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Abstract  
Alzheimer’s disease is clinically heterogeneous, in symptom profiles, progression rates and 

outcomes. This clinical heterogeneity is linked to underlying neuroanatomical heterogeneity. 

To explore this, we employed the emerging technique of neuroanatomical normative 

modelling to index regional patterns of variability in cortical thickness in individual patients 

from the large multi-site Alzheimer’s Disease Neuroimaging Initiative. We aimed to 

characterise individual differences and outliers in cortical thickness in patients with 

Alzheimer’s disease, people with mild cognitive impairment and cognitively normal controls. 

Furthermore, we assessed the relationships between cortical thickness heterogeneity and 

cognitive function, amyloid-beta, tau, ApoE genotype. Finally, we examined whether 

individual neuroanatomical normative maps were predictive of conversion from mild 

cognitive impairment to diagnosed Alzheimer’s disease. Data on cortical thickness from the 

148 brain regions of the Destrieux FreeSurfer atlas was obtained from T1-weighted MRI 

scans of 1492 participants scanned at 62 different sites. A neuroanatomical normative model 

was developed to index normal cortical thickness distributions using a separate healthy 

reference dataset (n= 33,072), employing hierarchical Bayesian regression to predict cortical 

thickness per region using age and sex. These regional normative models were then fine-

tuned to the ADNI dataset after which cortical thickness z-scores per region were calculated, 

resulting in a z-score ‘map’ for each participant. Regions with z-scores < -1.96 were 

classified as outliers. Patients with Alzheimer’s disease had a median of 12 outlier regions 

out of a possible 148. Individual patterns of outlier regions were highly variable, with the 

highest overlap in the parahippocampal gyrus at only 47% of patients. For 62 regions, over 

90% of these patients had cortical thicknesses within the normal range. Patients with 

Alzheimer’s disease had significantly more outlier regions than people with mild cognitive 
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impairment or controls [F(2, 1022) = 95.39), P = 2.0 x ×10-16]. They were also statistically 

more dissimilar to each other than were people with mild cognitive impairment or cognitive 

normal controls [F(2, 1024) = 209.42, P = 2.2×10-16]. Having a greater number of outlier 

regions was associated with worse cognitive function, CSF protein concentrations and an 

increased risk of converting from mild cognitive impairment to Alzheimer’s disease within 

three years (HR =1.028, 95% CI[1.016,1.039], P =1.8 x10-16). Individualised normative maps 

of cortical thickness highlight the heterogeneity of Alzheimer’s effects on the brain. Regional 

outlier estimates have the potential to be a marker of disease and could be used to track an 

individual’s disease progression or treatment response in clinical trials. 
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Introduction 
Alzheimer’s disease is the commonest cause of dementia, being characterised by progressive 

deterioration in cognitive functioning and independence 1. The Alzheimer’s disease spectrum 

comprises substantial clinical and biological differences between patients recognised in 

clinical and research criteria. Such differences comprise variations in genetic basis 2–4, 

symptom profile, age-at-onset, trajectory and severity 5,6, biomarker readouts (e.g., CSF 

amyloid-beta levels) 7, comorbidities 8,9, and in atrophy patterns 10. Despite this, conventional 

statistical analyses in Alzheimer’s disease research focus on group averages. This 

fundamental statistical assumption posits that Alzheimer’s disease will affect different 

patients in similar ways 11, characterising the ‘average’ patient. To reach the goal of precision 

medicine for Alzheimer’s we need to look beyond the average and design statistical 

approaches that reflect the heterogeneity between patients. 

Neuroimaging methods are the gold standard of understanding of the in vivo brain 12. 

Structural imaging has been described as the ‘imaging workhorse of neurodegeneration’, 

being commonly recommended in Alzheimer’s disease diagnostic guidelines 13. With this in 

mind, large structural neuroimaging datasets are increasingly available for dementia, such as 

Alzheimer’s Disease Neuroimaging Initiative (ADNI), Open Access Series of Imaging 

Studies (OASIS) and National Alzheimer’s Coordinating Center (NACC) 14–16 as well as in 

the general population (e.g., UK Biobank and the Human Connectome Project). These 

datasets provide the ability to chart variation across cohorts and facilitating individual 

prediction. 

Large neuroimaging datasets have particularly supported the development and application of 

data-driven methods in Alzheimer’s disease research. This has further revealed that 

differences in brain structure are very common in patients 10,17. Moreover, they have enabled 
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the estimation of disease subtypes from neuroimaging data, as a way to disentangle 

heterogeneity by grouping patients by distinctive neurobiological and cognitive 

characteristics 10,17–20 and disease progression 21. Such subtypes have the potential to stratify 

patient groups for clinical decision-making, such as regarding treatment strategy, services and 

therapies tailored to clinico-radiological phenotype and/ or trial enrolment 22–24. 

