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Abstract 1

At the outset of the COVID-19 epidemic in the UK, infectious disease modellers advised 2

the government that unless a lockdown was imposed, most of the population would be 3

infected within a few months and critical care capacity would be overwhelmed. This 4

paper investigates the quantitative arguments underlying these predictions, and draws 5

lessons for future policy. 6

The modellers assumed that within age bands all individuals were equally 7

susceptible and equally connected, leading to predictions that more than 80% of the 8

population would be infected in the first wave of an unmitigated epidemic. Models that 9

relax this unrealistic assumption to allow for selective removal of the most susceptible 10

and connected individuals predict much smaller epidemic sizes. In most European 11

countries no more than 10% of the population was infected in the first wave, 12

irrespective of what restrictions were imposed. The modellers assumed that about 2% of 13

those infected would require critical care, far higher than the proportion who entered 14

critical care in the first wave, and failed to identify the key role of nosocomial 15

transmission in overloading health systems. Model-based forecasts that only a lockdown 16

could suppress the epidemic relied on a survey of contact rates in 2006, with no 17

information on the types of contact most relevant to aerosol transmission or on 18

heterogeneity of contact rates. 19

In future epidemics, modellers should communicate the uncertainties associated with 20

their assumptions and data, especially when these models are used to recommend 21

policies that have high societal costs and are hard to reverse. Recognition of the gap 22

between models and reality also implies a need to rebalance in favour of greater reliance 23

on rapid studies of real-world transmission, robust model criticism, and acceptance that 24

when measurements contradict model predictions it is the model that needs to be 25

changed. 26
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Introduction 27

At the outset of the COVID-19 epidemic in the UK in early 2020, advice from the 28

Scientific Advisory Group on Emergencies (SAGE) to the UK government relied on 29

models that predicted that unlesss coercive restrictions of social contact (“lockdown”) 30

were imposed without delay, the epidemic would infect most of the population within a 31

few months and critical care facilities would be quickly overwhelmed [1, 2]. Together 32

with reports from northern Italy that hospital services had been overwhelmed with 33

cases requiring critical care, this led to an abrupt change of policy and the imposition of 34

a lockdown starting on 24 March 2020. Subsequent management of the pandemic in the 35

UK and other countries was based on suppressing transmission through restricting 36

social contacts, vaccinating the entire adult population and a test and trace programme, 37

rather than on focused protection of the vulnerable. Reversal, or even questioning, of 38

these policies was difficult, in part because of implementation of the recommendation 39

from SAGE’s behavioural science subgroup to attempt to overcome people’s own 40

rational assessment of risk with “hard hitting emotional messaging” [3]. The rapid end 41

of the first wave of the epidemic was attributed to lockdown, despite evidence by early 42

May that infection rates had been in substantial decline before lockdown. As similar 43

epidemic modelling approaches may be used to advise policy makers about emerging 44

epidemics in the future, it is important to examine their limitations. 45

The advice that only a lockdown could prevent critical care capacity from being 46

overwhelmed in the UK, presented in reports from modellers at Imperial College (IC) 47

[1] and the London School of Hygiene & Tropical Medicine (LSHTM) [2] was based on 48

four propositions: (1) in an unmitigated epidemic with basic reproduction number 49

R0 = 2.5, more than 80% of the population will be infected within a few months; (2) 50

about 2% of those infected will require critical care; (3) to limit morbidity and mortality 51

will require suppressing the epidemic by reducing the reproduction number below 1, 52

rather than mitigation by shielding the vulnerable; (4) only a lockdown can reduce the 53

reproduction number below 1. In a subsequent report the IC modellers asserted that 54

these propositions applied globally [4]. This article examines the quantitative arguments 55

underlying these propositions and the lessons that can be learned. 56

Methods 57

The approach used by the IC and LSHTM modellers was based on the classic 58

Susceptible-Exposed-Infected-Removed (SEIR) compartmental model formulated by 59

Kermack and McKendrick [5] in 1927, in which the transmission function relating 60

the infection rate to the proportion S of individuals remaining susceptible is assumed to 61

be linear in S [6, 7]. This is equivalent to assuming that all individuals are equally 62

susceptible and equally connected [8]. Kermack and McKendrick were well aware of this, 63

stating in the abstract of their 1927 paper: 64

In the present communication discussion will be limited to the case in which 65

all members of the community are initially equally susceptible to the disease. 66

