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Abstract (248/250) 1 

Antibody titers wane after two-dose COVID-19 vaccinations, but individual variation in 2 

vaccine-elicited antibody dynamics remains to be explored. Here, we created a personalized 3 

antibody score that enables individuals to infer their antibody status by use of a simple calculation. 4 

We recently developed a mathematical model of B cell differentiation to accurately interpolate the 5 

longitudinal data from a community-based cohort in Fukushima, Japan, which consists of 2,159 6 

individuals who underwent serum sampling two or three times after a two-dose vaccination with 7 

either BNT162b2 or mRNA-1273. Using the individually reconstructed time course of the vaccine-8 

elicited antibody response, we first elucidated individual background factors that contributed to 9 

the main features of antibody dynamics, i.e., the peak, the duration, and the area under the curve. 10 

We found that increasing age was a negative factor and a longer interval between the two doses 11 

was a positive factor for individual antibody level. We also found that the presence of underlying 12 

disease and the use of medication affected antibody levels negatively, whereas the presence of 13 

adverse reactions upon vaccination affected antibody levels positively. We then applied to these 14 

factors a recently proposed computational method to optimally fit clinical scores, which resulted 15 

in an integer-based score that can be used to evaluate the antibody status of individuals from 16 

their basic demographic and health information. This score can be easily calculated by individuals 17 

themselves or by medical practitioners. There is a potential usefulness of this score for identifying 18 

vulnerable populations and encouraging them to get booster vaccinations.  19 
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Significance statement (117/120) 20 

Different individuals show different antibody titers even after the same COVID-19 21 

vaccinations, making some individuals more prone to breakthrough infections than others. Such 22 

variability remains to be clarified. Here we used mathematical modeling to reconstruct individual 23 

post-vaccination antibody dynamics from a cohort of 2,159 individuals in Fukushima, Japan. 24 

Machine learning identified several positive and negative factors affecting individual antibody 25 

titers. Positive factors included adverse reactions after vaccinations and a longer interval between 26 

two vaccinations. Negative factors included age, underlying medical conditions, and medications. 27 

We combined these factors and developed an “antibody score” to estimate individual antibody 28 

dynamics from basic demographic and health information. This score can help to guide individual 29 

decision-making about taking further precautions against COVID-19. 30 

 31 

Keywords: 32 

COVID-19, Vaccine-elicited antibody response, Feature engineering, Mathematical model, 33 

Feature importance 34 

  35 
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\body 36 

Text 37 

 The ongoing COVID-19 pandemic has caused more than 500 million cases and 6 million 38 

confirmed deaths worldwide. The current COVID-19 vaccines, which became available in late 39 

2020 to early 2021, have helped vaccine recipients acquire immunity against SARS-CoV-2 and 40 

reduce their likelihood of infection and hospitalization (1, 2). 41 

 In the case of two-dose mRNA-based vaccines such as BNT162b2 and mRNA-1273, 42 

antibody titers, on average, reach a peak around two weeks after the second vaccination and 43 

decline thereafter. However, explanation of the individual variability in vaccine-elicited antibody 44 

dynamics has remained elusive. Past studies addressing dynamics focused on the average of a 45 

group of individuals (i.e., population-level dynamics) having specific demographic characteristics 46 

such as age or sex (3-8) and thus have not led to personalized advice for individuals. Some 47 

studies included only health care workers and did not cover the whole spectrum of the general 48 

population, especially older adults and those with underlying medical conditions (4, 9-12). Most 49 

of the other studies targeted at the general population lumped antibody measurements together 50 

with different elapsed times since vaccination (12-17), making precise determination and 51 

comparison of individual dynamics difficult. 52 

 Here, we used a mathematical model (developed in (18)) to describe the process of 53 

differentiation from naïve B cells to plasma cells to accurately reconstruct individual vaccine-54 

elicited antibody dynamics in the Fukushima vaccination cohort (a community-based cohort in 55 

Fukushima, Japan). The model parameters describe highly variable individual-level antibody 56 

responses, allowing us to partially predict variation in vaccine response on the basis of personal 57 

information including age, adverse reactions, comorbidities, and medication use. Furthermore, 58 

we devised a useful personalized antibody score that allows individuals to predict their antibody 59 

status from their personal information. The score can be used by medical practitioners to 60 

encourage individuals with low predicted antibody levels to get booster vaccinations.  61 
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Results 62 

Deriving measures of peak, duration, and area under the curve of vaccine-elicited antibody 63 

dynamics 64 

 We fully reconstructed the dynamics of IgG(S) titers after the first vaccination for 2,159 65 

individuals in the Fukushima vaccination cohort in Supplementary Fig 1C (see Methods in 66 

detail) and extracted the “features” described in Fig 1A for each individual: the peak, duration, 67 

and area under the curve (AUC) of the reconstructed antibody dynamics. To quantify these 68 

features, we here assumed 𝐴𝐴TH = 100  and determined 𝑡𝑡𝑠𝑠 and 𝑡𝑡𝑒𝑒 corresponding to the time for 69 

the antibody titer to be greater than and smaller than 𝐴𝐴TH, respectively. Therefore, the duration 70 

and AUC of the antibody titer are formulated by 𝑡𝑡𝑒𝑒 − 𝑡𝑡𝑠𝑠 and ∫ 𝐴𝐴(𝑠𝑠)𝑡𝑡𝑒𝑒
𝑡𝑡𝑠𝑠

𝑑𝑑𝑑𝑑, respectively. In addition, 71 

defining 𝑡𝑡𝑝𝑝 to be the time for the antibody titer to reach its peak, the peak titer is 𝐴𝐴�𝑡𝑡𝑝𝑝�. In Fig 72 

1B, we summarized distributions of the AUC, duration, and peak for 2,159 participants. We then 73 

compared these features among the participants. We used the logarithm (log10) of the peak and 74 

of the AUC because these measures had a long-tailed distribution spanning at least two orders 75 

of magnitude (Supplementary Fig 2A). The Pearson correlation matrix (Fig 1C) showed that the 76 