Importantly, there are challenges associated with the clinical translation of neuroimaging 

derived subtypes 18. These include validity of subtypes, how distinct subtypes are from each 

other and how stable subtypes are over the disease course 17,25. Moreover, by design, 

clustering assumes homogeneity within each cluster, despite individual-level variation 

present, therefore limiting the representation of heterogeneity in the sample 26. Individual-

level variation is perhaps most apparent in patients with atypical, non-amnestic Alzheimer’s 

disease who comprise up to a third of young-onset Alzheimer’s disease and face particular 

barriers to diagnosis and appropriate care 24. Arguably, assessing the neurobiology of 

Alzheimer’s disease at the individual patient level will provide more precise understanding of 

their disease, likely outcomes and facilitate tailored treatment strategies. 

While the concept of patient-centred, individualised precision medicine for dementia is well 

established, only research has been published using this approach with neuroimaging data in 

Alzheimer’s. These include techniques based on deep autoencoders 27 and machine learning 

classification 17. However, these studies included only limited validation of individualised 

predictions, did not fully characterise the spatially distributed nature of alterations in 

Alzheimer's disease, and failed to assess how neuroanatomical variability related to cognitive 

performance, CSF biomarkers, disease progression, or genetic factors. Furthermore, these 

studies did not deal with crucial confounding effects of MRI scanner on heterogeneity. 

One technique for capturing individual-level variability in the brain is neuroanatomical 

normative modelling. This can provide individual statistical inferences with respect to an 

expected ‘normative’ distribution or trajectory over time. Specifically, neuroanatomical 

normative modelling adopts this concept by modelling the relationship between 

neurobiological variables (e.g., neuroimaging features) which are represented regionally and 

covariates (e.g., demographic variables such as age and sex) to map centiles of variation 

across a cohort (i.e., z-scores). An individual can then be located within the normative 

distribution to establish to what extent they deviate from the expected pattern in each 

measure. By applying this approach to derive neuroanatomical normative models at brain 

regions, a map can be generated of where and to what extent an individual’s brain differs 
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from the norm 28,29. This technique has shown to be  suitable for precise mapping of 

individual patterns of variation in brain structure across multiple psychiatric and 

neurodevelopmental disorders, thereby parsing the neuroanatomical heterogeneity present 
30,31. These include attention-deficit hyperactivity disorder 32, autism 33,34, bipolar disorder 

and schizophrenia 35. Such findings motivate the application of neuroanatomical normative 

modelling to Alzheimer’s disease 36. 

Here, we examine individual patterns of variation in brain structure in patients with 

Alzheimer’s disease using neuroanatomical normative modelling. Using the well-

characterised Alzheimer’s Disease Neuroimaging Initiative dataset, we applied a recent 

implementation of the normative modelling framework, hierarchical Bayesian regression. 

This technique has shown to efficiently accommodate inter-site variation and provides 

computational scaling, which is useful when using large studies, or combining smaller studies 

together, that are acquired across multiple sites in a federated learning framework 37–39. We 

aimed to quantify spatial patterns of neuroanatomical heterogeneity using cortical thickness 

measures in patients with Alzheimer’s disease, people with mild cognitive impairment and 

cognitively normal controls, by calculating deviations from normative ranges for each brain 

region and then identifying statistical outliers. Here we aimed to 1) assess the extent of 

neuroanatomical variability between individual patients based on overlapping or distinct 

patterns of outliers in cortical thickness, 2) quantify group differences in between-subject 

similarity, 3) relate the quantity of neuroanatomical outliers to cognitive performance and 

disease biomarkers, and 4) examine whether the number of outliers related to subsequent 

disease progression in people with mild cognitive impairment. 