From their model, Kermack and McKendrick derived an equation (Appendix 67

Equation 3) for the final size of an unmitigated epidemic given the basic reproduction 68

number R0. With R0 = 2.5, the herd immunity threshold is 60%, and the epidemic 69

ends when 89% of the population have been infected. 70

The assumption that susceptibility and connectivity do not vary between individuals 71

is unrealistic; relaxing this assumption to allow for heterogeneity gives rise to a non- 72

linear transmission function [8–11] relating the infection rate to the proportion S 73

remaining susceptible. This function is mathematically constrained to be non-negative, 74
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increasing, convex (second derivative non-negative), and smooth unless a discrete factor 75

like vaccination has a large effect. Under these constraints the function can be 76

approximated by a power law in which the infection rate is proportional to Sλ, where λ 77

is the immunity coefficient, taking values greater than or equal to 1 [9, 10] (see 78

Appendix Equation 1). The classic model with no heterogeneity and a linear 79

transmission function corresponds to λ = 1. Derivations of key mathematical results for 80

SEIR models with heterogeneous mixing are given in the Appendix. For given values of 81

the basic reproduction number R0 and λ, the final size of an unmitigated epidemic can 82

be calculated from Appendix Equation 2. 83

Results 84

1. Predicted size of an unmitigated epidemic 85

Figure 1 shows that for any given value of R0, the predicted final size of an unmitigated 86

epidemic is smaller with a model that allows for heterogeneity than with a model with 87

no heterogeneity. Figure 2 compares the predicted trajectory of the epidemic under a 88

model with no heterogeneity (λ = 1) with the trajectory under a model with 89

heterogeneity quantified by λ = 4, assuming R0 = 2.5. With λ = 4, the herd immunity 90

threshold is 20%, and the epidemic ends when 35% have been infected. For comparison, 91

the values for the size of an unmitigated epidemic predicted by the IC modellers (who 92

assumed R0 = 2.4) and the LSHTM modellers (who assumed R0 = 2.7) were 93

respectively 81% and 85%. These values are slightly smaller than the calculated value 94

for the size of an epidemic under a model with no heterogeneity, because the IC and 95

LSHTM models allowed for slight heterogeneity attributable to variation of contact 96

rates between age bands, equivalent to using λ = 1.2 in Appendix Equation 2. 97

The underlying principle can be described without mathematics. Early in the 98

epidemic, the most susceptible and the most highly connected individuals are selected 99

for infection. Individuals who have persistently high contact rates with others – the 100

hubs of the social network – are not only more likely to acquire infection but also more 101

likely to transmit to others. As these highly susceptible or highly connected individuals 102

are removed from the susceptible compartment, the infection will not spread so easily 103

because the remaining individuals are more resistant to infection or have lower contact 104

rates. The epidemic eventually kills itself by immunizing the most susceptible and the 105

most highly connected individuals – the hubs of the social network. Varying 106

infectiousness (for instance where a few “superspreaders” infect many people) does not 107

affect the final size of the epidemic unless infectiousness is correlated with susceptibility. 108

Comparison of model-based predictions with the observed trajectory of the 109

first wave 110

In most countries the proportion infected in the first wave up to August 2020 was less 111

than 10% [12, 13]. Even in Iran, the first country outside China to be severely affected, 112

seroprevalence was only 17% at the end of April 2020 [14]. As contact rates fell in all 113

these countries, there is no example of an unmitigated first wave. Seroprevalence rates 114

of more than 50% in the first wave have been reported only from the Amazonian region: 115

77% in blood donors in Manaus [15] in October 2020 and 70% in Iquitos in July 2020 116

[16]. The Manaus blood donors result appears to be an outlier, far higher than the 117

adjusted seroprevalence of 29% in a cohort of Manuaus residents studied in October 118

2020 [15]. 119
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Quantifying heterogeneity 120