AUC was highly correlated with the duration and the peak, meaning that the three features are 77 

similar. Note that a similar trend was obtained under a different 𝐴𝐴TH (data not shown). These 78 

features allowed us to quantitatively compare vaccine-elicited antibody dynamics among the 79 

participants (see next section).  80 
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81 
Figure 1 | Quantifying vaccine-elicited antibody dynamics: (A) Vaccine-elicited antibody 82 

response after the first vaccination (i.e., 𝑡𝑡 = 0) is described with the following “features”: the peak 83 

(𝐴𝐴(𝑡𝑡𝑝𝑝)), duration (𝑡𝑡𝑒𝑒 − 𝑡𝑡𝑠𝑠), and AUC (∫ 𝐴𝐴(𝑠𝑠)𝑡𝑡𝑒𝑒
𝑡𝑡𝑠𝑠

𝑑𝑑𝑑𝑑) of the antibody titers. The vertical and horizontal 84 

dashed lines correspond to the date of the second vaccination and the arbitrary threshold (𝐴𝐴TH) 85 

for calculating the duration and AUC, respectively. (B) Distributions of the extracted features from 86 

the reconstructed antibody dynamics (i.e., the peak, duration, and AUC) for 2,407 participants are 87 

plotted. The dataset for each distribution was normalized by the value corresponding to the 95th 88 

percentile of data values, and data whose values were larger than this value were removed to 89 

improve the visibility of the figure. (C) Heatmap plot showing Pearson correlation matrix describing 90 

three features (log10 of peak, log10 of AUC, duration) of antibody dynamics. 91 

  92 
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Characterizing vaccine-elicited antibody dynamics 93 

 To see how individual background factors contributed to the three features, we trained a 94 

random forest regressor to predict the features from basic demographic information for the 95 

participants, including underlying medical conditions, adverse reactions to vaccinations, and 96 

medications, as described in Supplementary Table 1. The out-of-bag (OOB) R squared values 97 

obtained were 15.9%, 27.9%, and 23.7% for the peak, AUC, and duration, respectively, 98 

suggesting that the features can be partially explained by the background information available. 99 

We visualized significant factors as a Chord diagram, in which the size of the arcs connecting 100 

individual factors to each of the three features indicates their importance in predicting the feature 101 

(Fig 2A). 102 

We used partial dependence plots to look into the dependence of these features on the 103 

continuous variables, i.e., age and the interval between the two doses (Fig 2B). All the features 104 

decreased as age increased. Two features, the AUC and the peak, increased as the interval 105 

increased. By contrast, the duration was smallest at the interval of 21 days and increased as the 106 

interval became longer than that. However, we had only 13 participants with an interval of fewer 107 

than 20 days and the difference between their duration and the duration of others was not 108 

statistically significant (p = 0.61). We next looked at the dependence of the features on categorical 109 

variables: we found that the presence of underlying diseases (collagen diseases and rheumatism) 110 

and medication use (antihistamines, immunosuppressants, and steroids) affected the features 111 

negatively, while the presence of adverse reactions affected the features positively. The result of 112 

a similar analysis on the model parameters 𝐻𝐻2 and 𝑚𝑚 is shown in Supplementary Fig 2B. 113 

  114 
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 115 

Figure 2 | Characterizing and scoring vaccine-elicited antibody dynamics: (A) Chord 116 

diagram representing the most predictive factors of three “features” of antibody titers (i.e., peak, 117 

duration, and AUC) is shown. The size of the arc from a group to a feature is proportional to its 118 

importance as measured by Mean Decrease in Accuracy. Features with 𝑝𝑝 < 0.05 are displayed. 119 

(B) Partial dependence plots showing the dependence of the three features on age or the interval 120 

between two vaccinations are shown. (C) Metric for calculating the “top AUC score,” i.e., a score 121 

to identify individuals with AUC in the top third of the population. (D) Left: Distribution of the top 122 

AUC scores in the test dataset: 19, 78, 92, 104, and 91 individuals had scores of -2 or less, -1, 0, 123 

1, or 2 or more, respectively. Those in the top third of the test dataset are shown in yellow, and 124 

those not in the top third are shown in orange. The ratio of individuals with AUC in the top third of 125 

the test dataset increased as the top AUC score increased. Right: the average AUC tended to 126 

increase as the top AUC score increased.  127 
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Deriving a personalized antibody score 128 

 Combining the above demographic and health information, we devised a simple score 129 

that enables individuals to roughly estimate their antibody status. We chose the AUC of the 130 

antibody dynamics as a representative feature of individual antibody status, because the other 131 

features (the peak and the duration) are highly correlated with and similar to the AUC (Fig 1C). 132 

Recently, a systematic approach to fit optimized scores with mixed-integer nonlinear 133 

programming was proposed (19). We applied this method to construct two types of scores to 134 

cover the whole range of AUC: a score to predict whether an individual’s AUC is in the top third 135 

of the population (i.e., top AUC score, Fig 2C) and a score to predict whether an individual’s AUC 136 

is in the bottom third (i.e., bottom AUC score, Supplementary Fig 2C).  137 

 We first divided our dataset into training and test datasets. The training dataset consisted 138 

of participants in Minami Soma City and Hirata Village (1775 individuals), and the test dataset 139 

consisted of participants in Soma City (384 individuals). We used the training dataset for fitting 140 

the scores. The algorithm searches the space of linear combinations of features with integer 141 

coefficients from -5 to +5 to find the best combination to differentiate the population in the top third 142 

of the training dataset from the rest (or the bottom third from the rest) (Fig 2C). We then assessed 143 

the performance of these scores in the test dataset, that is, we tested whether the scores just 144 

created could differentiate the population in the top third of the test dataset from the rest (or the 145 

bottom third from the rest). 146 

 The top AUC scores in the test dataset were between -2 and 2, except for two individuals 147 

with scores of -5 and 4, respectively (Fig 2D left). The 91 individuals with scores of 2 or more 148 