 

Materials and methods 

Participants  

Participants were derived from two datasets (1) a reference dataset comprised  of healthy 

people across the human lifespan (2) a clinical target dataset which included people with 

Alzheimer’s disease or mild cognitive impairment in addition to age-matched cognitively 

normal controls. The reference dataset was made by combining data on healthy people from 

multiple publicly available sources, including Open Access Series of Imaging Studies 

(OASIS), Adolescent Brain Cognitive Development (ABCD) study and UK Biobank (UKB) 
16,40,41, detailed in Table 2 39. The clinical data used in the preparation of this article was 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 3, 2022. ; https://doi.org/10.1101/2022.06.30.22277053doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.30.22277053
http://creativecommons.org/licenses/by-nc-nd/4.0/


  
 

 6 

obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database; 

http://adni.loni.usc.edu). The ADNI was launched in 2003 as a public-private 

partnership, led by Principal Investigator Michael W. Weiner, MD. The primary goal of 

ADNI has been to test whether serial magnetic resonance imaging (MRI), positron emission 

tomography (PET), other biological markers, and clinical and neuropsychological assessment 

can be combined to measure the progression of mild cognitive impairment (MCI) and early 

Alzheimer’s disease (AD). Inclusion criteria were the availability of a baseline T1-weighted 

MRI, Alzheimer’s disease participants had to meet the National Institute of Neurological and 

Communicative Disorders and Stroke–Alzheimer's Disease and Related Disorders 

Association criteria for probable Alzheimer’s disease 42, and were screened to exclude 

genetic risk for familial Alzheimer’s. MCI participants were reported a subjective memory 

concern either autonomously or via an informant or clinician, participants had no significant 

levels of impairment in other cognitive domains. Written informed consent was obtained 

from all participants before experimental procedures were performed. 

 

MRI acquisition  

For the clinical dataset, T1-weighted images were acquired at multiple sites using 3T MRI 

scanners. Detailed MRI protocols for T1-weighted sequences by vendor are available online 

(http://adni.loni.usc.edu/methods/documents/mri-protocols/). The quality of raw scans was 

evaluated by University of California San Francisco prior to our exclusion criteria. Scans 

were excluded based on technical problems and significant motion artefacts and clinical 

abnormalities 

(https://adni.bitbucket.io/reference/docs/UCSFFSX51/UCSF%20FreeSurfer%20Methods%2

0and%20QC_OFFICIAL.pdf). 

 

Estimation of cortical thickness  

T1-weighted scans from both the reference and ADNI datasets were processed using a mix of 

both FreeSurfer versions 5 and 6. Cortical thickness values were generated using the recon-

all cross-sectional approach 43. This cortical thickness algorithm calculates the mean distance 

between vertices of a corrected, triangulated estimated grey/white matter surface and grey 

matter/CSF (pial) surface 44, which generated the cortical thickness of each region of the 
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Destrieux atlas regions 45. This included both mean and median cortical thickness values and 

148 regions cortical thickness values for each participant.  

 

Quality control of FreeSurfer processing for the reference dataset relied on automated 

filtering median-centred absolute Euler number higher than 25, as we have done in prior 

work 38,39. The exclusion of outliers based on Euler numbers has been shown to be a reliable 

quality control strategy in large neuroimaging cohorts 46,47. For ADNI, quality control was 

based on visual review of each cortical region performed by UCSF. Only scans which passed 

this quality control were included in the dataset. 

 

Neuroanatomical Normative modelling  

A hierarchical Bayesian regression model was trained on multi-site data to generate 

normative models per region using the covariates age and sex. This was based on the 

population variation in the reference dataset (training data), as per Kia and colleagues which 

adaptively pools parameter estimates across sites via a shared prior over regression 

parameters across sites 39. This simultaneously accounts for inter-site variation and allows 

sites to borrow strength from one another in a fully Bayesian framework. The advantage of 

training the models on the large independent dataset, compared to just using ADNI, is that 

ADNI consists of many sites with small sample sizes. This would result in unstable estimates 

of normative distributions that could be strongly influenced by outliers or sampling bias. 

Here, by training on over n=33,000 from only nine datasets (with 60 sites), the model 

produces much more stable distribution estimates across the entire lifespan. Next, these 

estimates were conditioned to our specific context, using an adapted transfer learning 

approach 39. The parameters of the reference normative model were recalibrated to the ADNI 

dataset using 70% of healthy controls per ADNI site, where 70% was used to give stable 

estimates of the transferred model parameters, given that many of the scan sites in ADNI 

have quite small sample sizes. The remaining 30% of healthy controls plus MCI and patients 

with Alzheimer’s disease were used to assess the heterogeneity in neuroanatomical 

presentation. This process generated regional and mean cortical thickness z-scores for each 

participant in the clinical dataset, relative to the normative range of the reference dataset. All 

modelling steps are performed using PCNToolkit (v0.20) 

(https://github.com/amarquand/PCNtoolkit). 
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Statistical analysis 

Group cortical thickness differences  

Cortical thickness group comparisons were conducted using t-tests at each region and 

corrected for multiple comparisons using the False Discovery Rate. Significant p-values were 

mapped onto the Destrieux atlas using the R package ggseg 48. 

