre-positive individuals and non-pre-positive individuals.66 
When AA = -1, pre-positive individuals have interactions only with non-pre-positive individuals,67 
and vice versa. Positive AA values indicate a higher propensity for within-group interactions,68 
while negative values indicate a higher propensity for between-group interactions. C.69 
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Comparison of per-semester AA for individuals within a 10 day window of a positive test (i.e.,70 
pre-positives) vs. those who never tested positive (i.e., negatives). 95% confidence intervals (CI;71 
blue) were calculated by permuting pre-positive and negative labels for individuals within the72 
proximity network each day, 40 times. The AA of the proximity network (black) was above the73 
upper bound of the CI for 69.4% (66/95 days) of the Fall 2020 semester, implying significance at74 
p < 0.025. Only Fall 2020 is presented here; methodology and results were consistent for Spring75 
2021 (Appendix Figure 8). D-E. Comparison of smoothed case counts and smoothed AA for Fall76 
2020 (D) and Spring 2021 (E). Smoothing via the Savitzky-Golay filter (window length = 17,77 
polynomial order = 4).  78 

Figure 4  79 

Figure 4. Case clusters and lineages identified by viral genomic sequencing, and comparison of 80 
genomic cases to reported social network degree distributions 81 

82 
A. Pango lineage proportions for university cases during the Fall 2020 and Spring 202183 
semesters. B. Phylogenetic trees for inferred introductions to the campus community with84 
branch lengths scaled to time. B.1.2 clusters (blue), the B.1.429.1 cluster (orange), and all other85 
lineages (black). Vertical bar on the left of each introduction indicates the inferred ancestral root86 
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date of each university case or case cluster; cases are tip dots at right of each tree.  C.87 
Distribution of offspring from phylogenetic clusters, with a negative binomial distribution fit and88 
overlaid (dotted line) to quantify overdispersion. Unique introductions and resulting offspring89 
were grouped into phylogenetic clusters; mean=2.56 offspring/introduction; k=0.13 (dispersion90 
parameter). D. Distribution of the number of contacts from positive individuals identified during91 
contact tracing, with a negative binomial distribution fit and overlaid (dotted line). Contacts were92 
defined as any individuals with interaction dutations greater than 15 minutes in the 48-hour93 
period prior to positive test or symptom onset; mean=1.71 contacts per positive individual;94 
k=0.83. E. Distribution of the number of wifi contacts observed from positive individuals, with a95 
negative binomial distribution fit and overlaid (dotted line). Contacts were defined as individuals96 
with interaction durations greater than 15 minutes in the 48-hour period prior to testing positive97 
or symptom onset; mean=177.94 contacts per positive individual; k=0.89.  98 

Figure 5  99 

Figure 5. Wastewater surveillance and sequencing for measurement of aggregate viral load,100 
identification of circulating lineages, and comparison with viral genomes from contemporaneous101 
clinical cases 102 

103 
A. Average wastewater viral titers (orange) vs. weekly residential case count (black).104 
Residential case counts were calculated relative to the subsets of dorms monitored (75% of105 
residential population in Fall 2020; 99% in Spring 2021). There was an anomalous peak in106 
wastewater viral titer observed in April, which could be due to technical error, differential107 
shedding patterns, or undiscovered positive individuals. B. Viral titer (y axis) vs. binned weekly108 
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case count (x axis; binned by powers of 2) for each wastewater sample. Viral titer and case109 
count were significantly associated via Fisher’s exact test (p=0.04) and Spearman’s110 
correlation=0.40 (p<0.001). C. Lineages detected on campus via wastewater or clinical111 
sequencing. D. The number of single nucleotide variants (SNVs) detected in wastewater112 
samples; each bar represents a single sample. Individual samples are organized on the x axis in113 
order of total number of SNVs. For each sample, SNVs are categorized by whether they were114 
present in clinical sequences from CMU (black), in clinical sequences from Colorado (pink), or in115 
neither (gray). On average, 51% of SNVs in a single wastewater sample were not found in CMU116 
clinical samples, and 36% were not found in Colorado clinical samples. E. Comparison of quality117 
control methods to remove SNVs not validated by presence in Colorado clinical sequences. The118 
three methods compared are: 1) allele frequency (AF), or discarding SNVs present at an allele119 
frequency below a given threshold; 2) read depth (DP), or discarding SNVs located at a site with120 
a read depth below a given threshold; and 3) replicates (Reps), or discarding SNVs not present121 
within both of two technical replicates of a given sample. These analyses are limited to the nine122 
samples for which  technical replicates exist. Left: ROC curves for each of the three filters.123 
Middle: Sensitivity and specificity for allele frequency-based quality control method. Right:124 
Sensitivity and specificity for replicate-based quality control method. 125 

Figure 6  126 

Figure 6. A multimodal exploration of the novel lineage B.1.429.1 via clinical and environmental127 
genomic sequencing, wifi proximity analyses, transmission reconstruction networks, and128 
experimental validation 129 
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A. Phylogenetic tree showing the relationship between cases within the B.1.429.1 case cluster. 131 
Tree tips are anchored at their dates of sample collection, and branch lengths are scaled by 132 
maximum likelihood. One-to-many polytomies depict clonal amplification, with multiple cases 133 
with the same ancestral node rather than as a series of bifurcating branches. B. Three 134 
wastewater samples and three clinical samples (y axis), all of the B.1.429.1 lineage. The three 135 
wastewater samples had B.1.429.1 as the sole identified lineage, and were extracted from Site 136 
3, for which residential halls B and M are the only upstream contributors. Shown in comparison 137 
are clinical viral genomes from three students believed to have contributed effluent to these 138 
wastewater samples, based on residential status and test date. The x axis represents all single-139 
nucleotide variants present in at least one wastewater sample with 25% allele frequency or 140 
greater. SNVs are grouped by genomic position. C. Social proximity network for interactions 141 
occurring between two individuals who are both within a 10-day window prior to testing positive. 142 
Edges in this network represent one or more simultaneous wifi access point connections. Each 143 
node represents a positive individual. The node color represents their sequencing status 144 
(legend). D. Comparison of genetic distance for individuals of the B.1.429.1 lineage who are or 145 
are not connected via the social proximity network shown in (C). Effect size = 1 mutation. E-F. 146 
Transmission reconstruction network for B.1.429.1 cases created with genomic information as 147 
well as manual contact tracing data (E) or wifi-inferred 10-day contact data (F). G. Results of 148 
cell-cell fusion activity of viral pseudotypes with the ancestral allele, or with the S:Q677P or 149 
S:Q677H amino acid changes, relative to a luminescent control with no Spike protein 150 
expressed. 151 

Figure 7  152 

Figure 7: A step-wise approach to outbreak surveillance with consideration for resource 153 
limitations 154 
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155 
 156 
Illustration of the flow of actions to employ during an institutional outbreak, with delineation of157 
relative cost and information feedback cycles. During an outbreak, initial mitigation measures158 
can be deployed prior to and independent of a surveillance program. A basic surveillance159 
program will first incorporate testing, the results of which will inform additional mitigation160 
policies. Next, analyses of case attributes can be used to assess the risk of infection for specific161 
sub-populations; these analyses will allow for development of specialized, directed testing162 
strategies Finally, while more expensive, viral genomic sequencing of clinical or environmental163 
samples can be used to identify transmission trends and to detect emergent viral genomic164 
variation with potential public health or clinical relevance. This in turn can be used to inform165 
institutional policy and the intensity of mitigation efforts. Actions involving solely personnel time166 
are the least expensive to implement (i.e., mitigation, risk analyses), while actions requiring both167 
personnel and laboratory consumables are more expensive (i.e., testing), and actions requiring168 
laboratory consumables, highly trained personnel, and prolonged instrument time are most169 
expensive to implement (i.e., viral sequencing). 170 

Appendix Figure 1  171 

Appendix Figure 1. Incidence rates at Colorado Mesa University (CMU), with surrounding areas172 
for context, and epidemiological risk factors for SARS-CoV-2 positivity at CMU 173 
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174 
A. Weekly COVID-19 incidence at Colorado Mesa University (CMU; pink), in Mesa County175 
(black), and in Colorado (orange) over the 2020–2021 academic year (upper). Weekly COVID-176 
19 death rate in Mesa County (black) and in Colorado (orange) over the 2020–2021 academic177 
year (lower). Data from CMU were not analyzed from November 21–January 18 due to winter178 
recess. The correlations between CMU incidence rates and Mesa County incidence rates179 
(correlation = 0.73, lag = 3 days) and Mesa County death rates (correlation = 0.48, lag = 8 days)180 
were tested with lag times between -14 days (0 days for deaths) and 14 days, and the maximum181 
correlations and corresponding lag times are reported. B. The correlation between CMU182 
incidence rates and Mesa County incidence rates vs. the lag time. The dashed line at y = 3183 
indicates the lag time that maximizes the cross-correlation. C. The difference between the184 
number of cases observed and the number of cases expected (given residence hall population185 
size and scaled by number of cases expected) vs. the number of cases expected, per residence186 
hall. The dashed line at y = 0 separates halls with more (above) or fewer (below) cases187 
observed than expected. D. Relative risk (RR) of testing positive for COVID-19 given sports188 
team membership (athletes vs. non-athletes), sex (males vs. females), or residential status (on-189 
vs. off-campus). Circles represent the relative risk, with whiskers extending to the upper and190 
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lower bounds of the 95% confidence interval. The dashed line at RR = 1 represents the null191 
hypothesis (i.e., that there is no association between the risk factor and test positivity). An RR192 
greater than 1 implies that the first group listed (i.e., athletes, males, or on-campus students)193 
had a greater risk of testing positive than the second group listed (i.e., non-athletes, females, or194 
off-campus students). 195 