(shown in yellow and orange) included 52 individuals (shown in yellow) whose AUC belonged to 149 

the top third of the test dataset population (57.1%). The 104 individuals with a score of 1 included 150 

46 individuals with AUC in the top third (44.2%). The 92 individuals with a score of 0 included 13 151 

individuals with AUC in the top third (14.1%). The 78 individuals with a score of -1 included 16 152 

individuals with AUC in the top third (20.5%). The 19 individuals with a score of -2 or less included 153 

only 1 individual with AUC in the top third (5.2%). Thus, the higher an individual’s top AUC score, 154 
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the more likely they were to belong to the top third of the population and have a higher AUC as 155 

well (Fig 2D right). On the other hand, we calculated the bottom AUC scores in the test dataset, 156 

which were between -4 and 2, except for one individual with a score of 3 (Supplementary Fig 157 

2D left). We confirmed similar trends. For example, the 65 individuals with a score of 1 included 158 

34 individuals with AUC in the bottom third (52.3%). Thus, the higher an individual’s bottom AUC 159 

score, the more likely they were to belong to the bottom third of the population and have a lower 160 

AUC as well (Supplementary Fig 2D right). These results suggest that the personalized AUC 161 

score can estimate individual antibody status with reasonable accuracy, helping individuals make 162 

informed decisions about their disease prevention.  163 
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Discussion 164 

In this study, we created a personalized antibody score that evaluates the antibody status 165 

of individuals. To make an optimal score, we used a mathematical model of antibody production 166 

in response to two-dose mRNA vaccinations, as developed in our previous paper (18), and 167 

reconstructed the vaccine-elicited antibody dynamics of 2,159 participants from the Fukushima 168 

vaccination cohort. Our mechanism-based mathematical modeling, in contrast to the statistical 169 

modeling used in recent reports (3, 20), enabled biologically accurate description and precise 170 

comparison of antibody dynamics. The parameters of the estimated dynamics showed a large 171 

variation spanning two orders of magnitude. This variation was partially explained by individual 172 

characteristics like age, sex, the interval between the two vaccine doses, adverse reactions, 173 

comorbidities, and medications taken. This result is consistent with previous studies reporting age, 174 

sex, vaccine interval, and comorbidities as factors affecting antibody titers (21, 22). Quantifying 175 

the variability in antibody dynamics can be a basis for policy decisions regarding the distribution 176 

of booster vaccines to strengthen immunity (23) or the use of oral antiviral drugs for the treatment 177 

of breakthrough infections (24).  178 

Our antibody scores can be easily calculated from individual demographic and health 179 

information, yet have the ability to identify participants with high and low antibody titers (AUC of 180 

the IgG(S) titers). Given the pleiotropic aspect of humoral immunity, it is surprising that a score 181 

consisting of only 10 questionnaire items can give reasonable predictions. The score showed that 182 

COVID-19 infection history and adverse reactions positively affect the AUC, whereas age, 183 

diabetes, and collagen diseases negatively affect the AUC. These positive and negative factors 184 

are consistent with previous studies (22, 25-28). In addition, diabetes and autoimmune diseases 185 

have been reported to be risk factors for breakthrough infections (29, 30). Considering that 186 

individual antibody titers are partially predictive of the likelihood of breakthrough infections (31, 187 

32), this suggests that our antibody score could also be used as a risk score for breakthrough 188 

infections. On the other hand, the antibody score also has some similarities with COVID-19 189 

severity scores (33-37). In fact, both include age as a factor likely to lead to low antibody titers 190 
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and critical illness, both of which may be related to a defective immune system, as observable in 191 

cytokine signatures (38, 39) or immunoglobulin responses (40, 41). However, whereas COVID-192 

19 severity scores use the results of laboratory tests and clinical symptoms to assess the patient's 193 

condition in the hospital, our antibody score can be calculated on the basis of questionnaire 194 

responses provided by individual (i.e., not limited to patients) themselves. 195 

There are limitations to this study. The model fitting was based on limited antibody 196 

measurements (two or three times for most participants) and the antibody score was solely based 197 

on information available from the questionnaire. Further refinement of the score using additional 198 

information will be a worthwhile task. It is worth mentioning that the immune system is affected 199 

by multiple factors, including genetics, the environment (such as cohabitation), and markers of 200 

metabolic health (42-45), all of which likely influence individual antibody status but were not 201 

considered here. The biological determinants of antibody variation will be further revealed in future 202 

studies addressing not only B cell subsets but the whole immune system encompassing adaptive 203 

as well as innate immunity. At this stage, our score would best be used by medical practitioners 204 

as a tool to advise individuals on getting booster vaccinations or taking additional precautions 205 

against infection.  206 
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Methods 207 

Study data 208 

This study was conducted from April 2021 to December 2021 in Fukushima, Japan (called 209 

the Fukushima vaccination cohort). A total of 2,526 participants who had been vaccinated with 210 

Pfizer BNT162b2 or Moderna mRNA-1273 were recruited, and 2,159 participants were included 211 

in the final data analysis. The participants included health care workers, frontline workers, 212 

administrative officers, general residents, and residents of long-term care facilities. We here 213 

investigated antibody titers of individuals sampled longitudinally (serum was collected at 2 or 3 214 

different timepoints) for around 4 to 9 months after the second primary dose of mRNA vaccine. 215 

Information on sex, age, daily medication, medical history, date of vaccination, adverse reactions 216 

after vaccination, type of vaccination, blood type, Bacillus Calmette–Guérin (BCG) vaccine history, 217 

smoking habits, and drinking habits were retrieved from the paper-based questionnaire 218 

(summarized in Supplementary Table 1). In addition to the participants in the cohort, we included 219 