 

Outlier definition and statistics 

Outliers in terms of low cortical thickness were identified for each region, defined as Z < -

1.96. We only used the lower bound threshold for outliers as we were primarily interested in 

cortical thinning associated with neurodegeneration. Here the number of outliers were 

summed across 148 regions for each participant, to give a total outlier count across regions. 

Linear regression was used to test for group differences in mean cortical thickness Z-score 

and total outlier count. Additionally, group comparisons at each region were conducted using 

ANOVA and corrected for multiple comparisons using the False Discovery Rate. Hamming 

distance, a quantitative measure of similarity between binary thresholded cortical thickness 

outlier vectors was used to measure dissimilarity between individuals. Mean Hamming 

distances were then compared between groups. 

Lastly, to explore spatial patterns of cortical thickness outliers per group, the proportion of 

participants within each group whose cortical thickness was an outlier (i.e., Z <-1.96) was 

calculated for each region. This enabled visualisation of the extent to which patterns of 

outlier regions overlap or are distinct. This was mapped using the Destrieux atlas via the R 

package ggseg. All statistical analyses were implemented in R version 3.6.2. 

 

Outlier associations with cognitive function and CSF markers 

Linear regression adjusting for age and sex were used to examine the relationship between 

total outlier score and cognitive composite scores (memory or executive function) 49 or CSF 

markers (amyloid-beta and phospho-tau). Linear regression adjusting for age and sex were 

used to assess the effects of  total outlier score, diagnostic group, and their interaction on 

memory and executive function, measured as ADNI MEM and ADNI EF scores, respectively 
49. Conversely, we assessed the association between the CSF markers of amyloid-beta and 

phospho-tau and the total outlier score, adjusting for age and sex. We also use total scores 
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from the Mini-Mental State Examination (MMSE) to stratify outlier maps in both MCI and 

patients with Alzheimer’s disease groups.  

 

MCI to Alzheimer’s disease conversion analysis 

Follow-up diagnosis status data, up to three years from baseline scan, were obtained from 

454 people with mild cognitive impairment. In total, 76 people with MCI at baseline had 

converted to Alzheimer’s disease within three years. We then ran a survival analysis using 

Cox proportional hazards regression to assess whether total outlier relating to the risk of 

converting from MCI to Alzheimer’s disease, controlling for age and sex. We use a Kaplan–

Meier plot to illustrate how either a low or high outlier score (split via median) can contribute 

to the risk of converting.  

 

Data availability  

Statistical analysis scripts are available on GitHub 

(https://github.com/serenaverdi/ADNI_normative-modelling). The neuroanatomical 

normative model was generated using the  PCNtoolkit software package 

(https://github.com/amarquand/PCNtoolkit). ADNI data used in this study are publicly 

available and can be requested following ADNI Data Sharing and Publications Committee 

guidelines: http://adni.loni.usc.edu/data-samples/access-data/ 

 

Results 

Participants 

In the reference dataset, a total of n=33,072 T1-weighted MRI scans were collated across 60 

sites, which included males n= 16,170, females n=16,902, with a mean age of 40 years and a 

range of 8-97 years (This sample is described in detail in Kia et al 2021 and summarised in 

Supplementary material, Table 1) 39 . The clinical ADNI dataset amounted to total 1,492 

participants which were acquired across 62 sites (Table 1). Here 70% of controls were 

removed from the clinical dataset and were used as a calibration dataset to adapt the 

normative model to the new sites, these were randomly selected and stratified across sites and 

gender to make sure all sites and genders are present in the adaptation set. This left a total of 

1,027 participants in the final clinical dataset.  
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 Controls MCI 
Alzheimer’s 

disease 
Total Statistical differences 

 

n 621 664 207 1492 -  

Sex (M:F) 252:369 370:294 106:101 728:764 X2 = 30.01, P =3.04x10-7  

Mean ± sd Age (years) 72.2 ± 6.8 71.9 ± 7.7 74.0 ± 8.0 72.3 ± 7.4 F(2,1489) = 6.72, P = 0.001  

Age range (years) 62.8 – 88.7 56.1 – 92.5 57.0 – 88.5 56.1-92.5 -  

Mean ± sd total MMSE score* 29.06 ± 1.18 27.82 ± 1.91 22.56 ± 3.19 26.94 ± 3.11 F(2,1400) = 867.97, P< 2.2x10-16  

Mean ± sd CSF amyloid-beta (pg/mL) 246.55 ± 305.02 231.98 ± 275.41 178.07 ± 182.37 223.00 ± 263.87 F(2, 765) = 3.39, P = 0.03  

Mean ± sd CSF p-tau (pg/mL) 34.06 ± 17.96 40.82 ± 24.67 57.84 ± 32.22 43.42 ± 26.73 F(2, 765) = 37.11,  P< 4.12x10-16  

ApoE ε4 negative (% = proportion in group 

sample) 
385 (69%) 322 (53%) 58 (31%) 765 (56%) X2= 85.92, P< 2.2x10-16 

 

 

Table 1. Demographics of ADNI sample. Statistical differences were assessed using ANOVA and chi-squared 

tests. *MMSE had maximum score of 30. 