Appendix Figure 2  196 

Appendix Figure 2. Detection of outbreak groups using viral genomic sequencing of cases 197 

198 
A. Distributions of genetic distance for all pairs of viral genomes (upper) and for pairs of viral199 
genomes from positive individuals sharing interactions reported during contact tracing (lower).200 
We sequenced viral samples from 18 pairs of positive individuals where one of the individuals201 
identified the other as a close contact, and 11 pairs where both individuals identified one202 
another as a close contact. Two outlier pairs had a genetic distance of 44 SNVs. In each of203 
these pairs, an individual testing positive at the end of January 2021 had virus of the B.1.2204 
lineage and indicated close contact with an individual who tested positive in early February (5-6205 
days later) with virus of the B.1.429.1 lineage. B. Sequencing of positive cases via genomic206 
surveillance across both semesters. Sequencing began October 2020, capturing cases207 
associated with a Halloween-related outbreak. Shown are the total number of cases (top, thin208 
line), total number of sequenced cases (top, bolded line), and percent of positive cases that209 
were sequenced (bottom). C. Phylogenetic placement and temporal sampling of viral genomes210 
sequenced from CMU clinical diagnostic tests. CMU nodes are depicted as dots among a global211 
tree of contextual sequences, weighted toward sequences collected from Colorado and212 
surrounding states, but including uniformly-sampled genomes from all dates and geographic213 
regions, as well as genomes close in genetic distance to CMU sequences. Interactive version214 
available at https://auspice.broadinstitute.org.  215 

Appendix Figure 3  216 

Appendix Figure 3. Summary of wastewater surveillance implemented at Colorado Mesa217 
University across Fall 2020 and Spring 2021 218 
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219 
A-B. Comparison of wastewater viral titer (orange) and weekly case count (black) for each220 
wastewater site in the Fall semester (A) and Spring semester (B). C. Sample collection221 
frequency for wastewater surveillance in the 2020–2021 academic year. Wastewater samples222 
were collected twice weekly in the Fall across 5 sites, and three times weekly in the Spring223 
across 11 sites. Each dot represents an independent collection event, with dots shown in224 
orange representing sequenced wastewater samples. D. Schematic showing which residential225 
or academic buildings (squares) contributed effluent to each monitored wastewater site (circles).226 
Residence hall I (red square) housed a small number of students who had tested positive and227 
were in isolation. Wastewater sites are represented by circles, with filled-in gray circles228 
representing sites utilized to collect baseline measurements where there were no upstream229 
contributors to that particular sewage system. Sites shown in pink were added in Fall 2020 and230 
remained in use into Spring 2021, while sites shown in orange were added in Spring 2021. 231 

Appendix Figure 4  232 

Appendix Figure 4. Predictions of COVID-19 incidence rates in Colorado Mesa University233 
residence halls via a linear regression model 234 
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235 
A. Descriptive attributes of residence halls, including number of students, percent occupied236 
(number of available beds / number of students),  number of floors, the presence of a meal plan237 
requirement (‘dining hall’), the presence of an in-unit bathroom (‘private bath’), the number of238 
resident advisors (RAs), square footage, ceiling height, volume per person, and the presence of239 
wastewater surveillance, were used as predictors in the regression model. Non-zero correlation240 
coefficients between pairs of predictive variables indicate multicollinearity. B. Observed241 
incidence rates vs. predicted incidence rates, by residence hall. Predictions come from the242 
model that minimized the Akaike and Bayesian Information Criteria. Colors indicate the243 
difference in predicted incidence associated with a private vs. a hallway bathroom. C. Residuals244 
vs. predicted incidence rates, by residence hall. Root-mean-square-error = 3.6%. D. Residuals245 
vs. predicted incidence rates, from leave-one-out cross-validation, by residence hall. Leave-one-246 
out cross-validation (i.e., N-1 model fit, where N = number of residence halls) was conducted247 
such that each hall’s incidence rate was predicted via a linear model whose coefficients were248 
determined with training data from all other halls. Root-mean-square-error = 4.2%. E. Residuals249 
from the leave-one-out cross-validation (N-1 model fit) vs. residuals from the full model (N250 
model fit). 251 

Appendix Figure 5  252 

Appendix Figure 5. On-campus presence, as inferred by wifi proximity data, by semester and by253 
user category 254 
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255 
 256 
A. Distribution of the number of days present on campus for all users found in the wifi network,257 
colored by semester. B. Distribution of the number of days present on campus for all users258 
found in the wifi network after removal of unauthenticated users, non-students, and infrequent259 
users, colored by semester. This cleaned wifi proximity network was used for all future260 
analyses. C. Number (left) and proportion (right) of positive students (orange) and negative261 
students (black) on campus by day for Fall 2020 (Appendix Table 11). There was no significant262 
difference in the proportion distributions (p = 0.282). We found a significant correlation in the263 
trends of the proportion distributions (Pearson Correlation: .976, p < .0001). D. Number (left)264 
and proportion (right) of positive students (orange) and negative students (black) on campus by265 
day for Spring 2021 (Appendix Table 11). There was no significant difference in the proportion266 
distributions (p = 0.248). We found a significant correlation in the trends of the proportion267 
distributions (Pearson Correlation: .99, p < .0001). 268 
 269 
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Appendix Figure 6  270 

Appendix Figure 6. Wifi network access patterns by building and by semester. 271 

272 
A-B. Median duration of access point connections in minutes, per day of the week and by273 
building type (academic, residential, other, or all buildings) for Fall 2020 (A) and Spring 2021 (B;274 
Appendix Table 11). C-D. Daily number of AP connections, per day of the week and by building275 
type (academic, residential, other, or all buildings) for Fall 2020 (C) and Spring 2021 (D;276 
Appendix Table 11).  277 

Appendix Figure 7  278 

Appendix Figure 7. Interaction patterns of individuals and of pairs of individuals by testing status279 
 280 
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281 
A. Median number of wifi contacts per day for the 30-day period surrounding the isolation period282 
of positive cases. Day 0 was calculated as the earliest of symptom onset date and test date.283 
Black lines indicate the median number of contacts (y-axis) per individual for every day across284 
the period (x-axis). B. The number of days on campus for positive (orange) vs. negative (gray)285 
individuals. Effect sizes, 15 days (median positive: 66; median negative: 51; Fall 2020) and 16286 
days (median positive: 76; median negative: 60; Spring 2021). Gray bars indicate averages for287 
three 10-day periods: pre-isolation, isolation, and post-isolation. C. Distributions of total pairwise288 
daily interaction duration , for pairings categorized by testing status: CC Pos-Pos,  pairs of pre-289 
positive individuals with an association reported in manual contact tracing; Non-CC Pos-Pos,290 
pairs of pre-positive individuals without an association reported in manual contact tracing; Pos-291 
Neg, pairs of one pre-positive and one negative individual; Neg-Neg, pairs of two negative292 
individuals. Pre-positive individuals were defined as students within the 10-day window prior to293 
testing positive. D. Distributions of median interaction duration by pair per day, for pairings294 
categorized by test status (see above description). Positive individuals were defined as students295 
within the 10-day window prior to testing positive. See Appendix Table 11 for equations used in296 
panels A, C, and D. 297 

Appendix Figure 8  298 

Appendix Figure 8. Comparison of randomness vs true assortativity within the wifi proximity299 
network in conjunction with semester daily case counts 300 
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301 
A-B. Comparison of attribute assortativity (AA) for positives vs. negatives, for Fall 2020 (A) and302 
Spring 2021 (B). 95% Confidence Intervals (CI; blue) were calculated by permuting positive and303 
negative labels for individuals within the proximity network each day. The AA of the proximity304 
network (black) was above the upper bound of the CI for 98.9% (94/95 days) in the Fall 2020305 
semester and 98%(100/102 days) in the Spring 2021 semester, indicating significance with p <306 
0.025. C. We calculated the same metric with altered groupings: pre-positives (all individuals307 
within a 10-day window prior to their positive test) vs. negatives (individuals not within a 10-day308 
window prior to a positive test, regardless of overall semester testing status). The AA of the309 
proximity network (black) was above the upper bound of the CI for 37.2% (38/102 days) in the310 
Spring 2021 semester, indicating significance with p < 0.025. D. Correlations between daily AA311 
(pre-positives vs. negatives) and daily case count with varying lag times, where both AA and312 
case count are non-smoothed (top) or smoothed using Savitzky Golay filter (bottom), for Fall313 
2020. The highest correlation occurs with a lag time such that AA preceded the case count by 8314 
days (Pearson correlation = 0.253 for non-smoothed, 0.449 for smoothed). E. Cross-315 
correlations between daily AA (pre-positives vs. negatives) and daily case count with varying lag316 
times, where both AA and case count are non-smoothed (top) or smoothed using Savitzky317 
Golay filter (bottom), for Spring 2021. The highest correlation occurs with lag time such that AA318 
preceded the case count by 4 days (Pearson correlation=0.411 for non-smoothed; 3 days for319 
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smoothed, with correlation = 0.691). F. Unsmoothed case counts and unsmoothed AA vs.320 
smoothed case counts and smoothed AA for Fall 2020 (left) and Spring 2021 (right). 321 