12 health care workers whose serum had been sequentially sampled for 40 days (on average 25 220 

samples per individual) in our analysis for the validation and parameterization of a mathematical 221 

model for vaccine-elicited antibody dynamics. All serological assays were conducted at The 222 

University of Tokyo. (S)-specific IgG (i.e., IgG(S)) and neutralizing activity were measured as the 223 

humoral immune status after the COVID-19 vaccination. (N)-specific IgG antibody titers (IgG(N)) 224 

were used to determine past COVID-19 infection status (46). The study was approved by the 225 

ethics committees of Hirata Central Hospital (number 2021-0611-1) and Fukushima Medical 226 

University School of Medicine (number 2021-116). Written informed consent was obtained from 227 

all participants individually before the survey. A portion of this cohort was described previously for 228 

the period extending to 6 months after the first dose of mRNA vaccine (46, 47). 229 

 230 

Modeling vaccine-elicited antibody dynamics 231 

 We recently developed a mathematical model describing COVID-19 vaccine-elicited 232 

antibody dynamics to evaluate the impact of primary two-dose COVID-19 vaccination on rapid 233 
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immunity at the individual level and reconstructed the best-fit antibody titer curves of 2,407 234 

participants in the Fukushima cohort (18). Here we explain the derivation and formulation of the 235 

mathematical model in detail. 236 

 237 

(i) Vaccination-elicited antibody dynamics after the first dose 238 

After the first vaccination, naïve B cells encounter the antigens and differentiate into short-239 

lived antibody-secreting cells (ASCs), plasmablasts, germinal center (GC) B cells, or GC-240 

independent memory B cells depending on BCR affinity for their cognate antigen (48). Then, the 241 

GC B cells undergo rapid proliferation with somatic immunoglobulin hypermutation and 242 

subsequently differentiate into GC-dependent memory B cells or long-lived antibody-secreting 243 

cells, which are plasma cells with immunoglobulin class switching. To describe this antigen-244 

specific B cell expansion and the induction of antibody-secreting cells and memory B cells after 245 

the first vaccination (Supplementary Fig 3A), we developed a simple but quantitative 246 

mathematical model as follows: 247 

𝑑𝑑𝑀𝑀1(𝑡𝑡)
𝑑𝑑𝑑𝑑

= � 0
−𝑑𝑑𝑀𝑀1(𝑡𝑡)  

(𝑡𝑡 < 𝜏𝜏1)
(𝑡𝑡 ≥ 𝜏𝜏1),                                  (1) 248 

𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

= 𝑃𝑃1(𝑡𝑡)
𝑀𝑀1(𝑡𝑡)𝑚𝑚

𝐾𝐾𝑚𝑚 + 𝑀𝑀1(𝑡𝑡)𝑚𝑚
− 𝜇𝜇𝜇𝜇(𝑡𝑡) ,                   (2) 249 

𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

= 𝑝𝑝𝑝𝑝(𝑡𝑡) − 𝑐𝑐𝑐𝑐(𝑡𝑡),                                               (3) 250 

where the variables 𝑀𝑀1(𝑡𝑡) , 𝐵𝐵(𝑡𝑡) , and 𝐴𝐴(𝑡𝑡)  are the amount of mRNA inoculated by the 251 

vaccination, the number of antibody-secreting cells, and the antibody titers at time 𝑡𝑡, respectively. 252 

The parameters 𝜏𝜏1 and 𝑑𝑑 represent the timing of the vaccination and the decay rate of mRNA. 253 

We here considered 𝐷𝐷1 to be the inoculated dose of mRNA by the vaccination, that is, 𝑀𝑀1(𝜏𝜏1) =254 

𝐷𝐷1.  255 

Because the data we used here were limited (i.e., only time-course vaccine-elicited 256 

IgG(S) titers), one compartment of B cells including heterogeneous cell populations that produce 257 

antibodies (i.e., short-lived and long-lived antibody-secreting cells) was assumed. Therefore, we 258 
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modelled the average B cell population dynamics in Eq.(2), where the product of 𝑃𝑃1(𝑡𝑡) and 259 

𝑀𝑀1(𝑡𝑡)𝑚𝑚/(𝑀𝑀1(𝑡𝑡)𝑚𝑚 + 𝐾𝐾𝑚𝑚) represents the average de novo induction of the antibody-secreting cells. 260 

𝑃𝑃1(𝑡𝑡) is a step function defined as 𝑃𝑃1(𝑡𝑡) = 𝑃𝑃1 for 𝜏𝜏1 + 𝜂𝜂1 ≤ 𝑡𝑡, where 𝜂𝜂1 is the delay of induction 261 

of antibody-secreting cells after vaccination: otherwise 𝑃𝑃1(𝑡𝑡) = 0. The parameters 𝑚𝑚, 𝐾𝐾, and 𝜇𝜇 262 

correspond to the steepness at which the induction increases with increasing amount of mRNA 263 

(i.e., the Hill coefficient), the amount of mRNA satisfying 𝑃𝑃1/2, and the average decay rate of the 264 

antibody-secreting cell compartment, respectively. The other parameters, 𝑝𝑝 and 𝑐𝑐, represent the 265 

antibody production rate and the clearance rate of antibodies, respectively. 266 

 267 

(ii) Vaccination-elicited antibody dynamics after the second dose 268 

After the second vaccination, the memory B cells are reactivated by re-exposure to the 269 

antigen. Some differentiate into short-lived antibody-secreting cells (plasmablasts) or memory B 270 

cells outside the GC. Others enter the GC to become secondary GC B cells. Subsequently, these 271 

secondary GC B cells differentiate into GC-dependent memory B cells or long-lived antibody-272 

secreting cells (plasma cells). To describe these recall B cell responses and their secretion of 273 

antibody after the second vaccination (Supplementary Fig 3B), we modified the above 274 

mathematical model, Eqs.(1-3), as follows: 275 

𝑑𝑑𝑀𝑀2(𝑡𝑡)
𝑑𝑑𝑑𝑑

= � 0
−𝑑𝑑𝑀𝑀2(𝑡𝑡)  