 

 

Patients with Alzheimer’s disease have smaller cortical 

thicknesses than MCI and control groups 

To understand mean effects across the cohort, mean cortical thicknesses were compared 

across participant groups. Age- and sex-adjusted mean cortical thickness significantly 

differed between groups overall [F(2,1487) = 137.9,  P = 2.0 x 10-16]. Pairwise comparisons 

(Tukey post-hoc) were all significant [P<0.001], with mean cortical thickness being lowest in 

Alzheimer’s disease (mean = 2.28 SD = 0.13) and highest in controls (mean = 2.42 SD = 

0.11), with MCI being intermediate (mean = 2.38, SD = 0.12) (Supplementary material, 

Fig.1). 

 

Region-level pairwise group comparisons (total of 148 regions) provided evidence cortical 

thickness measures were on average lower in 133 regions in Alzheimer’s versus cognitively 

normal controls, in 111 regions in Alzheimer’s versus MCI and in 78 regions in MCI versus 

cognitively normal controls, after false discovery rate correction (Supplementary material, 

Fig.1) 

 
Next, cortical thickness z-scores, derived from comparison to the normative model, were then 

compared across participant groups. In this way, we could compare the degree to which each 

group differed from the separate reference cohort, used to define the normative model. 
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Consistent with comparisons of mean cortical thickness, age- and sex-adjusted z-scores 

differed between groups overall [F(2, 1022) = 69.49), P = 2.0 x 10-16]. Pairwise comparisons 

(Tukey post-hoc) were all significant [P<=0.003], with Z-scores being lowest in Alzheimer’s 

disease (mean = -1.27, SD = 1.41), highest in controls (mean = 0.07, SD = 1.04), and 

intermediate in MCI (mean =-0.28, SD =1.17) (Supplementary material, Fig.2 A). 

 

Furthermore, age- and sex-adjusted total outlier counts differed between groups overall [F(2, 

1022) = 95.39), P = 2.0 x ×10-16]. Pairwise comparisons (Tukey post-hoc) were all significant 

[P<=0.003], with total outlier counts being highest in Alzheimer's disease (median = 12, IQR 

= 28), lowest in controls (median = 2, IQR = 6) and intermediate in MCI (median = 4, IQR = 

9) (Supplementary material, Fig.2 B). 

 

Region-level pairwise group comparisons (total of 148 regions) showed higher numbers of 

outliers in cortical thickness in 79 regions in Alzheimer’s versus cognitively normal controls, 

in 63 regions in Alzheimer’s versus MCI and 1 region in MCI versus cognitively normal 

controls, after false discovery rate correction. Region-level group differences in outlier count 

were mostly evident within temporoparietal and to a lesser extent frontal and occipital 

regions (Fig.1, Panel A). 
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Fig.1 Outlier regions (A): Mapped are significant group differences of region outliers (B) Mapped are the 

percentage of region outliers proportional to participant group. 

 

Patients with Alzheimer’s disease are less similar to each other 

than people with MCI or with normal cognition 

Hamming distance matrices indicated greater within-group dissimilarity in patients with 

Alzheimer’s disease, relative to MCI or control participants, who were most similar to each 

other in spatial patterns of outliers (Fig.2). 
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Median hamming distance significantly differed between groups overall, [F(2, 1024) = 

209.42, P = 2.2×10-16]. Pairwise comparisons (Tukey post-hoc) were all significant 

[P<0.001], with being highest in Alzheimer’s disease (median = 32, IQR = 32), and lowest in 

controls (median = 6, IQR = 8), with MCI being intermediate (median =10, IQR = 14). 