Appendix Figure 9  322 

Appendix Figure 9. Comparison of assortativity within the wifi proximity network when defining323 
the “pre-positive” attribute as positive individuals without pairwise associations within the contact324 
tracing data. 325 
 326 

327 
 328 
A-B. Comparison of attribute assortativity (AA) for pre-positives vs. negatives, for Fall 2020 (A)329 
and Spring 2021 (B). 95% Confidence Intervals (CI; blue) were calculated by permuting pre-330 
positive and negative labels for individuals within the proximity network each day. We calculated331 
the same metric with pre-positives defined as individuals within a 10-day window prior to their332 
positive test without pairwise associations with other pre-positive individuals in the contact333 
tracing data and negatives defined as individuals not within a 10-day window prior to a positive334 
test, regardless of overall semester testing status. The AA of the proximity network (black) was335 
above the upper bound of the CI for 45.2% (43/95 days) of the Fall 2020 semester (A) and 8.8%336 
(9/102 days) of the Spring 2021 semester (B), indicating significance with p < 0.025. 337 

Appendix Figure 10  338 

Appendix Figure 10. Sequenced wastewater samples, though subject to increased degradation,339 
are of similar genome coverage as sequenced clinical samples 340 
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341 
A. Cycle thresholds (Ct) for sequenced wastewater and clinical samples from Colorado Mesa342 
University. B-C. Median normalized read depth per base, across all wastewater (B) and clinical343 
(C) samples. The coloring indicates quartiles across all wastewater or clinical samples. Regions344 
of lower depth in wastewater sequencing are of similarly low depth in clinical sequencing. D.345 
Comparison of average amplicon read depth (x axis) and average amplicon primer entropy (y346 
axis) for wastewater samples. We  found no correlation between amplicon read depth and347 
primer entropy (Pearson correlation coefficient of r = .02, p = 0.81). The 20 amplicons with348 
lowest median normalized depth are shown as larger circles. E. Comparison of median349 
normalized depth per amplicon between wastewater (x axis) and clinical (y axis) samples. There350 
is a linear correlation between corresponding amplicons (Pearson correlation coefficient of r =351 
0.86; p<0.001). 352 

Appendix Figure 11  353 

Appendix Figure 11. Presence of previously undetected mutations in sequenced wastewater354 
samples suggests sequencing error 355 
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356 
A. Distribution of single-nucleotide variants (SNVs) that were present in only one technical357 
duplicate (pink and gray) or in both duplicates (black). The samples are ordered relative to the358 
number of replicate-confirmed SNVs. B. Predictions for the number of unique SNVs that can be359 
expected for a given number of wastewater samples, calculated per the methodology described360 
in the Supplemental Methods. We additionally calculated the number of unique SNVs that would361 
be expected to pass an allele frequency quality control threshold of 25% (gray) or to be seen in362 
at least both technical replicates of any given sample (orange). C. Predictions for the number of363 
unique consensus-level SNVs that can be expected for a given number of clinical samples,364 
calculated per the methodology described in the Supplemental Methods. D. Smoothed365 
(window=5) first derivative of unique wastewater SNVs per sample. Legend is the same as in366 
panel (B). This highlights that while the first derivatives for both replicate-confirmed SNVs367 
(orange) and SNVs with an allele frequency greater than 25% (gray) approaches a rate of 1-3368 
new SNVs per sample, the first derivative for all SNVs of any allele frequency (black)369 
approaches a rate of >10 new SNVs per sample. E. Smoothed (window=5) first derivative of370 
unique clinical consensus-level SNVs per sample. This highlights that the first derivative for all371 
consensus-level SNVs seen in clinical samples approaches a rate of 1.5 new SNVs per sample.372 
The comparison between (D) and (E) lends support to the hypothesis that most SNVs seen in373 
wastewater samples are spurious, and that either confirming SNVs via technical replicates or a374 
high allele frequency threshold is sufficient to remove most spurious SNVs. 375 
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Appendix Figure 12  376 

Appendix Figure 12. Social proximity patterns, transmission reconstruction networks, and 377 
experimental viral phenotypes associated with B.1.429.1 378 

 379 
A. Distributions of total daily interaction duration (Appendix Table 11), per pair and per day, for 380 
pairs of B.1.429.1-positive (within 10 days of positive tests), non-B.1.429.1-positive (within 10 381 
days of positive tests), and negative individuals. Non-B.1.429.1-positive individuals are defined 382 
as positive individuals whose viral genome was not sequenced or was sequenced and 383 
determined not to be B.1.429.1. B. Distributions of median daily interaction duration (Appendix 384 
Table 11), per pair per day, for pairs of B.1.429.1-positive (within 10 days of positive tests), non-385 
B.1.429.1-positive (within 10 days of positive tests), and negative individuals. C. Results of 386 
infectivity of viral pseudotypes with the ancestral allele, or with the S:Q677P or S:Q677H amino 387 
acid changes, relative to a luminescent control with no Spike protein expressed. D-F. 388 
Transmission reconstruction network for B.429.1 cases created with solely genomic information 389 
(D), solely manual contact tracing data (E), and both genomic information and wifi-inferred 2-390 
day contact data (F). G. Conceptual diagram showing the experimental strategy for assessing 391 
the fusogenicity of the S:Q677H or S:Q677P amino acid changes relative to the ancestral 392 
residue, using two populations of cells: one expressing the modified Spike protein on the cell 393 
surface, and a second expressing the ACE2/TMPRSS2 receptors. The two populations were 394 
combined and fusion signal was assessed via HiBit-LgBit luminescent reporter. H. Western blot 395 
illustrating successful creation of viral pseudotype particles bearing Spike protein with S:677Q, 396 
S:Q677H, and S:Q677P. 397 
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Appendix Table 1  398 

Appendix Table 1. Properties of residence halls at Colorado Mesa University 399 
 400 

Hall 

Number 
of 
Students 

Percent 
Occupancy 

Number 
of Floors 

Dining Hall 
Requirement 

In-unit 
Bathroom 

Number 
of RAs 

Square 
Footage 

Ceiling 
Height 

Volume 
per 
Person 

Number of 
COVID-19 
Cases 

Hall A 160 0.89 3 1 1 5 46695 8 2334.75 43 

Hall B 282 0.94 4 1 1 4 96429 8 2735.57 59 

Hall C 251 0.88 4 1 1 8 80100 8 2552.99 52 

Hall D 174 0.94 4 0 1 6 59360 8 2729.12 31 

Hall E 99 0.83 3 0 1 4 28080 8 2269.09 19 

Hall F 124 0.97 4 1 1 5 45996 9.67 3586.95 16 

Hall G 396 0.91 4.25 1 0 15 93650 9.67 2286.86 46 

Hall I 124 0.73 3 1 0 4 42507 8 2742.39 12 

Hall L 187 0.93 3 1 0 6 42883 8 1834.57 31 

Hall M 310 0.97 5 1 1 10 72500 8 1870.97 54 

Hall N 157 0.79 3 1 0 6 44178 8 2251.11 16 

Hall O 118 0.81 5 1 0 5 43843 8 2972.41 17 

 401 
Structural and communal properties of residence halls. Volume per person was calculated as 402 
square footage * ceiling height / number of students per hall and serves as a proxy for air 403 
volume per person. Hall G has 4 floors and a partial basement, covering approximately 25% of 404 
the square footage of the other floors. 405 

Appendix Table 2  406 

Appendix Table 2. Properties of athletic teams at Colorado Mesa University 407 
 408 

Team 
Number of 
Students Contact Level Season Location 

Number of COVID-19 
Cases 

Women's Golf 11 Low both outdoor <5 

Women's Club Volleyball 11 Low both indoor <5 

Men's Golf 12 Low both outdoor <5 

Women's Tennis 12 Low both outdoor <5 

Women's Cross Country 14 Low fall outdoor <5 

Men's Triathlon 18 Low both outdoor <5 

Cycling 65 Low both outdoor <5 

Women's Swimming 33 Low both indoor 6 
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Men's Tennis 10 Low both outdoor 7 