(𝑡𝑡 < 𝜏𝜏2)
(𝑡𝑡 ≥ 𝜏𝜏2),                                        (4) 276 

𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

= 𝑃𝑃2(𝑡𝑡)
�𝑀𝑀1(𝑡𝑡) + 𝑀𝑀2(𝑡𝑡)�

𝑚𝑚

𝐾𝐾𝑚𝑚 + �𝑀𝑀1(𝑡𝑡) + 𝑀𝑀2(𝑡𝑡)�
𝑚𝑚 − 𝜇𝜇𝜇𝜇(𝑡𝑡) ,     (5) 277 

𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

= 𝑝𝑝𝑝𝑝(𝑡𝑡) − 𝑐𝑐𝑐𝑐(𝑡𝑡),                                                      (6) 278 

where 𝑀𝑀2(𝑡𝑡) is the amount of mRNA by the vaccination inoculated at 𝜏𝜏2 satisfying 𝑀𝑀2(𝜏𝜏2) = 𝐷𝐷2. 279 

In addition, 𝑃𝑃2(𝑡𝑡) = 𝑃𝑃1 for 𝜏𝜏2 ≤ 𝑡𝑡 < 𝜏𝜏2 + 𝜂𝜂2, 𝑃𝑃2(𝑡𝑡) = 𝑃𝑃2 for 𝜏𝜏2 + 𝜂𝜂2 ≤ 𝑡𝑡, where 𝜂𝜂2 is the delay of 280 

induction of antibody-secreting cells after vaccination; otherwise 𝑃𝑃2(𝑡𝑡) = 0. It should be noted 281 

that, prior to this main recall immunity, some rapid but small reactivation is observed, probably 282 

due to GC-independent memory B cells induced by the first vaccination (see participants S2, S7, 283 
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and S8 in Supplementary Fig 1A). This small reactivation is described by 𝑃𝑃1(𝑀𝑀1(𝑡𝑡) + 𝑀𝑀2(𝑡𝑡) )𝑚𝑚/284 

((𝑀𝑀1(𝑡𝑡) + 𝑀𝑀2(𝑡𝑡) )𝑚𝑚 + 𝐾𝐾𝑚𝑚) for 𝜏𝜏2 ≤ 𝑡𝑡 < 𝜏𝜏2 + 𝜂𝜂2. In general, once reactivated, memory B cells can 285 

reenter the GC more rapidly than naïve B cells, and therefore the secondary antibody responses 286 

are much faster and larger (i.e., 𝜂𝜂1 > 𝜂𝜂2 and 𝑃𝑃1 < 𝑃𝑃2, respectively). In the main recall immunity, 287 

the quantity and quality of memory B cells established by the first vaccination is included in 𝑃𝑃2. 288 

 289 

(iii) Mathematical model for data fitting 290 

 Since the clearance rate of antibody is much larger than the decay of antibody-secreting 291 

cells (i.e., 𝑐𝑐 ≫ 𝜇𝜇 ), we made a quasi-steady state assumption, 𝑑𝑑𝑑𝑑(𝑡𝑡) 𝑑𝑑𝑑𝑑⁄ = 0 , and replaced 292 

Eqs.(3) and (6) with 𝐴𝐴(𝑡𝑡) = 𝑝𝑝𝑝𝑝(𝑡𝑡) 𝑐𝑐⁄ . Moreover, since Eqs.(1) and (4) are the linear differential 293 

equations, 𝑀𝑀1(𝑡𝑡) = 𝐷𝐷1𝑒𝑒−𝑑𝑑𝑑𝑑  for 𝑡𝑡 ≥ 𝜏𝜏1  and 𝑀𝑀2(𝑡𝑡) = 𝐷𝐷2𝑒𝑒−𝑑𝑑𝑑𝑑  for 𝑡𝑡 ≥ 𝜏𝜏2 : otherwise 𝑀𝑀1(𝑡𝑡) =294 

𝑀𝑀2(𝑡𝑡) = 0, respectively. Thus, the above Eqs.(1-6) are further simplified assuming 𝜏𝜏1 = 0 and 295 

𝐷𝐷1 > 0, and we obtained the following single ordinary differential equation, which we used to 296 

analyze the antibody responses (i.e., IgG(S) titers (AU/mL)) in this study: 297 

𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

= 𝐻𝐻(𝑡𝑡)
�𝐷𝐷1𝑒𝑒−𝑑𝑑𝑑𝑑 + 𝐷𝐷2𝑒𝑒−𝑑𝑑(𝑡𝑡−𝜏𝜏2)�

𝑚𝑚

𝐾𝐾𝑚𝑚 + (𝐷𝐷1𝑒𝑒−𝑑𝑑𝑑𝑑 + 𝐷𝐷2𝑒𝑒−𝑑𝑑(𝑡𝑡−𝜏𝜏2))𝑚𝑚
− 𝜇𝜇𝜇𝜇(𝑡𝑡),          (7) 298 

where 𝐻𝐻(𝑡𝑡) = 𝐻𝐻𝑖𝑖 = 𝑝𝑝𝑃𝑃𝑖𝑖/𝑐𝑐  for 𝜏𝜏𝑖𝑖 + 𝜂𝜂𝑖𝑖 ≤ 𝑡𝑡 < 𝜏𝜏𝑖𝑖+1 + 𝜂𝜂𝑖𝑖+1  ( 𝑖𝑖 = 1  or 2 ) and 𝐷𝐷2 > 0  for 𝜏𝜏2 < 𝑡𝑡 : 299 

otherwise 𝐷𝐷2 = 0 . This simple model can quantify the vaccine-elicited time-course antibody 300 

dynamics as described in Fig 1A under an arbitrary threshold of antibody titers 𝐴𝐴TH (see below). 301 