 

 
Fig.2: Outlier dissimilarity (A) Outlier distance heatmaps Both x and y axes represent participants within 

each group. Yellow indicates higher hamming distance (greater dissimilarity between participants in this brain 

region), as opposed to if participants are identical in this brain region, the Hamming distance would be 0, 

represented by white in the colour bar (B) Outlier distance density: illustrates the spread of outlier 

dissimilarity (calculated by Hamming distance) within each group. 
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Patients with Alzheimer’s disease have spatially higher 

proportions of cortical thickness outliers 

 

The proportion of outliers defined within each group differed in regional patterns between 

Alzheimer's, MCI and control groups. This is illustrated in Fig.1, Panel B and in 

Supplementary material, Fig.3. For a breakdown of proportions see Supplementary 

material, Table 2. A greater number of regions and a higher proportion of the group were 

outliers in patients with Alzheimer’s disease, as expected. In fact, 145 regions in the 

Alzheimer’s group had over the expected 2.5% of patients with an outlier (based on the Z < -

1.96 threshold). The left parahippocampal gyrus was the region with the highest outlier 

percentage (47% of the Alzheimer’s group). The second highest region outlier proportion was 

in the right parahippocampal gyrus (36% of the Alzheimer’s group). For the MCI group, 138 

regions in the MCI group had outliers (over the expected 2.5% of the group). The left 

parahippocampal gyrus is the region with the highest outlier percentage (14% of the MCI 

group). The second highest region outlier proportion was in the right parahippocampal gyrus 

(12% of the MCI group). For cognitively normal controls, only 66 regions in the control 

group had outliers above the expected 2.5%. The left occipital temporal lateral sulcus was the 

region with the highest outlier percentage (6% of controls). 

 

Outliers are associated with cognitive function and CSF amyloid-

beta and phosphorylated tau 

Total outlier score across the whole sample was significantly associated with memory 

performance [β = -0.015, P = 2.2x10-16] and executive function [β = -0.02, P = 2.2x10-16] in a 

linear regression model. To check for Simpson’s paradox (the association between two 

variables within a sample), we also model a group by total outlier score interaction term, 

which was not significant for memory performance [F(2, 914) = 1.11, P = 0.329] but was for 

executive function [F(2, 914) = 4.04, P = 0.017] (Fig.3, Panel A; B).  Lower MMSE score 

showed different spatial patterns of outliers in both MCI (Fig.4, Panel A) and AD (Fig.4, 

Panel B) groups. 

 

In addition, total outlier score was significantly associated with amyloid-beta [β = 0.002, P = 

0.022] and phospho-tau [β = 0.1301, P = 1.04×10-8], which was not influenced by either 
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group amyloid-beta [F(2, 576) = 0.96, P = 0.38] or phospho-tau interaction [F(2, 576) = 

1.362, P = 0.257] (Fig.3, Panel C; D). 

 

 

 

 

Fig 3. Total outlier count associations with cognitive function and CSF markers. Fitted lines are from a 

linear regression model per diagnostics group for (A) Memory function, (B) Executive function, (C) CSF 

amyloid-beta, and (D) phospho-tau. 
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Fig 4: Outlier maps according to MMSE. Mapped are the percentage of region outliers proportional to 

MMSE scoring subgroup in (A) MCI participants (B) Alzheimer’s disease participants. 
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Variability in cortical thickness is not solely due to disease stage 

or other clinical factors 

To explore whether individual differences in outlier maps was driven by disease-related 

characteristics (such as ApoE genotype, demographics) or by disease stage, we examined sets 

of participants closely matched for ApoE genotype status, age, sex and MMSE score. Fig.5 

presents four individual female patients with Alzheimer’s all aged 71-72 years, heterozygous 

for ApoE ε4, with similar MMSE scores, all of whom were amyloid-positive on CSF. These 

individual patients might be considered similar from biological or clinical perspectives, yet 

their patterns of outliers in cortical thickness are markedly variable; for example, variously 

suggesting lateralised (Patient 3) and occipital atrophy (Patient 1). However, MMSE score 

and age does explain some of the variance in total outlier score [adjusted R2= 0.1942, P = 

2.2x10-16]. Conversely, similar patterns are present within  precuneus/post cingulate regions.  

 

 

 
 

Fig. 5: Outlier maps of individuals with similar disease-related characteristics. Outlier regions mapped for 

individual participants, matched on diagnostic group, sex, age, ApoE ε4, genotype and MMSE score. 
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Movie.1: Individual outlier maps (available to play in separate file). Each regional outlier map looping 
through each participant of this study 
 
 

Greater numbers of outliers are associated with risk of 

conversion from mild cognitive impairment to Alzheimer’s 

Disease 

A survival analysis indicated that for every 10 points of total outlier score, risk of converting 

from MCI to Alzheimer’s disease within 3 years increased by 31.4% (HR = 1.028, 95% CI 

[1.016,1.039], P = 1.8x10-16) (Fig.6, Panel A). This is illustrated within a Kaplan–Meier plot, 

which shoes how a high outlier score can contribute to the risk of converting in comparison 

to a low outlier score (Fig.6, Panel B). 
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Fig.6: Conversion from mild cognitive impairment to Alzheimer’s Disease (A) Kaplan–Meier plot of MCI 

to Alzheimer’s disease conversion: the two lines represent a median split of total outlier score, with <4 classed 

as low outlier score (blue), and ≥4 classed as high outlier score (red). Crosses indicate censoring points (i.e., age 

at last diagnosis assessment). Filled colour represent the 95% confidence intervals. (B) Mapped are the 

proportion of regional outliers among people with MCI who converted Alzheimer’s disease. 