Women's Triathlon 14 Low both outdoor 7 

Cheerleading 30 Moderate both indoor 7 

Men's Soccer 30 High fall outdoor 8 

Sand Volleyball 19 Moderate spring outdoor 8 

Women's Basketball 15 High both indoor 9 

Women's Wrestling 22 High both indoor 9 

Indoor Volleyball 20 Moderate fall indoor 9 

Men's Track 55 Moderate both both 10 

Men's Basketball 19 High both indoor 11 

Men's Swimming 38 Low both indoor 11 

Women's Lacrosse 30 Moderate spring outdoor 12 

Women's Soccer 35 High fall outdoor 13 

Women's Track 55 Moderate both both 13 

Baseball 48 Moderate spring outdoor 14 

Men's Lacrosse 43 Moderate spring outdoor 17 

Men's Wrestling 40 High both indoor 23 

Football 95 High fall outdoor 48 

 409 
Number of students, contact level (as determined via standardized definitions in Appendix 410 
Table 3), season, location, and number of COVID-19 cases per sports team. Teams with fewer 411 
than 5 cases were labeled as “< 5” to minimize the risk of de-anonymity. Teams are sorted by 412 
number of COVID-19 cases, then by contact level. 413 

Appendix Table 3  414 

Appendix Table 3. Sports contact level definitions. 415 
 416 

Contact 
level 

Definition CMU teams 

Low Individual or small group sports where contact within six feet of other participants 
can be avoided. Sports that can be conducted with social distancing, consistent 
wearing of face coverings when within six feet of other people, or individually with no 
sharing of equipment or the ability to clean the equipment between use by 
competitors. 

Cross country, 
cycling, golf, 
swimming, tennis, 
triathlon, volleyball 
(club) 
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Moderate Team sports that can be played with only incidental or intermittent close contact 
between participants. This category may also include sports that involve close, 
sustained contact, but with protective equipment in place that may reduce the 
likelihood of respiratory particle transmission between participants OR sports where 
social distancing is possible but that use equipment that can’t be cleaned between 
participants. 

Baseball, 
cheerleading, 
lacrosse, track, 
volleyball (sand, 
indoor) 

High Team sports with frequent or sustained close contact (and in many cases, face-to-
face contact) between participants and high probability that respiratory particles will 
be transmitted between participants. 

Basketball, football, 
soccer, wrestling 

 417 
Definitions of contact levels for sports teams. Sports teams were assigned a contact level of 418 
low, medium, or high based on variables that affect transmission risk, including physical 419 
proximity and the use of face coverings. Contact-level categories were created by synthesizing 420 
risk profiles defined from  the California Department of Health’s “Outdoor and Indoor Youth and 421 
Recreational Adult Sports” communication in April 2021 and the Colorado High School Activities 422 
Association 2020-2021 sports risk profiles. 423 

Appendix Table 4  424 

Appendix Table 4. Chi-square analyses. 425 
 426 

Variable Chi-Square Statistic (df) P-value (Uncorrected) 

Class years (Fall 2020)  95.67 (5) 4.31 x 10-19 

Class years (Spring 2021)  296.95 (5) 4.54 x 10-62 

Sports contact level  36.59 (2) 1.13 x 10-8 

Sports location (indoor vs. outdoor) 1.60 (1) 0.21 

Sports season 10.22 (2) 0.006 

Sports teams  75.08 (25) 6.60 x 10-7 

Residence halls  31.30 (11) 9.87 x 10-4 

 427 
Results of Pearson’s chi-squared test for categorical variables assessed for COVID-19 disease 428 
risk. Test statistics, degrees of freedom, and uncorrected p-values are reported. 429 

Appendix Table 5  430 

Appendix Table 5. Published viral genomic data for clinical and environmental specimens 431 
 432 