We can distinguish two sources of heterogeneity: biological susceptibility, and 121

connectivity. There is indirect evidence for heterogeneity of biological susceptibility 122

before the pandemic, based on studies showing that 20-50% of unexposed individuals 123

had cross-reactive T cell responses to SARS-CoV-2 antigens [17]. Although later studies 124

suggested that these cross-reactive T cell responses protect against infection [18, 19], no 125

study has directly quantified the relation of infection risk to T cell reactivity in samples 126

taken before the pandemic. In principle, the contribution of heterogeneity of 127

connectivity to the immunity coefficient λ could be calculated from population-based 128

surveys of the variance of contact rates between individuals. However as surveys of 129

contact rates have recorded only a single day’s contacts in each individual [20, 21], no 130

estimate of variance in persistent connectivity can be made since we can not separate 131

between and within individual variability. The variance between age bands can be 132

estimated however, and contributes an immunity coefficient of about 1.2 [9]. 133

If biological susceptibility contributes to heterogeneity, we expect new epidemic 134

waves to occur when new variants arise that overcome pre-existing resistance to the 135

dominant strain. If connectivity contributes to heterogeneity, we expect new waves to 136

occur when social networks are rewired, for instance at the beginning of a new school 137

year. We can distinguish six epidemic waves in Britain up to early 2022: wave 1 starting 138

in March 2020, wave 2 in September 2020, wave 3 in December 2020, wave 4 in May 139

2021, wave 5 in September 2021, and wave 6 in December 2021. Waves 2 and 5 were not 140

obviously related to new variants, and coincided with the start of the school year. 141

Waves 3, 4, and 6 were attributable to new variants: respectively Alpha, Delta and 142

Omicron. This suggests that both sources of heterogeneity contributed to the wave-like 143

pattern of the epidemic. 144

Learning the transmission function 145

Under variability in susceptibility or mixing rate models there is a one-to-one 146

correspondence between the distribution of susceptibility or mixing and the transmission 147

function. Hence we do not need to estimate the distribution of susceptibility or mixing 148

rates if we can learn the transmission function from the trajectory of the epidemic. The 149

reproduction number R can be estimated from the rate of growth of the epidemic if the 150

distribution of the serial interval – the time between successive cases in a chain of 151

transmission – is known, without any other modelling assumptions [6]. In the UK the 152

reproduction number is estimated to have fallen from about 3 at the start of the 153

epidemic to about 0.5 in mid-April 2020, staying at around 0.8 until late summer [22, 154

23]. It is estimated that contact rates fell by 60% to 80% [12, 21, 24] after lockdown in 155

comparison with the pre-pandemic period in the UK and other European countries. 156

Two studies have attempted to estimate immunity coefficients from the trajectory of 157

the first wave, with models that allowed for changing contact rates [9, 11]. Using survey 158

data to adjust for contact rates, the immunity coefficient λ was estimated as 2.9 for 159

Scotland and England [9]. Using mobility data to adjust for contact rates, estimates of 160

λ ranged from 4.1 to 4.7 in cities and states of the USA [11]. Although these results 161

suggest that heterogeneity of connectivity is far more than is allowed for in the SAGE 162

models, the results must be treated with considerable caution. It is statistically difficult 163

to distinguish the effects of falling contact rates, reduced susceptibility among those 164

remaining uninfected, seasonal effects on transmissibility, and the substantial 165

modification of contact networks caused by lockdowns, because all these factors were 166

changing at the same time. That said, [9] includes an extensive review of contact 167

studies from which contact distribution parameters could be directly estimated: these 168

suggest that the estimates were realistic. 169
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Although published reports from SAGE examined the sensitivity of their forecasts to 170

various modelling assumptions, sensitivity to the assumption of a linear transmission 171

function was not included in these analyses. The rationale for ignoring unmeasured 172

heterogeneity is not clear: in comments on social media, modellers have expressed 173

scepticism that heterogeneity can be modelled without measuring susceptibility directly 174

or relying on strong assumptions about the distribution of susceptibility in the 175

population. However where modelling results are highly sensitive to a process, the 176

difficulty of measuring that process is a poor excuse for ignoring it. In any case, it is 177

not necessary to make strong assumptions about the distribution of susceptibility if we 178

can learn the transmission function from the observed trajectory of the epidemic, 179

although it is clear that attempting to do so may well increase the level of uncertainty 180

that has to be acknowledged in the modelling results. Conversely, if no reliable estimate 181

of the transmission function can be made from real-world observations, that would 182

seriously undermine the case for using models to set policy at all. 183

2. Requirement for critical care. 184

The MRC Biostatistics Unit estimates that about 10% of the English population was 185

infected by the end of the first wave [25]. Over the same period about 0.1% of the 186

population died from COVID-19 as underlying cause, giving an infection fatality rate of 187

about 1%. This is close to the value of 0.9% assumed in the IC model at least for the 188

first wave, though the infection fatality rate was heavily weighted by the high fatality 189

rate in care home residents, who accounted for half of all fatal cases in Scotland [26]. 190