 302 

Parameter estimations 303 

 To evaluate the primary two-dose COVID-19 vaccination leading to the antibody titers 304 

(i.e., IgG(S) titers), we used a nonlinear mixed effects model to fit the antibody dynamics model, 305 

given by Eq.(7), to the longitudinal antibody titers of IgG(S) obtained from the 12 health care 306 

workers. Briefly, the parameters for individual 𝑘𝑘, 𝜃𝜃𝑘𝑘(= 𝜃𝜃 × 𝑒𝑒𝜋𝜋𝑘𝑘), are represented as a product of 307 

𝜃𝜃 (a fixed effect) and 𝑒𝑒𝜋𝜋𝑘𝑘 (a random effect). 𝜋𝜋𝑘𝑘 follows a normal distribution with mean 0 and 308 

standard deviation Ω. We here assumed that the parameters 𝐻𝐻1,𝐻𝐻2, 𝜂𝜂1, 𝜂𝜂2, and 𝑚𝑚 vary across 309 
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individuals, although we do not consider the inter-individual variability in other parameters to 310 

ensure parameter identifiability. Note that the half-life of mRNA (i.e., log 2 /𝑑𝑑) and dose of mRNA 311 

(i.e., 𝐷𝐷𝑖𝑖) are assumed to be 1 day (49) and 100 (𝜇𝜇𝜇𝜇/0.5mL) (50), respectively. We estimated 312 

fixed effects and random effects using the stochastic approximation expectation-approximation 313 

algorithm and empirical Bayes’ method, respectively. Fitting was performed using MONOLIX 314 

2019R2 (www.lixoft.com) (51). The estimated (fixed and individual) parameters are listed in 315 

Supplementary Table 2. 316 

With the estimated parameters for each individual, the dynamics of IgG(S) titers, 𝐴𝐴(𝑡𝑡), 317 

and the average de novo antibody response elicited by the first and second vaccinations, 318 

𝐻𝐻(𝑡𝑡)�𝐷𝐷1𝑒𝑒−𝑑𝑑𝑑𝑑 + 𝐷𝐷2𝑒𝑒−𝑑𝑑(𝑡𝑡−𝜏𝜏2)�
𝑚𝑚

/(𝐾𝐾𝑚𝑚 + �𝐷𝐷1𝑒𝑒−𝑑𝑑𝑑𝑑 + 𝐷𝐷2𝑒𝑒−𝑑𝑑(𝑡𝑡−𝜏𝜏2)�
𝑚𝑚

) , were calculated in 319 

Supplementary Fig 1A and 1B, respectively. Interestingly, we observed that the variations 320 

induced by the second vaccination were much larger than those induced by the first vaccination 321 

(Supplementary Fig 1B). Although we found that most of the best-fitted estimated parameters 322 

in the mathematical model (i.e., 𝜇𝜇 , 𝐾𝐾 , 𝜂𝜂1 , 𝜂𝜂2 , 𝐻𝐻1) were the same or similar across the 12 323 

individuals, the parameters 𝑚𝑚 and 𝐻𝐻2, which contribute mainly to the vaccine-elicited antibody 324 

dynamics after the second vaccination, showed wide variation of estimated values (see 325 

Supplementary Table 2). Therefore, fixing these estimated population parameters except for 𝑚𝑚 326 

and 𝐻𝐻2, we applied a nonlinear least squares method to reconstruct the large variations of the 327 

antibody dynamics after the second dose for 2,159 participants. The best-fit antibody titer curves 328 

are plotted along with the observed data for visualization in Supplementary Fig 1C, and the 329 

distribution of parameter values 𝑚𝑚 and 𝐻𝐻2 are summarized in Supplementary Fig 1D.  330 

 331 

Random forest regressors for characterizing vaccine-elicited antibody dynamics 332 

 Random forest regressors were trained to predict any of the three features of antibody 333 

dynamics (log of peak, log of AUC, duration) on the basis of the participants' demographic and 334 

health information as obtained by questionnaire (see Statistical analysis). randomForest and 335 
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rfPermute packages in R were used. The R squared values for each regressor were calculated 336 

from OOB samples. Feature importance, which shows to what extent each factor was predictive 337 

of the antibody dynamics features, was based on percentage increase in mean squared errors 338 

and is shown as Chord diagrams (circlize package in R), in which arrows are drawn from each 339 

feature to its predictive factors in a circular layout. Only the factors with 𝑝𝑝 < 0.05 (obtained with 340 

1,000 permutations) were selected and shown. 341 

 342 

Building optimized antibody scores 343 

 A Python implementation of Ustun et al.’s (19) algorithm (risk-slim, 344 

https://github.com/ustunb/risk-slim) was used to build optimized AUC scores. Briefly, the 345 

algorithm searches for the best linear combination of features with integer coefficients that 346 

minimizes the sum of the logistic loss and the l0-norm of the coefficients. The range of coefficients 347 

was set to -5 to +5; the l0-penalty parameter C0 was set to 5×10-4. 348 

 349 

Statistical analysis  350 

 Answers to the paper-based questionnaire collected from 2,159 participants were 351 

converted into a set of categorical and numerical variables. Numerical variables included age and 352 

the interval between the two doses. These variables were then used as input to predict the three 353 

antibody dynamics features. Missing values of categorical variables were treated as a separate 354 

category and were included in the analyses. The variables used here belonged to any of the five 355 

categories: (i) basic demographic information and lifestyle habits, (ii) information on vaccinations, 356 