Sequence Identifier (clinical) Biosample 
Accession 

GenBank 
Accession GISAID Identifier SRA Accession 

USA/CO-Broad-CMU_00017/2020 SAMN17211059 MW521521 EPI_ISL_872745 SRS8145178 
USA/CO-Broad-CMU_00039/2020 SAMN17211081 MW521525 EPI_ISL_872749 SRS8145099 
USA/CO-Broad-CMU_00043/2020 SAMN17211085 MW521526 EPI_ISL_872750 SRS8145173 
USA/CO-Broad-CMU_00051/2020 SAMN17211093 MW521527 EPI_ISL_872751 SRS8145098 
USA/CO-Broad-CMU_00054/2020 SAMN17211096 MW521528 EPI_ISL_872752 SRS8145097 
USA/CO-Broad-CMU_00060/2020 SAMN17211102 MW521529 EPI_ISL_872753 SRS8145065 
USA/CO-Broad-CMU_00062/2020 SAMN17211104 MW521530 EPI_ISL_872754 SRS8145064 
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USA/CO-Broad-CMU_00063/2020 SAMN17211105 MW521531 EPI_ISL_872755 SRS8145063 
USA/CO-Broad-CMU_00064/2020 SAMN17211106 MW521532 EPI_ISL_872756 SRS8145095 
USA/CO-Broad-CMU_00073/2020 SAMN17211115 MW521533 EPI_ISL_872757 SRS8145059 
USA/CO-Broad-CMU_00075/2020 SAMN17211117 MW521534 EPI_ISL_872758 SRS8145057 
USA/CO-Broad-CMU_00079/2020 SAMN17211121 MW521535 EPI_ISL_872759 SRS8145055 
USA/CO-Broad-CMU_00080/2020 SAMN17211122 MW521536 EPI_ISL_872760 SRS8145054 
USA/CO-Broad-CMU_00084/2020 SAMN17211126 MW521537 EPI_ISL_872761 SRS8145052 
USA/CO-Broad-CMU_00088/2020 SAMN17211130 MW521539 EPI_ISL_872763 SRS8145050 
USA/CO-Broad-CMU_00089/2020 SAMN17211131 MW521540 EPI_ISL_872764 SRS8145049 
USA/CO-Broad-CMU_00090/2020 SAMN17211132 MW521541 EPI_ISL_872765 SRS8145048 
USA/CO-Broad-CMU_00091/2020 SAMN17211133 MW521542 EPI_ISL_872766 SRS8145166 
USA/CO-Broad-CMU_00092/2020 SAMN17211134 MW521543 EPI_ISL_872767 SRS8145165 
USA/CO-Broad-CMU_00094/2020 SAMN17211136 MW521544 EPI_ISL_872768 SRS8145046 
USA/CO-Broad-CMU_00098/2020 SAMN17211140 MW521545 EPI_ISL_872769 SRS8145162 
USA/CO-Broad-CMU_00100/2020 SAMN17211142 MW521546 EPI_ISL_872770 SRS8145160 
USA/CO-Broad-CMU_00101/2020 SAMN17211143 MW521547 EPI_ISL_872771 SRS8145159 
USA/CO-Broad-CMU_00103/2020 SAMN17211145 MW521548 EPI_ISL_872772 SRS8145157 
USA/CO-Broad-CMU_00004/2020 SAMN17210672 MW454484 EPI_ISL_765574 pending 
USA/CO-Broad-CMU_00007/2020 SAMN17210675 MW454485 EPI_ISL_765575 pending 
USA/CO-Broad-CMU_00010/2020 SAMN17210678 MW454486 EPI_ISL_765576 pending 
USA/CO-Broad-CMU_00107/2020 SAMN17211149 MW521549 EPI_ISL_872773 SRS8145044 
USA/CO-Broad-CMU_00108/2020 SAMN17211150 MW521550 EPI_ISL_872774 SRS8145043 
USA/CO-Broad-CMU_00109/2020 SAMN17211151 MW521551 EPI_ISL_872775 SRS8145155 
USA/CO-Broad-CMU_00110/2020 SAMN17211152 MW521552 EPI_ISL_872776 SRS8145154 
USA/CO-Broad-CMU_00111/2020 SAMN17211153 MW521553 EPI_ISL_872777 SRS8145093 
USA/CO-Broad-CMU_00113/2020 SAMN17211155 MW454487 EPI_ISL_765577 pending 
USA/CO-Broad-CMU_00114/2020 SAMN17211156 MW454488 EPI_ISL_765578 pending 
USA/CO-Broad-CMU_00116/2020 SAMN17211158 MW454489 EPI_ISL_765579 pending 
USA/CO-Broad-CMU_00118/2020 SAMN17211160 MW454490 EPI_ISL_765580 pending 
USA/CO-Broad-CMU_00123/2020 SAMN17211165 MW454492 EPI_ISL_765582 pending 
USA/CO-Broad_WarriorLab-00125/2021 SAMN17906199 MW617630 EPI_ISL_1011598 SRS8270659 
USA/CO-Broad_WarriorLab-00126/2021 SAMN17906200 MW617631 EPI_ISL_1011599 SRS8270657 
USA/CO-Broad_WarriorLab-00128/2021 SAMN17906202 MW617632 EPI_ISL_1011600 SRS8270660 
USA/CO-Broad_WarriorLab-00130/2021 SAMN17906204 MW617633 EPI_ISL_1011601 SRS8270663 
USA/CO-Broad_WarriorLab-00131/2021 SAMN17906205 MW617634 EPI_ISL_1011602 SRS8270664 
USA/CO-Broad_WarriorLab-00132/2021 SAMN17906206 MW617635 EPI_ISL_1011603 SRS8270666 
USA/CO-Broad_WarriorLab-00133/2021 SAMN17906207 MW617636 EPI_ISL_1011604 SRS8270665 
USA/CO-Broad_WarriorLab-00134/2021 SAMN17906208 MW617637 EPI_ISL_1011605 SRS8270667 
USA/CO-Broad_WarriorLab-00135/2021 SAMN17906209 MW617638 EPI_ISL_1011606 SRS8270668 
USA/CO-Broad_WarriorLab-00136/2021 SAMN17906210 MW617639 EPI_ISL_1011607 SRS8270669 
USA/CO-Broad_WarriorLab-00137/2021 SAMN17906211 MW617640 EPI_ISL_1011608 SRS8270670 
USA/CO-Broad_WarriorLab-00138/2021 SAMN17906212 MW617641 EPI_ISL_1011609 SRS8270671 
USA/CO-Broad_WarriorLab-00140/2021 SAMN17906214 MW617642 EPI_ISL_1011610 SRS8270675 
USA/CO-Broad_WarriorLab-00141/2021 SAMN17906215 MW617643 EPI_ISL_1011611 SRS8270674 
USA/CO-Broad_WarriorLab-00142/2021 SAMN17906216 MW617644 EPI_ISL_1011612 SRS8270676 
USA/CO-Broad_WarriorLab-00145/2021 SAMN17906219 MW617645 EPI_ISL_1011613 SRS8270679 
USA/CO-Broad_WarriorLab-00146/2021 SAMN17906220 MW617646 EPI_ISL_1011614 SRS8270680 
USA/CO-Broad_WarriorLab-00147/2021 SAMN17906221 MW617647 EPI_ISL_1011615 SRS8270681 
USA/CO-Broad_WarriorLab-00148/2021 SAMN17906222 MW617648 EPI_ISL_1011616 SRS8270682 
USA/CO-Broad_WarriorLab-00187/2021 SAMN17906261 MW617679 EPI_ISL_1011647 SRS8270725 
USA/CO-Broad_WarriorLab-00188/2021 SAMN17906262 MW617680 EPI_ISL_1011648 SRS8270724 
USA/CO-Broad_WarriorLab-00189/2021 SAMN17906263 MW617681 EPI_ISL_1011649 SRS8270726 
USA/CO-Broad_WarriorLab-00190/2021 SAMN17906264 MW617682 EPI_ISL_1011650 SRS8270727 
USA/CO-Broad_WarriorLab-00191/2021 SAMN17906265 MW617683 EPI_ISL_1011651 SRS8270729 
USA/CO-Broad_WarriorLab-00192/2021 SAMN17906266 MW617684 EPI_ISL_1011652 SRS8270731 
USA/CO-Broad_WarriorLab-00162/2021 SAMN17906236 MW617658 EPI_ISL_1011626 SRS8270697 
USA/CO-Broad_WarriorLab-00177/2021 SAMN17906251 MW617670 EPI_ISL_1011638 SRS8270711 
USA/CO-Broad_WarriorLab-00178/2021 SAMN17906252 MW617671 EPI_ISL_1011639 SRS8270714 
USA/CO-Broad_WarriorLab-00182/2021 SAMN17906256 MW617674 EPI_ISL_1011642 SRS8270719 
USA/CO-Broad_WarriorLab-00149/2021 SAMN17906223 MW617649 EPI_ISL_1011617 SRS8270684 
USA/CO-Broad_WarriorLab-00150/2021 SAMN17906224 MW617650 EPI_ISL_1011618 SRS8270685 
USA/CO-Broad_WarriorLab-00151/2021 SAMN17906225 MW617651 EPI_ISL_1011619 SRS8270686 
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USA/CO-Broad_WarriorLab-00152/2021 SAMN17906226 MW617652 EPI_ISL_1011620 SRS8270687 
USA/CO-Broad_WarriorLab-00153/2021 SAMN17906227 MW617653 EPI_ISL_1011621 SRS8270688 
USA/CO-Broad_WarriorLab-00156/2021 SAMN17906230 MW617654 EPI_ISL_1011622 SRS8270691 
USA/CO-Broad_WarriorLab-00157/2021 SAMN17906231 MW617655 EPI_ISL_1011623 SRS8270689 
USA/CO-Broad_WarriorLab-00158/2021 SAMN17906232 MW617656 EPI_ISL_1011624 SRS8270692 
USA/CO-Broad_WarriorLab-00163/2021 SAMN17906237 MW617659 EPI_ISL_1011627 SRS8270698 
USA/CO-Broad_WarriorLab-00167/2021 SAMN17906241 MW617661 EPI_ISL_1011629 SRS8270701 
USA/CO-Broad_WarriorLab-00168/2021 SAMN17906242 MW617662 EPI_ISL_1011630 SRS8270703 
USA/CO-Broad_WarriorLab-00160/2021 SAMN17906234 MW617657 EPI_ISL_1011625 SRS8270695 
USA/CO-Broad_WarriorLab-00169/2021 SAMN17906243 MW617663 EPI_ISL_1011631 SRS8270702 
USA/CO-Broad_WarriorLab-00172/2021 SAMN17906246 MW617665 EPI_ISL_1011633 SRS8270708 
USA/CO-Broad_WarriorLab-00173/2021 SAMN17906247 MW617666 EPI_ISL_1011634 SRS8270709 
USA/CO-Broad_WarriorLab-00176/2021 SAMN17906250 MW617669 EPI_ISL_1011637 SRS8270713 
USA/CO-Broad_WarriorLab-00179/2021 SAMN17906253 MW617672 EPI_ISL_1011640 SRS8270715 
USA/CO-Broad_WarriorLab-00181/2021 SAMN17906255 MW617673 EPI_ISL_1011641 SRS8270717 
USA/CO-Broad_WarriorLab-00183/2021 SAMN17906257 MW617675 EPI_ISL_1011643 SRS8270720 
USA/CO-Broad_WarriorLab-00184/2021 SAMN17906258 MW617676 EPI_ISL_1011644 SRS8270722 
USA/CO-Broad_WarriorLab-00185/2021 SAMN17906259 MW617677 EPI_ISL_1011645 SRS8270721 
USA/CO-Broad_WarriorLab-00186/2021 SAMN17906260 MW617678 EPI_ISL_1011646 SRS8270723 
USA/CO-Broad_WarriorLab-00193/2021 SAMN17906267 MW617685 EPI_ISL_1011653 SRS8270730 
USA/CO-Broad_WarriorLab-00194/2021 SAMN17906268 MW617686 EPI_ISL_1011654 SRS8270732 
USA/CO-Broad_WarriorLab-00195/2021 SAMN17906269 MW617687 EPI_ISL_1011655 SRS8270733 
USA/CO-Broad_WarriorLab-00196/2021 SAMN17906270 MW617688 EPI_ISL_1011656 SRS8270734 
USA/CO-Broad_WarriorLab-00197/2021 SAMN17906271 MW617689 EPI_ISL_1011657 SRS8270735 