Discussion  
In this study, we defined individual spatial patterns of cortical thickness outliers using a novel 

neuroanatomical normative modelling approach. Applying this approach to cognitively 

normal controls, MCI participants and patients with Alzheimer’s disease illustrated that 

Alzheimer’s disease does not affect different people in a uniform way. Moreover, our 

analysis provides a way to quantify and visualise these individual differences in patterns of 

cortical atrophy. The total outlier score (the sum of the total number of outliers an individual 

has), provides an individualised marker of cortical atrophy for subsequent analyses. Overall, 

these results provide evidence of, 1) heterogeneous patterns of cortical thickness between 
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patients with Alzheimer’s disease, 2) associations of cortical atrophy with cognitive 

performance and CSF amyloid-beta and phospho-tau, and 3) the potential of individualised 

markers of cortical atrophy to predict survival time before conversion from the MCI stage to 

diagnosed Alzheimer’s disease.  

The current findings align with the established understanding of Alzheimer’s disease. We 

observed a high total outlier count in patients with Alzheimer’s disease, consistent with the 

evidence of cortical thinning as a consequence of Alzheimer’s disease neuropathology 50. 

Moreover, neuroimaging literature has shown that cortical thinning is significantly associated 

with poor cognitive performance 51,52, a decrease in CSF amyloid-beta and an increase in CSF 

phospho-tau 53, which is also consistent with the present study. Atrophy has also been 

associated with the risk of progression from MCI to Alzheimer’s disease 54, alongside a 

combination of other biomarkers 55. Importantly, all these previous studies examined the 

correlates of common patterns of cortical atrophy. Conversely, here we were able to 

specifically consider individual variability in patterns of cortical thickness. This offers 

precise, personalised neuroanatomical information, as opposed to assessing group average 

relationships. Potentially, the total outlier score could be used as an individual patient marker 

of poor brain health. Indeed, related measures have recently been adopted as a clinical 

measure, i.e., brain volume/thickness patient Z-scores, but has been calculated using different 

normative modelling techniques 56,57. However, these techniques have tended to base their 

normative population on relatively smaller reference samples; have limited normative 

modelling pipelines to just whole brain, or within specific regions; did not fully account for 

site related variation (i.e., site effects) and did not fully relate these to clinical outcomes and 

cognitive scores 

 

We evaluated group differences in cortical thickness outliers at 148 brain regions, to explore 

whether consistent neuroanatomical patterns were present across individuals. We observed 

more outliers in patients with Alzheimer’s disease in temporal regions such as the 

hippocampus and the cingulate cortex. These are areas known to be sensitive to 

neurodegeneration in Alzheimer’s disease 58, and are responsible for clinical symptoms in 

Alzheimer’s disease 59,60. However, our approach enabled us to go beyond these group-

average regional differences. In the Alzheimer’s disease group, the highest proportion of 

outliers in a single region was less than 50%. This suggests the individual spatial patterns of 

outliers in Alzheimer’s only partially overlap between patients; if atrophy were homogenous, 
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we might expect 100% of outliers to be here. Heterogeneous atrophy in the temporal lobe is 

consistent with subtyping studies 10,61. Previous efforts have estimated the extent to which 

multiple distinct atrophy patterns were expressed within each participant, which includes 

temporal atrophy 62. This considerably extends efforts made using autoencoders to calculate 

individual deviation score in a dataset which includes ADNI patients – here medial temporal 

regions were also susceptible to scores deviating from the norm 27. 

Going further, our study reveals that each patient not only differs in the number of outliers 

they have, but the regional patterns of outliers differ markedly. (Movie. 1). The latter is 

reflected in large levels of dissimilarity between Alzheimer’s disease individuals (Fig. 2). 