(iii) underlying medical conditions, (iv) adverse reactions, and (v) medications being taken. When 357 

necessary, the same variables were compared among different generations or different groups 358 

using Pearson's chi-square test (for categorical variables), analysis of variance (ANOVA, for more 359 

than two numerical variables), or Welch T-test (for two numerical variables). Pearson correlation 360 

coefficient was calculated to evaluate the association between a pair of continuous variables. All 361 

statistical analyses were performed using R (version 4.1.2).  362 
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Supplementary Figure 1 | Calibrating vaccine-elicited antibody dynamics: (A) Observed and 543 

best-fitted IgG(S) titers are described for the 12 health care workers (HCWs) whose serum was 544 

sequentially sampled. The dashed vertical lines at day 21 correspond to the date of second 545 

vaccination. (B) Time-course averages of de novo antibody response elicited by the first and 546 

second vaccinations for the 12 HCWs are described. (C) Reconstructed individual antibody 547 

dynamics for the 2,159 participants are represented along with the measured IgG(S). The black 548 

circles correspond to the measurements of antibody titers at different time points. (D) Distributions 549 

of the estimated parameter values (i.e., 𝐻𝐻2 and 𝑚𝑚) for 2,407 participants are plotted. Dataset for 550 

each distribution is normalized by the value corresponding to the 95th percentile of data values, 551 

and data whose values were larger than this value were removed to improve visibility of the figure.  552 
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 554 

Supplementary Figure 2 | Analyzing antibody titers: (A) The distributions of two features of 555 

antibody dynamics (peak and AUC) in the cohort are shown. (B) Partial dependence plots 556 

showing the dependence of the two parameters (𝐻𝐻2 and 𝑚𝑚) on age or the interval are shown. 557 

(C) The bottom AUC score to identify individuals with AUC in the bottom third of the population is 558 

shown. (D) Left: The distribution of the bottom AUC score in the test dataset. 4, 69, 91, 83, 66, 559 

65, and 6 individuals had scores of -4, -3, -2, -1, 0, 1, or 2 or more, respectively. Those in the 560 

bottom third of the test dataset are shown in yellow, and those not in the bottom third are shown 561 

in orange. The ratio of individuals with AUC in the bottom third of the test dataset increased as 562 

the bottom AUC score increased. Right: the average AUC tended to decrease as the bottom AUC 563 

score increased. 564 

  565 
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Supplementary Figure 3 | Modeling vaccine-elicited B cell dynamics: (A) First vaccination-566 

elicited antibody-secreting cell and memory B cell inductions are described. Once naïve B cells 567 

encounter vaccine antigens outside the germinal center (GC), the activated naïve B cells 568 

differentiate into short-lived antibody-secreting cells (ASCs), plasmablasts, GC B cells, or GC-569 

independent memory B cells depending on BCR affinity for their cognate antigen. Subsequently, 570 

the GC B cells undergo rapid proliferation with somatic immunoglobulin hypermutation and 571 

differentiate into GC-dependent memory B cells or long-lived antibody-secreting cells (plasma 572 

cells), with immunoglobulin class switching. Through the GC-independent and dependent 573 
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pathways, antibody-secreting cells (i.e., 𝐵𝐵(𝑡𝑡)) are induced and they secrete antibodies (i.e., 𝐴𝐴(𝑡𝑡)). 574 

(B) Second vaccination-elicited recall immune responses are described. After re-exposure to 575 

vaccine antigens, memory B cells rapidly reactivate and expand. Of activated memory B cells, 576 

while some differentiate into plasmablasts or memory B cells outside the GC, others enter the GC 577 

to be secondary GC B cells. These secondary GC B cells differentiate into GC-dependent memory 578 

B cells or plasma cells. In general, the secondary antibody responses are much faster and larger 579 

by an order of magnitude compared with the first vaccination-elicited antibody responses. 580 
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Supplementary Table 1 | Basic demographics for the Fukushima vaccination cohort 

Characteristic <40 years 40-64 years >65 years Overall p-value 
Gender     0.001 
Male 338(46.8) 421(38.2) 286(40.8) 1045(41.4)  

Vaccine type     0.015 
BNT162b2 (Pfizer–BioNTech) 651(90.0) 971(88.1) 649(92.6) 2271(89.9)  
mRNA-1273 (Moderna) 0(0.0) 3(0.3) 0(0.0) 3(0.1)  

Days (mean [SD])      
from 1st dose  106.3[37.7] 104.4[35.1] 103.8[17.2] 104.8[32.0] 0.302 
from 2nd dose 181.4[37.5] 180.1[35.7] 180.1[16.9] 180.5[32.2] 0.292 

Blood type      
A 239(35.7) 427(39.0) 212(35.4) 878(37.2) <0.001 
B 151(22.6) 236(21.6) 140(23.4) 527(22.3) <0.001 
O 213(31.8) 326(29.8) 172(28.7) 711(30.1) 0.367 
AB 66(9.9) 105(9.6) 75(12.5) 246(10.4) 0.432 

BCG history 560(83.5) 907(83.1) 412(61.9) 1879(77.4) 0.395 
Smoking 144(19.9) 253(23.0) 63(9.0) 460(18.2) <0.001 
Drinking Habit     <0.001 
Almost not 403(55.7) 542(49.2) 458(65.3) 1403(55.5)  
Occasionally 247(34.2) 310(28.1) 90(12.8) 647(25.6)  
Everyday 63(8.7) 222(20.2) 127(18.1) 412(16.3)  

Daily Alcohol Consumption     <0.001 
<20g 322(44.5) 382(34.7) 176(25.1) 880(34.8)  
20-40g 108(14.9) 214(19.4) 87(12.4) 409(16.2)  
40-60g 20(2.8) 60(5.4) 20(2.9) 100(4.0)  
>60g 5(0.7) 13(1.2) 2(0.3) 20(0.8)  