USA/CO-Broad_WarriorLab-00198/2021 SAMN17906272 MW617690 EPI_ISL_1011658 SRS8270736 
USA/CO-Broad_WarriorLab-00199/2021 SAMN17906273 MW617691 EPI_ISL_1011659 SRS8270737 
USA/CO-Broad_WarriorLab-00200/2021 SAMN17906274 MW617692 EPI_ISL_1011660 SRS8270739 
USA/CO-Broad_WarriorLab-00201/2021 SAMN17906275 MW617693 EPI_ISL_1011661 SRS8270740 
USA/CO-Broad_WarriorLab-00202/2021 SAMN17906276 MW617694 EPI_ISL_1011662 SRS8270741 
USA/CO-Broad_WarriorLab-00203/2021 SAMN17906277 MW617695 EPI_ISL_1011663 SRS8270742 
USA/CO-Broad_WarriorLab-00204/2021 SAMN17906278 MW617696 EPI_ISL_1011664 SRS8270744 
USA/CO-Broad_WarriorLab-00205/2021 SAMN17906279 MW617697 EPI_ISL_1011665 SRS8270743 
USA/CO-Broad_WarriorLab-00206/2021 SAMN17906280 MW617698 EPI_ISL_1011666 SRS8270745 
USA/CO-Broad_WarriorLab-00207/2021 SAMN17906281 MW617699 EPI_ISL_1011667 SRS8270746 
USA/CO-Broad_WarriorLab-00208/2021 SAMN17906282 MW617700 EPI_ISL_1011668 SRS8270747 
USA/CO-Broad_WarriorLab-00209/2021 SAMN17906283 MW617701 EPI_ISL_1011669 SRS8270748 
USA/CO-Broad_WarriorLab-00210/2021 SAMN17906284 MW617702 EPI_ISL_1011670 SRS8270749 
USA/CO-Broad_WarriorLab-00211/2021 SAMN17906285 MW617703 EPI_ISL_1011671 SRS8270750 
USA/CO-Broad_WarriorLab-00212/2021 SAMN17906286 MW617704 EPI_ISL_1011672 SRS8270752 
USA/CO-Broad_WarriorLab-00213/2021 SAMN17906287 MW617705 EPI_ISL_1011673 SRS8270753 
USA/CO-Broad_WarriorLab-00215/2021 SAMN17906289 MW617706 EPI_ISL_1011674 SRS8270754 
USA/CO-Broad_WarriorLab-00216/2021 SAMN17906290 MW617707 EPI_ISL_1011675 SRS8270755 
USA/CO-Broad_WarriorLab-00217/2021 SAMN17906291 MW617708 EPI_ISL_1011676 SRS8270756 
USA/CO-Broad_WarriorLab-00218/2021 SAMN17906292 MW617709 EPI_ISL_1011677 SRS8270758 
USA/CO-Broad_WarriorLab-00219/2021 SAMN18306824 MW749874 EPI_ISL_1253885 SRS8468532 
USA/CO-Broad_WarriorLab-00220/2021 SAMN18306825 MW749875 EPI_ISL_1253886 SRS8468533 
USA/CO-Broad_WarriorLab-00221/2021 SAMN18306826 MW749876 EPI_ISL_1253887 SRS8468534 
USA/CO-Broad_WarriorLab-00222/2021 SAMN18306827 MW749877 EPI_ISL_1253888 SRS8468535 
USA/CO-Broad_WarriorLab-00225/2021 SAMN18306830 MW749878 EPI_ISL_1253889 SRS8468539 
USA/CO-Broad_WarriorLab-00226/2021 SAMN18306831 MW749879 EPI_ISL_1253890 SRS8468540 
USA/CO-Broad_WarriorLab-00227/2021 SAMN18306832 MW749880 EPI_ISL_1253891 SRS8468541 
USA/CO-Broad_WarriorLab-00228/2021 SAMN18306833 MW749881 EPI_ISL_1253892 SRS8468542 
USA/CO-Broad_WarriorLab-00229/2021 SAMN18306834 MW749882 EPI_ISL_1253893 SRS8468543 
USA/CO-Broad_WarriorLab-00230/2021 SAMN18306835 MW749883 EPI_ISL_1253894 SRS8468544 
USA/CO-Broad_WarriorLab-00231/2021 SAMN18306836 MW749884 EPI_ISL_1253895 SRS8468545 
USA/CO-Broad_WarriorLab-00287/2021 SAMN18306892 MW749928 EPI_ISL_1253939 SRS8468340 
USA/CO-Broad_WarriorLab-00288/2021 SAMN18306893 MW749929 EPI_ISL_1253940 SRS8468257 
USA/CO-Broad_WarriorLab-00232/2021 SAMN18306837 MW749885 EPI_ISL_1253896 SRS8468546 
USA/CO-Broad_WarriorLab-00233/2021 SAMN18306838 MW749886 EPI_ISL_1253897 SRS8468547 
USA/CO-Broad_WarriorLab-00234/2021 SAMN18306839 MW749887 EPI_ISL_1253898 SRS8468548 
USA/CO-Broad_WarriorLab-00235/2021 SAMN18306840 MW749888 EPI_ISL_1253899 SRS8468551 
USA/CO-Broad_WarriorLab-00236/2021 SAMN18306841 MW749889 EPI_ISL_1253900 SRS8468552 
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USA/CO-Broad_WarriorLab-00237/2021 SAMN18306842 MW749890 EPI_ISL_1253901 SRS8468386 
USA/CO-Broad_WarriorLab-00239/2021 SAMN18306844 MW749891 EPI_ISL_1253902 SRS8468388 
USA/CO-Broad_WarriorLab-00241/2021 SAMN18306846 MW749892 EPI_ISL_1253903 SRS8468390 
USA/CO-Broad_WarriorLab-00242/2021 SAMN18306847 MW749893 EPI_ISL_1253904 SRS8468391 
USA/CO-Broad_WarriorLab-00243/2021 SAMN18306848 MW749894 EPI_ISL_1253905 SRS8468392 
USA/CO-Broad_WarriorLab-00244/2021 SAMN18306849 MW749895 EPI_ISL_1253906 SRS8468393 
USA/CO-Broad_WarriorLab-00245/2021 SAMN18306850 MW749896 EPI_ISL_1253907 SRS8468395 
USA/CO-Broad_WarriorLab-00246/2021 SAMN18306851 MW749897 EPI_ISL_1253908 SRS8468396 
USA/CO-Broad_WarriorLab-00248/2021 SAMN18306853 MW749898 EPI_ISL_1253909 SRS8468398 
USA/CO-Broad_WarriorLab-00249/2021 SAMN18306854 MW749899 EPI_ISL_1253910 SRS8468399 
USA/CO-Broad_WarriorLab-00250/2021 SAMN18306855 MW749900 EPI_ISL_1253911 SRS8468400 
USA/CO-Broad_WarriorLab-00251/2021 SAMN18306856 MW749901 EPI_ISL_1253912 SRS8468401 
USA/CO-Broad_WarriorLab-00252/2021 SAMN18306857 MW749902 EPI_ISL_1253913 SRS8468402 
USA/CO-Broad_WarriorLab-00253/2021 SAMN18306858 MW749903 EPI_ISL_1253914 SRS8468403 
USA/CO-Broad_WarriorLab-00256/2021 SAMN18306861 MW749904 EPI_ISL_1253915 SRS8468407 
USA/CO-Broad_WarriorLab-00257/2021 SAMN18306862 MW749905 EPI_ISL_1253916 SRS8468408 
USA/CO-Broad_WarriorLab-00258/2021 SAMN18306863 MW749906 EPI_ISL_1253917 SRS8468409 
USA/CO-Broad_WarriorLab-00260/2021 SAMN18306865 MW749907 EPI_ISL_1253918 SRS8468411 
USA/CO-Broad_WarriorLab-00261/2021 SAMN18306866 MW749908 EPI_ISL_1253919 SRS8468412 
USA/CO-Broad_WarriorLab-00262/2021 SAMN18306867 MW749909 EPI_ISL_1253920 SRS8468413 
USA/CO-Broad_WarriorLab-00263/2021 SAMN18306868 MW749910 EPI_ISL_1253921 SRS8468313 
USA/CO-Broad_WarriorLab-00264/2021 SAMN18306869 MW749911 EPI_ISL_1253922 SRS8468314 
USA/CO-Broad_WarriorLab-00265/2021 SAMN18306870 MW749912 EPI_ISL_1253923 SRS8468316 
USA/CO-Broad_WarriorLab-00266/2021 SAMN18306871 MW749913 EPI_ISL_1253924 SRS8468317 
USA/CO-Broad_WarriorLab-00267/2021 SAMN18306872 MW749914 EPI_ISL_1253925 SRS8468318 
USA/CO-Broad_WarriorLab-00268/2021 SAMN18306873 MW749915 EPI_ISL_1253926 SRS8468319 
USA/CO-Broad_WarriorLab-00269/2021 SAMN18306874 MW749916 EPI_ISL_1253927 SRS8468320 
USA/CO-Broad_WarriorLab-00271/2021 SAMN18306876 MW749917 EPI_ISL_1253928 SRS8468322 
USA/CO-Broad_WarriorLab-00272/2021 SAMN18306877 MW749918 EPI_ISL_1253929 SRS8468323 
USA/CO-Broad_WarriorLab-00273/2021 SAMN18306878 MW749919 EPI_ISL_1253930 SRS8468324 
USA/CO-Broad_WarriorLab-00275/2021 SAMN18306880 MW749920 EPI_ISL_1253931 SRS8468327 
USA/CO-Broad_WarriorLab-00282/2021 SAMN18306887 MW749923 EPI_ISL_1253934 SRS8468334 
USA/CO-Broad_WarriorLab-00276/2021 SAMN18306881 MW749921 EPI_ISL_1253932 SRS8468328 
USA/CO-Broad_WarriorLab-00278/2021 SAMN18306883 MW749922 EPI_ISL_1253933 SRS8468330 
USA/CO-Broad_WarriorLab-00283/2021 SAMN18306888 MW749924 EPI_ISL_1253935 SRS8468335 
USA/CO-Broad_WarriorLab-00284/2021 SAMN18306889 MW749925 EPI_ISL_1253936 SRS8468336 
USA/CO-Broad_WarriorLab-00285/2021 SAMN18306890 MW749926 EPI_ISL_1253937 SRS8468338 
USA/CO-Broad_WarriorLab-00286/2021 SAMN18306891 MW749927 EPI_ISL_1253938 SRS8468339 
USA/CO-CDCBI-Warrior_00289/2021 SAMN18498486 MW834877 EPI_ISL_1413769 SRS8613058 
USA/CO-CDCBI-Warrior_00290/2021 SAMN18498487 MW834878 EPI_ISL_1413771 SRS8613060 
USA/CO-CDCBI-Warrior_00291/2021 SAMN18498488 MW834879 EPI_ISL_1413774 SRS8613059 
USA/CO-CDCBI-Warrior_00292/2021 SAMN18498489 MW834880 EPI_ISL_1413776 SRS8613061 
USA/CO-CDCBI-Warrior_00293/2021 SAMN18498490 MW834881 EPI_ISL_1413779 SRS8613063 
USA/CO-CDCBI-Warrior_00294/2021 SAMN18498491 MW834882 EPI_ISL_1413781 SRS8613064 
USA/CO-CDCBI-Warrior_00295/2021 SAMN18498492 MW834883 EPI_ISL_1413784 SRS8613065 
USA/CO-CDCBI-Warrior_00296/2021 SAMN18498493 MW834884 EPI_ISL_1413787 SRS8613066 
USA/CO-CDCBI-Warrior_00300/2021 SAMN18790465 MZ217780 EPI_ISL_2133621 SRS8763083 
USA/CO-CDCBI-Warrior_00301/2021 SAMN18790466 MZ217781 EPI_ISL_2133623 SRS8763082 
USA/CO-CDCBI-Warrior_00302/2021 SAMN18790467 MZ217782 EPI_ISL_2133625 SRS8763084 
USA/CO-CDCBI-Warrior_00304/2021 SAMN18790469 MZ217783 EPI_ISL_2133626 SRS8763087 
USA/CO-CDCBI-Warrior_00305/2021 SAMN18790470 MZ217784 EPI_ISL_2133628 SRS8763088 
USA/CO-CDCBI-Warrior_00312/2021 SAMN19224119 MZ217786 EPI_ISL_2133928 SRS9003810 
USA/CO-CDCBI-Warrior_00311/2021 SAMN19224118 MZ217785 EPI_ISL_2133927 SRS9003809 