Potentially, one reason for the variable patterns of atrophy is simply disease stage, whereby 

more atrophy appears with greater disease progression. However, our results indicate that this 

is not the case, as when closely examining patients of very similar demographics and clinical 

characteristics, being at a comparable disease stage (e.g., based on MMSE score), 

heterogenous patterns of cortical atrophy were still present. Crucially, our approach does not 

preclude the presence of subtypes, although the Z-score maps can be used as input to a cluster 

algorithm or similar. However, the goal here was to go beyond subtypes, producing 

informative spatial maps at the individual level.  

We also found that lower composite scores of both memory and executive function were 

significantly associated with higher total outlier score (Fig. 3). While this is consistent with 

previous studies showing relationships between neuroanatomical variation and cognitive 

performance,10,63,64 this also suggests that individualised measures of neuroanatomy, rather 

than relying on typical regions (e.g., hippocampus), are sensitive to cognitive function. 

Potentially, this approach of deriving individualised neuroanatomical measures could benefit 

clinical trials, where therapeutic effects could be detected across the whole brain, instead of 

just pre-identified regions of interest. 

Cognitively normal controls also showed some outliers suggesting a degree of within-group 

heterogeneity in unaffected people. The implication of this is that the assumption of 

homogeneity in case-control studies should be made with caution, even in control groups. 

Statistical designs for basic research and for clinical trials should better reflect this 

heterogeneity in brain structure. Although the reference dataset includes over 30,000 

individuals, it is still not truly representative of a healthy population 65. Also, patients who 

volunteer for research studies do not necessarily reflect the clinical population; the threshold 

for contraindications for research scans is higher than clinical scans. Future neuroanatomical 
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normative modelling studies could supplement the reference dataset with MRI scans acquired 

from routine clinical visits or other less selective sources.  

There are some limitations to the current study. The sample taken from this study is cross-

sectional, reflecting a snapshot in time, yet heterogeneity has been shown to differ temporally 
66. Therefore, it will be important for future studies to incorporate serial neuroimaging to 

define patient-level longitudinal trajectories. In turn, mapping neuroanatomical variability 

using neuroanatomical normative modelling at different time points has the potential to 

improve predictions of disease progression or treatment response, at the level of the 

individual patient. Potentially, data-driven staging methods (e.g., SusStain 21) may provide 

clinically useful information of longitudinal trends of individual heterogeneity whilst taking 

account of an individual’s disease stage. 

The demographic composition ADNI is another issue. In particular, ADNI is comprised of 

more early-stage dementia participants 67. Examining late-stage patients with Alzheimer’s 

disease may offer interesting insights into the heterogeneity in spatial patterns of atrophy 

across the disease course. Clinical observations have suggested that late-stage patients with 

Alzheimer’s disease have widespread atrophy across the brain; therefore, we may 

hypothesise such patients will have less heterogenous patterns of atrophy. However, 

regardless of the heterogenous patterns of atrophy, the total outlier score can still provide 

information about the extent of cortical atrophy in a given individual. 

  Another limitation of ADNI is the limited representation of cognitive domains beyond 

memory, executive function and language. Between a quarter to a third of the Alzheimer’s 

disease group exhibit parieto-occipital outliers, comparable to separate parieto-occipital 

predominant subtypes associated with prominent visuospatial dysfunction 18, Further 

characterisation of how outlier distribution relates to non-memory/executive symptoms may 

be of particular clinical relevance, for example given the implications of visuospatial 

dysfunction for diminished autonomy, falls risk and appropriate services 24,68,69. 

The current approach omitted subcortical and cerebellar regions and could be extended to 

encompass more of the brain. However, we selected the Destrieux atlas was selected as it 

contains a higher number of cortical parcellations compared to alternatives in FreeSurfer, to 

afford better spatial resolution 45. Importantly, FreeSurfer is widely used making it easier to 

amass a large reference dataset of processed data, and readily enabling other research groups 

to employ the same neuroanatomical normative modelling approach.  
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Conclusion 

Alzheimer’s disease affects different patients’ brains in different ways. This neuroanatomical 

heterogeneity aligns with common observations of clinical heterogeneity. While perhaps 

intuitive, this fact is often overlooked in neuroimaging research and clinical trial design. We 

provide a quantitative approach to estimate this variability at the individual patient level 

based on spatial patterns of an individual's cortical thickness normative deviations. 

Individualised maps of neuroanatomical outliers were related to cognitive performance and 

CSF biomarkers. Furthermore, the number of outliers, based on individual patterns, helped 

predict conversion from MCI to Alzheimer’s disease. These individual neuroanatomical 

maps, derived from normative models, have the potential to be a marker of Alzheimer’s 

disease state. These could index disease progression or even to evaluate the effectiveness of 

potential disease-modifying treatments, tailored to the individual patient. 
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