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Abstract: Polygenic Risk Score (PRS) models are used extensively to find the 

population/individual risk towards disease. These predictive scores are of great help as risk 

scores if predicted earlier the life of individual can be saved from the chronic/ complex diseases. 

In this empirical assessments study, the polygenic risk score was calculated in three different 

ancestries (SAS, EAS and African Americans) based on more than three hundred markers. The 

risk score we observed indicated that average population risk scores are varied but on cumulating 

the ancestries the average risk score increased ~1.3 times than individual population average risk. 

The parameter which varies greatly while calculating the PRS is the ancestry; it should be 

prerequisite that individuals of same ancestry should be taken as a one population groups while 

calculating the scores. 

Introduction 

Chronic Kidney Disease (CKD) is a progressive disease defined by glomerular filtration rate 

lesser than 60ml/min/1.73m2along with other medical conditions if these persisting more than 

three months like albuminuria should be 30mg per 24 hours or polycystic/ dysplastic kidneys or 

hematuria[1].On an average 10-16% of the general population is affected by CKD and is having 

high mortality and morbidity as being unrecognized by patients and even by clinicians [2-4] and 

has become a major public health issue. Global all age prevalence of CKD has increased from 

29.3% to 41.5% between the years 1990 to 2017 [5].  

Diabetes Mellitus (DM) or hypertension are the hallmarks for CKD globally, its prevalence is 

higher in developing countries with additional factors to DM and CKD such as 

glomerulonephritis, infection and huge exposure to air pollution, pesticides and herbal remedies 

used [4]. As per the pathogenic succession of kidney disease, patient having CKD are at higher 
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risk for developing end stage renal disease (ESRD). Kidney dysfunctions can be observed with 

increased levels serum levels of cystatin C, creatinine or urea. The best marker studied till date 

for CKD is GFR which is measured using exogenous markers or estimated (eGFR) depending on 

the concentrations of endogenous filtration markers of serum creatinine and cystatin C[6, 7]. For 

the longer survival of the individual diagnosed with ESRD requires dialysis or a kidney 

transplant to maintain the survival of the patient [8].  

With the increase in the percentage of the disease numerous GWAS (Genome Wide Association 

Studies) have been conducted and many variants are identified in the last decade for CKD[7, 9-

12]. This has also leaded to increase in testing out the different models of PRS (Polygenic Risk 

Score) for kidney risks in individual and in population cohort [13-15]. PRS is integration of 

mathematical aggregation of risk derived from the variants on the DNA present across the 

genome [16]. This score will help in knowing the risk factors in advance which might be higher 

in the coming years in population set or in an individual. The group/individual which is at higher 

risk as per the score can be highly benefited in controlling the disease with better treatment and 

making effective strategies for other factors which aid in the disease like: life style and a check 

on other complex diseases which comes altogether with CKD [17]. Since each population set is 

different from one another, the scores of risk for a disease differ from ancestry to ancestry. To 

check differences in PRS in different ancestry’s present study is conducted to find out the 

differences in African American, South Asians and South East Asians. Polygenic risk score was 

calculated on the data derived from MatthisWuttkeet. al. 2019[18]. 

Methodology:  

Data collection: 308 common SNPs of 307 genes associated with eGFRacross different 

ancestries (SAS, EAS, AA and All ancestries combined) were used for calculating PRS. SNP 

data was downloaded from [18], PRS was calculated on the basis of effective size of the variants 

associated with eGFR.(Supplementary data) 

Polygenic Risk Score calculation = ∑ β�effective size
 �  AF�pop
  --- Equation (1)[19] 

Equation (1) polygenic risk score was calculated by coalesces of effective allele of SNP 

multiplied with affected allele frequency of any population or of an individual. The score 

calculated is then normalized by multiplying the β with risk allele dosage (i.e 2,) and subtracting 
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the population score. All of these normalized values are summarized to get an overall score. The 

Z score is calculated by using the normalized score divided by summarized population score. 

For the calculation of PRS the requirements are: a list of GWAS-significant SNPs, their 

frequency, effect-size and effect-alleles. This makes it possible to implement the calculation 

systematically for many diseases and traits. The data visualization was performed using different 

R packages.  