However, the SAGE modellers’ assumptions about the ratio of cases requiring critical 191

care to fatal cases were wide of the mark. The IC report assumed that the ratio of cases 192

entering critical care (30% of 4.4% hospitalised) to fatal cases (0.9% of infections) would 193

be 1.3 [1]. From the LSHTM report [2] the value assumed for the ratio of cases entering 194

critical care to fatal cases at the peak of the epidemic can be calculated (from the 195

projections of peak requirement of 200,000 critical care beds with average length of stay 196

10 days, and peak weekly deaths 57000) as 2.5. In Scotland during the first wave the 197

actual ratio of cases entering critical care to fatal cases was 0.2 [26]. As critical care 198

capacity was not exceeded, this low ratio of cases entering critical care to death was 199

presumably because most of those who were destined to die from COVID-19 were 200

assessed as unlikely to benefit from critical care because they were very frail and near 201

the end of life. 202

Although the inability of health-care systems to cope with the first wave of the 203

epidemic in Lombardy was interpreted as the result of failing to control population-wide 204

transmission, a subsequent report noted that in Lombardy at this time “SARS-CoV-2 205

became largely a nosocomial infection” [27]. Nosocomial transmission accounts for a 206

high proportion of severe cases because even if the clinically vulnerable can shield 207

themselves from other sources of exposure, they cannot easily avoid exposure to hospital 208

when they need medical care [28]. From 2 April 2020 onwards SAGE recorded 209

increasing concern about nosocomial infection, but on 7 May noted that “Granular data 210

are not yet currently available from PHE to fully understand transmission pathways in 211

healthcare settings” [29]. 212

3. Suppression or mitigation? 213

The optimal mitigation scenario considered by the IC modellers – 75% effective 214

shielding of the 15% of the UK population who were aged over 70, combined with case 215

isolation – was predicted to reduce mortality by two-thirds. The modellers argued that 216

this would not be enough to keep the requirement for critical care within the limits of 217
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capacity, and that this would require reducing the reproduction number below 1 to 218

suppress the epidemic. 219

Possibilities for a broader mitigation strategy based on risk-stratified protection of 220

the vulnerable were not examined at this time. Based on the information available at 221

the time about risk stratification, if all those past retirement age or with designated risk 222

conditions had been advised to shield, at least 25% of the population would have been 223

advised to shield initially, but this 25% at highest risk would have accounted for at least 224

85% of those at risk of fatal disease [30]. Those who are advised that they are at high 225

risk are likely to restrict their contact rates voluntarily: focused protection of this group 226

can be supported without coercion. For those in the high-risk group who were 227

economically inactive, not living with economically active adults and able to live 228

without personal care, only minimal support for shielding would have been required. 229

Additional support for those who needed it – for instance because of exposure at work, 230

carer responsibilities, or sharing a household with other adults who were likely to be 231

exposed – could have been provided at far lower cost to society than population-wide 232

restrictions on social and economic activity. When the NHS Volunteer Responders 233

Programme was announced on 24 March 2020 with the aim of supporting 2.5 million 234

individuals identified as clinically vulnerable to COVID-19, 750,000 volunteers came 235

forward within the first six days before recruitment was paused [31]. By end of 236

September 2020, though 385,000 volunteers had been approved and had used an app to 237

register themselves as on duty, only 110,000 vulnerable individuals had been provided 238

with support through this initiative. 239

4. Did suppression require lockdown? 240

The modellers used survey data on contact rates to predict how non-pharmaceutical 241

interventions would change the reproduction number. If transmissibility and 242

susceptibility are constant, the reproduction number is proportional to the average 243

contact rate, or to the largest eigenvalue of the matrix of age-stratified contact rates [6]. 244