Sequence Identifier (wastewater) Biosample 
Accession 

GenBank 
Accession 

GISAID Identifier SRA Accession 

USA-CO-Broad_CMU_W0011-2021 SAMN29048169   SRR19659512 
USA-CO-Broad_CMU_W0012-2021 SAMN29048170   SRR19659511 
USA-CO-Broad_CMU_W0013-2021 SAMN29048171   SRR19659500 
USA-CO-Broad_CMU_W0014-2021 SAMN29048172   SRR19659489 
USA-CO-Broad_CMU_W0015-2021 SAMN29048173   SRR19659478 
USA-CO-Broad_CMU_W0016-2021 SAMN29048174   SRR19659475 
USA-CO-Broad_CMU_W0017-2021 SAMN29048175   SRR19659474 
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USA-CO-Broad_CMU_W0018-2021 SAMN29048176   SRR19659473 
USA-CO-Broad_CMU_W0019-2021 SAMN29048177   SRR19659472 
USA-CO-Broad_CMU_W0020-2021 SAMN29048178   SRR19659471 
USA-CO-Broad_CMU_W0021-2021 SAMN29048179   SRR19659510 
USA-CO-Broad_CMU_W0030-2021 SAMN29048180   SRR19659509 
USA-CO-Broad_CMU_W0034-2021 SAMN29048181   SRR19659508 
USA-CO-Broad_CMU_W0040-2021 SAMN29048182   SRR19659507 
USA-CO-Broad_CMU_W0043-2021 SAMN29048183   SRR19659506 
USA-CO-Broad_CMU_W0082-2021 SAMN29048184   SRR19659505 
USA-CO-Broad_CMU_W0084-2021 SAMN29048185   SRR19659504 
USA-CO-Broad_CMU_W0094-2021 SAMN29048186   SRR19659503 
USA-CO-Broad_CMU_W0095-2021 SAMN29048187   SRR19659502 
USA-CO-Broad_CMU_W0109-2021 SAMN29048188   SRR19659501 
USA-CO-Broad_CMU_W0130-2021 SAMN29048189   SRR19659499 
USA-CO-Broad_CMU-W0031-2021 SAMN18858704   SRR19659498 
USA-CO-Broad_CMU-W0033-2021 SAMN18858705   SRR19659497 
USA-CO-Broad_CMU-W0035-2021 SAMN18858706   SRR19659496 
USA-CO-Broad_CMU-W0038-2021 SAMN18858707   SRR19659495 
USA-CO-Broad_CMU-W0039-2021 SAMN18858708   SRR19659494 
USA-CO-Broad_CMU-W0042-2021 SAMN18858709   SRR19659493 
USA-CO-Broad_CMU-W0044-2021 SAMN18858710   SRR19659492 
USA-CO-Broad_CMU-W0045-2021 SAMN18858711   SRR19659491 
USA-CO-Broad_CMU-W0046-2021 SAMN18858712   SRR19659490 
USA-CO-Broad_CMU-W0047-2021 SAMN18858713   SRR19659488 
USA-CO-Broad_CMU-W0053-2021 SAMN18858714   SRR19659487 
USA-CO-Broad_CMU-W0054-2021 SAMN18858715   SRR19659486 
USA-CO-Broad_CMU-W0058-2021 SAMN18858716   SRR19659485 
USA-CO-Broad_CMU-W0059-2021 SAMN18858717   SRR19659484 
USA-CO-Broad_CMU-W0062-2021 SAMN18858718   SRR19659483 
USA-CO-Broad_CMU-W0069-2021 SAMN18858719   SRR19659482 
USA-CO-Broad_CMU-W0070-2021 SAMN18858720   SRR19659481 
USA-CO-Broad_CMU-W0101-2021 SAMN18858721   SRR19659480 
USA-CO-Broad_CMU-W0107-2021 SAMN18858722   SRR19659479 
USA-CO-Broad_CMU-W0108-2021 SAMN18858723   SRR19659477 
USA-CO-Broad_CMU-W0127-2021 SAMN18858724   SRR19659476 
 433 
Published sequences used in this study, listed with NCBI BioSample accessions, NCBI 434 
GenBank sequence accessions, GISAID identifiers, and/or SRA accessions. 435 

Appendix Table 6  436 

Appendix Table 6. Lineages present in sequenced wastewater samples 437 
 438 

Sample ID Date Site B.1.1.519 B.1.126 B.1.2 B.1.234 B.1.350 B.1.429 B.1.429.1 B.1.533 

CO_CMU_W0011 2-12 Site 5   0.09    0.84  

CO_CMU_W0012 2-12 Site 5   0.11    0.84  

CO_CMU_W0013 2-12 Site 5   0.12    0.82  

CO_CMU_W0014 2-16 Site 1  1.00       

CO_CMU_W0015 2-16 Site 8   0.12   0.11 0.77  

CO_CMU_W0016 2-17 Site 3       1.00  
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CO_CMU_W0017 2-17 Site 6   0.91      

CO_CMU_W0018 2-17 Site 7   1.00      

CO_CMU_W0019 2-17 Site 11         

CO_CMU_W0020 2-17 Site 4       1.00  

CO_CMU_W0021 2-17 Site 2   0.93      

CO_CMU_W0030 2-11 Site 6   0.13 0.31   0.54  

CO_CMU_W0034 2-15 Site 5   0.28    0.47  

CO_CMU_W0040 2-18 Site 11   0.79      

CO_CMU_W0043 2-18 Site 8      0.16 0.81  

CO_CMU_W0082 3-01 Site 6       0.93  

CO_CMU_W0084 3-01 Site 4   0.99      

CO_CMU_W0094 3-04 Site 5   0.58    0.34  

CO_CMU_W0095 3-04 Site 3   0.49    0.26  

CO_CMU_W0109 3-09 Site 1       1.00  

CO_CMU_W0130 3-18 Site 1       0.31  

CO_CMU_W0031 2-11 Site 1     0.03  0.96  

CO_CMU_W0033 2-15 Site 10       0.99  

CO_CMU_W0035 2-18 Site 5   0.99      

CO_CMU_W0038 2-18 Site 4   0.99      

CO_CMU_W0039 2-18 Site 1   0.93    0.05  

CO_CMU_W0042 2-18 Site 10       0.99  

CO_CMU_W0046 2-22 Site 4   0.99      

CO_CMU_W0058 2-23 Site 11   0.98      

CO_CMU_W0059 2-23 Site 5       0.85  

CO_CMU_W0062 2-23 Site 1       1.00  

CO_CMU_W0069 2-25 Site 5   0.99      

CO_CMU_W0070 2-25 Site 3       0.96  

CO_CMU_W0101 3-08 Site 3       0.99  

CO_CMU_W0107 3-08 Site 5       0.94  

CO_CMU_W0108 3-09 Site 3       0.99  

CO_CMU_W0127 3-16 Site 5 0.12  0.08    0.72 0.07 

 439 
Wastewater-detected lineages and their relative abundances. For each wastewater sample, 440 
collection date and site of collection are also listed. Lineages and abundances were determined 441 
via application of the Freyja program, as described in detail in the Supplementary Methods.  442 
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Appendix Table 7  443 