Results and Discussion: 

To visualize the Z score values calculated (Table 1), box plot were made for SAS, EAS, AA and 

all ancestries combined. To have idea about independent risk factor among ancestries and when 

they are merged what is the effect of polygenic score visualization was done using box plot 

(Figure 1) : The PRS observed we plotted against the beta calculated for all three ancestries, 

interestingly, the R2 observe showed there is strong correlation between the beta values and PRS 

(Figure 2). 

It is seen that the average risk affinity of the population group with different ancestries is less 

when they are treated as an individual group, but the tendency of the risk increases when all the 

population sets are mixed together. This highlights that for genetic studies each population group 

should be studied independently as per their ethnicity and their medication should be according 

to their own genetic inferences. This will decrease the biasness in the results which is achieved 

while merging the samples of different ancestries and will aid in better pharmacogenomics [20]. 

As seen when the individual population were calculated for risk score SAS were at higher risk 

for CKD whereas EAS and AA were at little lower risk when compared with SAS and when all 

the three ancestries were merged, the risk was higher than individual population scores. It is clear 

that when population groups are pooled the population signatures remains hidden and hence 

diluting the genetic risk/protection of the population for a particular disease and genetic markers. 

Hence individual population groups with same ancestry should be targeted for such studies. 
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Table 1: Box plot statistics calculated on the basis of PRS for four population sets SAS (South Asians),

EAS(East Asians), AA(African American) and all ancestries combined (SAS, EAS, AA). 

 All ancestries combined SAS EAS AA 

Upper Whisker 6.44 2.35 1.01 1.91 

3rd quartile 2.17 0.64 0.25 0.59 

Median 1.42 0.04 0.00 0.05 

1st quartile -2.01 -0.56 -0.26 -0.46 

Lower Whisker -7.91 -2.31 -0.99 -1.82 

 

 
Figure 1: Box plot of Z score values calculated using data for CKD for SAS (South Asians), EAS (East Asians), AA (African

Americans) and All ancestries combined (SAS, EAS and AA). The plot signifies that when population groups analyzed

independently for CKD, the risk factor of the ethnic population group is different and when the population groups of different

ancestries are mixed together the risk factor increases and results are biased. This indicates that for the genetic studies individual

ethnic groups are needed to be studied to find out the prevalence of the disease in the population group. 
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Figure 2: Pearson Correlation of PRS in SAS, EAS and AA showed the risk score obtained from all the 308 SNPs are showing 

strong correlation with the beta values (effective size) 

 

Our results are in accordance with the studies conducted [17, 21-24], summarizing that PRS 

cannot be derived from other ancestry as there can be many differences among the ethnicities in 

terms of their Linkage Disequilibrium, differences in allele frequencies (variant which is causing 

risk in one ethnicity might be giving protection to other ethnic group), as a result the PRS would 

greatly vary as the genetic architecture among ethnic groups varies [17, 25].  

GWAS studies are done extensively with respect to different diseases, which is helping 

massively moving towards personalized medicines, but what we need to consider while 

conducting such studies is that while framing the study it should be considered that individuals 

with the same ancestry should be targeted to strengthen the maximum chances of associations 

measured are related to the targeted disease and not getting diluted or giving increased risk 

towards disease [26].  
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Larger sample sets are required for PRS [27] to find out the severity of the disease in particular 

ethnic group for which GWAS are quite expensive an alternate to it can be small case control 

studies which are cost effective compared to GWAS can be conducted, it should be practiced to 

make individual data available online this will help in testing the models when sample sets are 

merged using small scale local datasets which will serve as a good hold for powerful statistical 

analysis [28]. The limitation with PRS is the poor performance of it in other than European 

population due to lack of data from other ancestries [29]. Therefore it is necessary to genotype, 

sequence and to do case/control studies for rare variants, complex haplotypes, gene-gene 

interactions for the detection and replication of novel pharmacogenetic loci enhancing the 

clinicians towards the personalized medicine for all the ethnic groups [20]. This can be achieved 

by adding local candidate gene association study as well as case control study of that local cohort 

if in any case GWAS study(ies) are not available. Such studies if conducted will help in knowing 

the local markers affecting the population groups as the development and outcome of CKD are a 

brunt of etiological range which is deeply swayed by local risk factors, differences on the basis 

of genetics, social and demographic changes. Such database if made will aid not only in clinical 

care but will also help in reducing the disease parameters such as PRS. 
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