The only survey of contact rates in the UK available in early 2020 was the POLYMOD 245

survey in which 1012 individuals in the UK had recorded their contacts for a single day 246

in 2005-6 [20]. As POLYMOD included only seven participants aged over 75, data on 247

mixing in the most vulnerable age groups was wholly inadequate. The type of contact 248

most relevant to aerosol transmission of respiratory viruses like SARS-CoV-2 – sharing 249

a poorly ventilated indoor space [32] – was not recorded: contacts were recorded only as 250

physical (skin-to-skin contact) or non-physical (two-way conversation only). On 14 251

April 2020 SAGE noted that “Evidence suggests that transmission risk outdoors is 252

significantly lower than indoors” but this did not lead to any reassessment of forecasts 253

based on survey data that did not distinguish indoor contacts from outdoor contacts 254

[29]. As contacts were recorded only on a single day, the variance of persistent 255

connectivity between individuals could not be estimated. It is doubtful whether any 256

reliable predictions of the effect of interventions on the reproduction number could be 257

made from such inadequate data. 258

The attribution of the fall in reproduction number below 1 between March and April 259

2020 in the UK to lockdown [33, 34] was based on very strong modelling assumptions: 260

in a reanalysis with relaxation of these assumptions, the reproduction number was 261

estimated to be falling rapidly before lockdown was imposed [22, 23]. This was 262

supported by reconstruction of infection dates from symptom onset dates reported in 263

the REACT-2 survey. A similar analysis showed that the reproduction number had 264

been falling before the second lockdown in November 2020, and this was supported by 265

direct estimates of infection rates from the ONS COVID-19 infection survey [23]. 266

For Sweden, one of the few countries that did not impose a lockdown, the IC 267

modellers predicted on 26 March that given R0 = 2.7, mitigation with “social distancing 268
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of whole population” without a lockdown would lead to 34895 deaths from COVID-19 269

[4]. In the year up to the end of July 2020, the number of COVID-19 related deaths 270

reported in Sweden was 5741 and the estimated number of excess deaths from all causes 271

was 4329 [35]. These results, together with studies from other countries casting doubt 272

upon the necessity of lockdown were available well before the second lockdown in the 273

UK (early May 2020 for [22]) though final peer-reviewed publication was later [36–38]. 274

Discussion 275

The analyses above show that of the four propositions on which the recommendation for 276

lockdown was based, one – the assumption that 2% of those infected would require 277

critical care – was unequivocally wrong, and another – that mitigation through focused 278

protection would not be effective in limiting morbidity and mortality – was not seriously 279

questioned. The other two propositions – that in an unmitigated epidemic 80% would 280

be infected, and that only a lockdown could suppress the epidemic – were reliant on 281

strong but unrealistic modelling assumptions and weak data. 282

Unlike weather models, epidemic models were not developed as forecasting models, 283

but rather as theoretical models to aid the understanding of epidemic processes. While 284

weather models are continuously validated and re-trained against measurements (and 285

related climate models have been subject to extensive refinement of component 286

processes via ground-truth measurement and back-cast validation), such a firm 287

grounding in empirical reality is elusive in epidemic modelling and impractical for 288

models of a newly emergent disease. At the same time, unlike weather and climate 289

models, epidemic models are not based on well-understood physics, readily susceptible 290

to accurate mathematical description, but rather on complex human behaviour, which 291

at best can be captured only crudely by tractable mathematical models. In this respect 292

epidemic models perhaps better resemble economic forecasting models, but without the 293

substantial streams of relevant data available to tune the latter. 294

It follows that epidemic models may well be suitable for answering such broad scale 295

qualitative questions as ‘if we coercively suppress all social contact to the maximum 296

extent possible will we drive R < 1?’, but are simply not designed or calibrated for 297

more nuanced quantitative questions, such as ‘how limited a set of restrictions would 298

have a reasonable chance of avoiding severe health system overload?’. 299

Given these limitations, although it may be appropriate to use epidemic models for 300

exploration of what would happen if reality resembled the model, this exercise needs to 301

be accompanied by proper communication of uncertainties and a greater willingness to 302

rapidly re-assess the models when data suggest poor calibration. For example, given the 303

strong sensitivity of epidemic wave size to variance in mixing rates and susceptibility, no 304

prediction or statement of uncertainty should be considered reliable if it fails to take 305

this variability into account. It also follows that studies aimed at measuring such 306

variability should be a priority if model predictions are to be used in a policy setting. 307