Appendix Table 7. Replicate-confirmed single nucleotide variant mutations identified in 444 
sequenced wastewater samples but not present in sequenced clinical samples 445 
 446 

SNV  In CO Change Gene Amino 
acid 

Presence in proportion of 
42 wastewater samples 

Maximum allele 
frequency 

T5260A False Synonymous ORF1ab T1665T 10% 29% 

T6174G False Missense ORF1ab I1970S 17% 32% 

T9843A False Stop ORF1ab L3193* 14% 4% 

C10650T False Missense ORF1ab T3462I 31% 100% 

T27444G False Synonymous ORF7a L17L 7% 27% 

C835T True Synonymous ORF1ab F190F 38% 100% 

C6501T True Missense ORF1ab P2079L 38% 99% 

G14126A True Missense ORF1ab S4621N 5% 100% 

C21952T True Synonymous S V130V 38% 100% 

T26099C True Missense ORF3a I236T 33% 100% 

C28344T True Missense N T24I 38% 96% 

 447 
Replicate-confirmed mutations identified in wastewater samples from CMU, but not in clinical 448 
samples. SNV nucleotide changes and positions are listed in bp, relative to the reference 449 
ancestral genome, NC_045512.2 (1st column) along with corresponding amino acid changes 450 
(4th and 5th columns), the class of change (3rd column), the proportion of samples bearing the 451 
change (6th column), and the highest allele frequency of that change amongst those samples 452 
(final column). Some of these mutations were present in Colorado clinical viral genomes (2nd 453 
column), or representative of specific Pango lineages (penultimate column). 454 

Appendix Table 8  455 

Appendix Table 8. Nucleotide and amino acid substitutions present in the B.1.429.1 lineage 456 
 457 

Region Amino Acid Changes Characteristic 
of B.1.429 

Additional Amino Acid Changes Characteristic of 
B.1.429.1 

ORF1a T265I, I4205V F2827L, V3367I 

ORF1b P314L, D1183Y P314L, D1183Y 

S S13I, W152C*, L452R*, D614G* Q677H 
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ORF3a Q57H A23V 

N T205I* P142S, M234I* 

ORF8  V100L 

 458 
Characteristic amino acid mutations for B.1.429.1 and parent lineage B.1.429. Mutations are 459 
categorized by location / gene. Mutations with an accompanying asterisk were not seen in all 460 
B.1.429.1 sequenced genomes; however, this may have been due to gaps in sequencing 461 
coverage. 462 

Appendix Table 9  463 

Appendix Table 9. Summary of data sources used at Colorado Mesa University for their 464 
infectious disease surveillance program and additional recommendations for future institutional 465 
surveillance programs.   466 
 467 

 Epidemiological 
Analyses 

Clinical Viral 
Genomic 
Sequencing 

Wastewater Surveillance & 
Sequencing 

Wifi Proximity 
Analyses 

General 
Utility 

Identify 
epidemiological risk 
factors 

Parametrize cluster 
distribution and 
identify lineages and 
mutations 

Establish quality control 
standards  

Discriminate 
interaction 
patterns by test 
positivity  

Current 
Utility to 
Institution 

Specify athletic,  
residential, and 
class-year risks 

Identify VoC/VoI & 
transmission clusters 

Designate testing resources 
based on surveillance; 
sequencing to detect mutations 
not seen clinically 

——————— 

Potential for 
Future Utility 

Automatically integrate metadata, wastewater surveillance, sequencing, and wifi-based contact 
tracing into comprehensive surveillance system made directly accessible for the community or 
public health officials 

Cost of 
Acquisition 

Medium: 
Personnel 
(cataloging 
information) 

Medium: 
Transportation of 
excess clinical 
samples 

Medium–High: 
Establishment of collection 
devices   

Low: 
Established 
infrastructure 

Cost of 
Analysis 

Low: Personnel 
(analysis) 

High: 
Sequencing reagents 
and computing 
resources 

Low: PCR reagents Low: 
Computing 
resources 

Medium: 
Sequencing costs reduced 
relative to clinical due to fewer 
samples 

Difficulty of 
Analysis 

Low:  
Established 
statistical methods 

Low:  
Established tools for 
phylogenetic trees 

Low:  
Established tools for PCR 
analysis 

High: 
Few established 
tools  
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Medium: 
Few established tools/methods 
for mixed sequence analysis 

 468 
Comparison of the utility and costs of each data source utilized in this study. We recommend 469 
incorporation of these tools in a specific manner given resource availability (Figure 7). VoC = 470 
Variant of Concern; VOI = Variant of Interest. 471 

Appendix Table 10  472 

Appendix Table 10. Jaccard similarity between clusters derived from genomic reconstruction 473 
supplemented by different contact tracing data sets 474 

Comparison Groups Cluster Color Jaccard Similarity 

 
 

CT vs. 2-Day Wifi 

Orange .421 

Light Blue 1.0 

Pink 0.0 

Yellow 1.0 

 
 

CT vs. 10-Day Wifi 

Orange .889 

Light Blue 1.0 

Pink 1.0 

Yellow 1.0 

 
 

2-Day Wifi vs. 10-Day Wifi 

Orange .474 

Light Blue 1.0 

Pink 0 

Yellow 1.0 

 475 
We computed the Jaccard similarity for distinct transmission reconstruction networks for 476 
individuals with the B.1.429.1 lineage. We supplemented the genomic reconstruction in the trials 477 
using three different definitions of close contacts: (1) manual contact tracing data, (2) 10-day 478 
wifi-derived contacts, and (3) 2-day wifi-derived contacts. 479 

Appendix Table 11  480 

Appendix Table 11. Summary of metrics used for the wifi proximity network analyses 481 
 482 

Metric Name Variables Formula and Text Description Figure Panel 
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(Median of) 
Daily 
Contacts 

individual 

������ � for each day present on campus:

number of unique contacts for individual
� 

 
For each day that an individual is present on campus, calculate 
number of unique contacts; then take the median. 

Figure 3A, left 

(Median of) 
Average 
Exposure 
Time per 
Contact 

individual 

 

������ 	 for each day present on campus:∑ total interaction time with �������
��unique contacts

number of unique contacts for individual

� 

 
For each day than an individual is present on campus, calculate the 
total time spent with all contacts and the number of unique contacts. 
Divide the total time by the number of contacts per day and take the 
median of these values. 
 

Figure 3A, right 

Number of 
Days on 
Campus 

individual 

 
# of days that individual is connected to an AP 

 
Calculate the number of days an individual is present on campus. 
 

Appendix Figure 
5AB; Appendix 
Figure 7B 

Number of 
Individuals 
on Campus 

day, user 
category 

 
# of individuals of user category connected to an AP on day 

 
For a given day, calculate the number of unique individuals of a given 
user category (i.e. semester positive vs semester negative) that are 
present on campus. 
 

Appendix Figure 
5CD, left 

Proportion 
of 
Individuals 
on Campus 

day, user 
category 

 # of individuals of 
��� ����� �! connected to an AP on ��!
��' � for each day:

# of individuals of user category connected to an AP
� 

 
For a given day, calculate the number of users of a given user 
category (i.e., semester positive or semester negative) present on 
campus. Divide by the maximum value of this metric for the given user 
category across all days. 
 

Appendix Figure 
5CD, right 

(Median of) 
Median 

Duration of 
AP 

Connections 

day of week, 
building 
category 

 

������ ( for each day ) day of week:������ �for each AP connection )  *
������ ����� �!:
duration of connection

�, 
 
For a given building type and a given day of the week (i.e., Monday), 
calculate the median AP connection duration for each day; then take 
the median. Building type can be ‘all’, ‘residential’, ‘other’, or 
‘academic’. 
 

Appendix Figure 
6AB 

(Median of) 
Daily 

Number of 
AP 

Connections 

day of week, 
building 
category 

 ������ � for each day ) day of week:

#number of AP connections ) building category
� 

 
For a given building type and a given day of the week (i.e., Monday), 
calculate the total number of AP connections for each day; then take 
the median. Building type can be ‘all’, ‘residential’, ‘other’, or 
‘academic’. 
 

Appendix Figure 
6CD 

Total Daily 
Interaction 
Duration 

pair, day 
 - interaction duration

all interactions of pair on day

 
Appendix Figure 
7C; Appendix 
Figure 12A 
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Across all interactions for a given pair on a given day, calculate the 
total contact time between the pair. Pairs are defined as two 
individuals connecting to the same access point at the same time. 
 

Median 
Daily 

Interaction 
Duration 

pair, day 

 ������ .for each interaction of pair on day:

interaction duration
/ 

 
Across all interactions for a given pair on a given day, calculate the 
median contact time between the pair. Pairs are defined as two 
individuals connecting to the same access point at the same time. 
 

Appendix Figure 
7D; Appendix 
Figure 12B 

 483 
The metric names, associated variables, formulas, text descriptions, and the associated figure 484 
panel are listed for all metrics used in wifi proximity network analyses. 485 
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