Comorbidities      
Hypertension 8(1.1) 237(21.5) 432(61.6) 677(26.8) <0.001 
Dyslipidemia 12(1.7) 123(11.2) 146(20.8) 281(11.1) <0.001 
Heart disease 14(1.9) 47(4.3) 140(20.0) 201(8.0) <0.001 
Diabetes 6(0.8) 72(6.5) 110(15.7) 188(7.4) <0.001 
Allergic disease 69(9.5) 95(8.6) 21(3.0) 185(7.3) <0.001 
Asthma 49(6.8) 45(4.1) 28(4.0) 122(4.8) 0.079 
Liver disease 11(1.5) 45(4.1) 58(8.3) 114(4.5) <0.001 
Cancer 3(0.4) 35(3.2) 46(6.6) 84(3.3) <0.001 
Gout 5(0.7) 45(4.1) 26(3.7) 76(3.0) 0.001 
Thyroid disease 8(1.1) 40(3.6) 11(1.6) 59(2.3) 0.005 
Lung disease 12(1.7) 11(1.0) 28(4.0) 51(2.0) <0.001 
Mental disease 17(2.4) 16(1.5) 13(1.9) 46(1.8) 0.739 
Rheumatism 2(0.3) 16(1.5) 19(2.7) 37(1.5) 0.006 
Kidney disease 6(0.8) 7(0.6) 14(2.0) 27(1.1) 0.089 
Anaphylaxis 6(0.8) 7(0.6) 5(0.7) 18(0.7) 0.994 
Collagen disease 4(0.6) 6(0.5) 5(0.7) 15(0.6) 0.993 
COVID-19 (family) 4(0.6) 5(0.5) 1(0.1) 10(0.4) 0.793 
COVID-19 0(0.0) 3(0.3) 4(0.6) 7(0.3) 0.38 
Immune deficiency 2(0.3) 4(0.4) 0(0.0) 6(0.2) 0.654 
Others 51(7.1) 147(13.3) 189(27.0) 387(15.3) <0.001 

Drug      
Steroid 9(1.2) 23(2.1) 26(3.7) 58(2.3) 0.002 
NSAIDs 31(4.3) 78(7.1) 82(11.7) 191(7.6) <0.001 
Acetaminophen 8(1.1) 22(2.0) 30(4.3) 60(2.4) <0.001 
Antihistamine 46(6.4) 65(5.9) 43(6.1) 154(6.1) 0.367 
Immunosuppressants 6(0.8) 10(0.9) 8(1.1) 24(1.0) 0.432 
Biologics 2(0.3) 5(0.5) 4(0.6) 11(0.4) 0.395 
Anti-cancer agent 0(0.0) 5(0.5) 5(0.7) 10(0.4) 0.292 
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Adverse Reaction      
Local pain 515(71.2) 684(62.1) 228(32.5) 1427(56.5) <0.001 
Fatigue 511(70.7) 627(56.9) 119(17.0) 1257(49.8) <0.001 
Joint pain 327(45.2) 354(32.1) 90(2.8) 771(30.5) <0.001 
Fever (37.5 degrees or higher) 370(51.2) 308(28.0) 41(5.9) 719(28.5) <0.001 
Headache 321(44.4) 331(30.0) 34(4.9) 686(27.2) <0.001 
Fever (under 37.5 degrees) 137(19.0) 209(19.0) 40(5.7) 386(15.3) <0.001 
Dizziness 57(7.9) 45(4.1) 9(1.3) 111(4.4) <0.001 
Nausea 51(7.1) 41(3.7) 6(0.9) 98(3.9) <0.001 
Diarrhea 30(4.2) 25(2.3) 3(0.4) 58(2.3) <0.001 
Others 40(5.5) 69(6.3) 16(2.3) 125(5.0) 0.003 

 

Values are No. (%) unless noted otherwise. BCG, bacille Calmette-Guérin; NSAID, nonsteroidal anti-inflammatory drug.
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Supplementary Table 2. Estimated fixed and individual parameters for 12 health care workers 
Parameter  
or 
variable 

Decay rate of 
antibody-
secreting cells 

Maximum de 
novo production 
of antibody by 
1st vaccination 

Delay of induction of 
antibody- 
secreting cells after 
1st vaccination 

Steepness at which 
induction increases 
with increasing 
amount of mRNA 

Amount of mRNA 
satisfying 𝑃𝑃𝑖𝑖/2 

Maximum de 
novo production 
of antibody by 2nd 
vaccination 

Delay of induction of 
antibody- 
secreting cells after 
2nd vaccination 

Symbol 𝜇𝜇 𝐻𝐻1 𝜂𝜂1 𝑚𝑚 𝐾𝐾 𝐻𝐻2 𝜂𝜂2 
Unit day-1 AU/mL day --- 𝜇𝜇𝜇𝜇/0.5mL AU/mL day 
Individual estimated parameters for 𝑺𝑺𝑺𝑺 to 𝑺𝑺𝑺𝑺𝑺𝑺 

𝑆𝑆1 0.885346 650.518 12.5269 0.0373144 33900 5227.34 4.21433 
𝑆𝑆2 0.885346 760.114 12.5109 0.028673 33900 5035.79 4.23423 
𝑆𝑆3 0.885346 2375.11 12.5096 0.0223842 33900 7562.82 3.85759 
𝑆𝑆4 0.885346 790.745 12.4927 0.0611514 33900 7304.66 3.95306 
𝑆𝑆5 0.885346 942.686 12.5169 0.0250174 33900 5638.12 3.91276 
𝑆𝑆6 0.885346 448.87 12.5243 0.0851651 33900 3828.1 4.24752 
𝑆𝑆7 0.885346 1848.01 12.5471 0.0272096 33900 9073.94 4.2513 
𝑆𝑆8 0.885346 567.839 12.5409 0.0523284 33900 4673.2 4.71178 
𝑆𝑆9 0.885346 1835.9 12.5428 0.0365247 33900 7517.48 4.59114 
𝑆𝑆10 0.885346 1201.77 12.5109 0.0625655 33900 5916.28 4.17894 
𝑆𝑆11 0.885346 736.229 12.5086 0.0700219 33900 4118.67 4.54006 
𝑆𝑆12 0.885346 1369.65 12.5409 0.0488345 33900 8226.08 4.23969 

Population estimated parameters 
--- 0.885346 975.297 12.52 0.0437653 33900 6035.142 4.25 
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