For example, a cross-sectional or cohort study with regular testing for infection, like the 308

ONS COVID-19 Infection Survey [39], could be used to quantify the heterogeneity of 309

connectivity, if cohort members recorded diaries of contacts of different types. Similarly, 310

if peripheral blood mononuclear cells were stored at baseline, such a cohort study could 311

also be used to quantify the heterogeneity of susceptibility attributable to pre-existing T 312

cell cross-reactivity. 313

The modelling reports at the outset of the epidemic in March 2020 failed to 314

communicate that by relying on the unrealistic assumption of no unmeasured 315

heterogeneity they were likely to overestimate the size of the epidemic, and that no 316

reliable prediction of the effects of non-pharmaceutical interventions could be made 317

without more information about the mode of transmission. This suggests that policy 318
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advice in future epidemics should rely less on models, with a greater priority given to 319

the rapid establishment of high quality direct measurement studies, such as the ONS 320

survey, and on shoe-leather epidemiology [40] investigating the key target variable: 321

transmission to vulnerable individuals. SAGE minutes from April-May 2020 show that 322

although they were alerted to evidence that transmission risk was higher indoors than 323

outdoors, and that nosocomial transmission was increasing, this did not lead to any 324

serious reconsideration of policies. A report from NERVTAG and EMG to SAGE on 22 325

July 2020 concluded that “it is possible that transmission through aerosols could 326

happen where a person who generates significant amounts of virus is in a poorly 327

ventilated space with others for a significant amount of time.” but gave only cursory 328

attention to investigations of outbreaks that by this time had provided compelling 329

evidence for aerosol transmission [41]. 330

The choice between risk-stratified protection of the vulnerable and intervention to 331

suppress population-wide transmission is not binary: clinically vulnerable individuals 332

will need support to shield themselves whether or not attempts are made to suppress 333

population-wide transmission. Both lockdowns and focused protection strategies divide 334

the population into compartments with differing connectivity. With a lockdown, the 335

high-connectivity compartment comprises essential workers and carers, and those who 336

share a household with them. With focused protection of the vulnerable, the 337

high-connectivity compartment would comprise those who are young, fit and not 338

sharing a household with someone vulnerable. Sustainable measures to reduce 339

transmission may also be preferable to “circuit-breaker” lockdowns [42] in that they 340

avoid repeated disruption of social networks that may lead to network rewiring with 341

new hubs. Although herd immunity induced by natural infection of highly susceptible or 342

highly connected individuals is likely to be only transient, even this would gain time for 343

development of vaccines or other measures to protect the more vulnerable. 344

Finally, the epidemic models treat all negative effects of interventions as 345

externalities. This is not rational when the aim of epidemic management is to minimise 346

all loss of life from the epidemic and associated disruption. It is also an example, along 347

with ignoring heterogeneity, seasonality, nosocomial transmission and the aspects of 348

transmissibility not captured by contact rates, of excluding effects that are difficult to 349

quantify, irrespective of their importance for relevant outcomes. The consequent danger 350

is of one-sided caution in the advice offered, where recommendations that are presented 351

as precautionary with respect to the outcomes considered in the model, may be 352

recklessly risky in terms of outcomes that are omitted. For example, although the Bank 353

of England has estimated that the economic shock to the UK from the response to 354

COVID is the largest in 300 years, and the effect of economic deprivation and economic 355

shocks on mortality are well established [43], quantifying the effects of lockdown on 356

years of life lost is not amenable to simple mathematical models of the kind used by the 357

SAGE modellers. Given that the primary issue here is one of balance and fairness 358

between controlling COVID and other health problems, the standard cost-effectiveness 359

analyses usually employed to help ensure health equity offer an alternative approach. 360

Although these still require some estimate of the life years saved by lockdowns (and 361

other measures) simple bounding calculations are possible. These suggest that the cost 362

per year of life gained by lockdowns was far higher than the threshold of £30,000 used 363

by NICE to decide whether to recommend use of a new pharmaceutical intervention in 364

the health service [44]. 365
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Fig 1. Relation of final size of unmitigated epidemic to immunity coefficient, for
different values of the basic reproduction number R. See Appendix eqns. (2) and (3).
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Fig 2. Relation of reproduction number and daily cases to the fraction of the
population that is still susceptible, for immunity coefficients of one (no heterogeneity)
and four. Vertical dotted lines are at one minus the herd immunity thresholds.
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Appendix: S(E)IR models with heterogeneity of 529

susceptibility or mixing 530

The key results are concisely derived here. For more see [8–11]. 531

Epidemic size under heterogeneity in susceptibility versus linear 532

transmission (no heterogeneity) 533

An S(E)IR model that allows susceptibility to vary between individuals can be written

d

dt
s(α, t) = −αs(α, t)I(t)

· · ·
dI

dt
= · · · − γI(t)

where · · · indicates details of model structure that do not change the results here. The 534

positive transmission rate parameter α varies over the population (with susceptibility). 535

Note that other authors write the transmission rate as the product of a population-level 536

parameter β representing transmissibility, and an individual-level susceptibility 537

parameter ω defined to have initial mean of 1 [8]. 538

s(α, t)dα is the fraction of the population who are in the susceptible compartment at 539

time t and have parameter value betwen α and α+ dα. So if St is the fraction of the 540

population who are susceptible at time t then s(α, t)/St is the probability density 541

function of α within the susceptible compartment. Without loss of generality we define 542

S0 to be 1. The first equation can immediately be integrated 543∫ s(α,t)

s(α,0)

1

s
ds = −α

∫ t

0

I(t′)dt′ ⇒ log

{
s(α, t)

s(α, 0)

}
= −αqt where qt =

∫ t

0

I(t′)dt′.

Hence s(α, t) = s(α, 0) exp(−αqt). qt has value 0 at t = 0, and increases with t. 544

Now suppose that the initial probability distribution for α is gamma(k, ν) with p.d.f. 545

s(α, 0) = νkαk−1e−αν/Γ(k). It follows directly that s(α, t) = νkαk−1e−α(ν+qt)/Γ(k). 546

To obtain St we need to integrate s(α, t) over α (from 0 to ∞ where unspecified), 547

St =

∫
s(α, t)dα =

νk

Γ(k)

∫
αk−1e−α(ν+qt)dα =

νk

(ν + qt)k
.

The second integral uses the identity 548∫
(ν + qt)

kαk−1e−α(ν+qt)

Γ(k)
dα ≡ 1,

since the p.d.f. of a gamma(k, ν + qt) distribution integrates to one (like any p.d.f.). 549

Similarly to find the time derivative of St, we must integrate α out of the expression for 550

the time derivative of s(α, t). 551

dS

dt
= −I(t)

∫
αs(α, t)dα = −I(t)

νk

Γ(k)

∫
αke−α(ν+qt)dα = −I(t)

νk

Γ(k)

Γ(k + 1)

(ν + qt)k+1
.

Again the second integral is obtained from the fact that a gamma(k + 1, ν + qt) p.d.f. 552

must integrate to one. Using the identity kΓ(k) ≡ Γ(k + 1) and defining λ = 1 + 1/k, 553

routine manipulation gives the transmission function as: 554

dS

dt
= −k

ν
S
1+1/k
t I(t) = −k

ν
Sλ
t I(t). (1)
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R0, the expected number of new infections produced by an infectious individual at 555

the start of the epidemic, is the mean α at time zero multiplied by the expected duration 556

of infectiousness. The mean of a gamma(k, ν) random variable is k/ν so R0 = k/(νγ). 557

The final epidemic size is found by dividing (1) by the rate of removal dR/dt = γI, 558

to get dS/dR = −R0S
λ
t . Rearrangement and integration gives 559∫ S∞

1

S−λdS = −
∫ R∞

0

R0dR ⇒ S1−λ
∞ − 1

1− λ
= −R∞R0

The final proportion x infected is R∞ = 1− S∞, so routine re-arrangement then shows 560

that x must satisfy 561

x = 1− [1 + (λ− 1)R0x]
−1/(λ−1) (2)

For λ = 1 the same approach shows that x must satisfy 562

x = 1− exp (−R0x) (3)

This is the limiting case in which k → ∞ and ν → ∞, while k/ν → a constant (for any 563

meaningful model). For this to happen the variance of α must tend to zero - 564

corresponding to no variability in susceptibility. 565

Individual variation in mixing rates 566

The preceding model assumes that infectiousness is independent of susceptibility. This is
a poor model for the case in which variability in transmissibility is related to variability
in social contact rates. Therefore consider a model in which each individual has their
own value of parameter α, and the transmission probability between individuals with
parameter values α and α′ is proportional to αα′. Defining I(α, t) as the equivalent to
s(α, t) for the infectious class, the susceptibility model is then modified to

d

dt
s(α, t) = −

∫
αs(α, t)α′I(α′, t)dα′

= −αs(α, t)ᾱ′
tI(t)

where ᾱ′
t =

∫
α′I(α′, t)/I(t)dα′. To proceed analytically, assume that the infectious 567

state is short enough that, to a good approximation, the distribution of α in the 568

infectious state at time t is given by the distributions of α in those first becoming 569

infectious at time t. That is I(α, t) ∝ αs(α, t). Hence ᾱ′
t =

∫
α2s(α, t)dα/

∫
αs(α, t)dα 570

(the dividing integral is the normalizing constant for the p.d.f. of α in the I state). 571

Now redefining qt =
∫ t

0
ᾱ′
t′I(t

′)dt′, the algebra follows through exactly as in the 572

variable susceptibility case so that s(α, t) = s(α, 0)e−αqt , and again assuming a 573

gamma(k, ν) initial α distribution we get 574

dS

dt
= −k

ν
S1+1/kᾱ′

tI(t).

The need to evaluate ᾱ′
t is new, but straightforward given that we again have an explicit 575

gamma-like form for s(α, t). Using the same gamma integral tricks as above, 576

ᾱ′
t =

Γ(k + 2)(ν + qt)
k+1

Γ(k + 1)(ν + qt)k+2
= S

1/k
t

k + 1

ν
.

Clearly ᾱ′
0 = (k + 1)/ν, and the product of this, the initial expected value of α, and the

expected residence time in the I compartment gives the basic reproductive number
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R0 = k(k + 1)/(ν2γ). Hence

dS

dt
= −k(k + 1)

ν2
S
1+2/k
t I(t)

= −R0γS
λ
t I(t)

where now λ = 1+ 2/k. Clearly the equation to solve for the final epidemic size is again 577

(2), all that has changed is the relationship between λ and k. 578

Other distributions for susceptibility and contact rates 579

It is easy to work with any initial α distribution for which the moment generating 580

function M(s) = E(esα) exists (a very mild restriction). For a wide range of 581

distributions the m.g.f., its inverse and derivatives are known and readily computed. 582

Under either model we have 583

St =

∫
s(α, 0) exp(−αqt)dα = M(−qt), (4)

as the integral is simply the expectation defining the m.g.f. Differentiating the integral 584

w.r.t. qt, and writing M′(·) for the first derivative of M, we also have, 585

M′(−qt) =

∫
αs(α, 0) exp(−αqt)dα

Hence, for the variable susceptibility model the transmission function is 586

dS

dt
= −

∫
αs(α, t)dαI(t) = −M′(−qt)I(t) = −M′{M−1(St)}I(t)

where M−1 is the inverse function of M and −qt = M−1(St) follows directly from (4). 587

So again we have a one-dimensional ODE. h(S) = M′{M−1(S)} is known as the 588

effective susceptible fraction. 589

The variable mixing model is equally straightforward in the general distribution case. 590

All that changes is that the right hand side of the ODE for St is again multiplied by the 591

term ᾱ′
t. But differentiating the defining equation for M(−qt) once more and 592

substituting into the definition of ᾱ′
t we obtain ᾱ′ = M′′(−qt)/M′(−qt), and hence the 593

transmission function is 594
dS

dt
= −M′′{M−1(St)}I(t),

another one dimensional ODE with h(S) = M′′{M−1(St)}. 595

[8] gives more detail, including examples for several distributions, and argues that 596

the power transmission function obtained by assuming an initial gamma model is a good 597

approximation more widely. However, once the original models are reduced from infinite 598

dimensional to systems of a few readily computed ODEs in this way, they can readily be 599

solved numerically to any desired accuracy, so approximation is somewhat superfluous. 600
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