Long-term Neurocognitive Outcomes after Pediatric Intensive Care Unit Admission: Exploring the Role of Sedatives, Analgesics and Anesthetics

Supporting Information

Pre-processing

Missing values (socioeconomic status: 2.1%, neurocognitive data: 1.9%) were imputed using multiple imputation. The neurocognitive test data were subjected to a pre-processing pipeline to construct neurocognitive domain scores out performance measures resulting from comprehensive neurocognitive assessment. First, the directionality of neurocognitive variables was adapted so that for all scores, higher values corresponded to better task performance. Second, to represent all neurocognitive variables on the same scale and reduce the influence of outliers, all variables were subjected to a Van der Waerden transformation.¹ Third, we reduced the number of outcome variables using Principal Component Analysis with oblique rotation.^{2,3} The Kaiser criterion was used to determine the number of neurocognitive domains that were selected for further analysis based on the eigenvalue >1.0.⁴ Each domain was labeled as a neurocognitive domain based on a selection of variables with the strongest loadings (-0.5 < r > 0.5). This procedure resulted in ten neurocognitive domains that explained 78% of the variance contained in the original neurocognitive variables. The neurocognitive domains and the variables corresponding to these domains are displayed in eTable 1.

Domains & Variables	Description	Definition	Task	Description
Speed and Attention				
Processing Speed	The speed of responding to target appearance	Mean reaction time (ms) on trials with neutral targets	Attention Network Test ⁵	Target stimuli pointing left or right are presented on a computer screen.
Processing Stability	The variability of responding to target appearance	Standard deviation of the mean reaction time (ms) on trials with neutral targets		Subjects are instructed to respond as quickly as possible to the direction of a target stimulus by pressing the
Attention Consistency	Lapses of attention	The average of the exponential component of the fitted ex-Gaussian curve, reflecting the influence of extremely slow responses (lapses of attention) on information processing		corresponding button. Performance is influenced by the presentation of cues (central, spatial) and manipulation of target flanker congruency (neutral, congruent, incongruent). The measurement of reaction times is corrected for system latency.
Visuomotor Accuracy	The precision of proactive visuomotor tracking	The mean distance (in pixels) between the target and the mouse cursor in the structured condition across speed levels	Track & Trace task ⁶	See ' Visuomotor Integration'
Visuomotor Stability	The variability of proactive visuomotor tracking	The standard deviation of the mean distance (in pixels) between the		

eTable 1. Overview of the neurocognitive domains, variables, definitions and tasks

target and the mouse cursor in the

structured condition across speed

levels

Set Shifting

Speed of set-shifting	The speed of flexibly changing from	The difference in mean reaction time	Multisensory Integration Task ⁷	Measures the ability to flexibly shift
	an automated compatible response to	between the set and visual shift trials		between conditions (i.e. set-shifting)
	an incompatible response.			and the influence of multisensory
Multisensory integration speed	The speed of integrating information	The difference in mean reaction time		integration on set-shifting.
	from different sensory modalities.	between the visual shift trials and		In all trials, children were presented
		audiovisual shift trials		with a target in the center of the
				screen (a penguin) that tilted to the
				left or to the right, after which a
				response was required (pressing one
				of two buttons on a response box).
				There were three conditions: the set,
				visual shift and audiovisual shift
				conditions. In the set condition (72%
				of trials) responses were required to
				be compatible with the tilt direction
				of the target. The visual shift condition
				and audiovisual shift conditions (14%
				of trials each) were marked by the
				presentation of a set-shifting signal at

the moment when the target tilted, and required a response that was incompatible with the tilt direction of the target.

Verbal Memory

Verbal Memory Encoding	The ability to encode verbal	The sum of correct words recalled	Rey Auditory	A list of 15 words is auditorily
	information in short-term memory	over the five direct recall trials	Verbal Learning Test ⁸	presented five times. The subject has
Verbal Memory Consolidation	The ability to consolidate	The difference in the number of		to reproduce as many words as
	verbal information in long-term	correctly recognized words and		possible directly after each
	memory	correctly recalled words in the last		presentation (direct recall) and after
		direct recall trial		an interval of 15 minutes (delayed
Verbal Memory Retrieval	The ability to retrieve verbal	The difference in the number of		recall). Lastly the subject has to select
	information from long term memory.	correctly recognized words and		the presented words among 15
		correct words recalled in the delayed		distractors (recognition).
		recall trial		
Visuomotor Integration				
Visuomotor Speed	The precision of visuomotor tracking	The difference in mean distance (in	Track & Trace task 6	A moving target stimulus is presented
	at higher speeds	pixels) at the highest speed and the		on the screen of an iPad. Subjects are
		lowest speed (across the structured		instructed to keep their index finger
		and unstructured condition)		on the center of the target in a
Visuomotor Dynamic Integration	The precision of reactive	The mean distance (in pixels)		structured condition (predictable,
		between the target and the index		circular path) and in an unstructured

visuomotor tracking

finger in the structured condition

condition (unpredictable, random path) at four linearly increasing target speeds. The speed of the moving stimulus is corrected for the system refreshing rate.

Verbal Working Memory

Phonological loop	The capacity of encoding visual	Performance in the forward condition	Digit Span task ⁹	Subjects are required to repeat a
	information in short-term memory.			sequence of numbers presented
Verbal Central Executive	The capacity of the central executive	The difference in performance		auditorily in the order of presentation
	to manipulate verbal information in	between the backward and the		(forward condition) or reversed
	short-term memory.	forward condition		order (backward condition). The
				difficulty increases every other trial,
				by increasing the length of the
				sequence of digits. Performance in
				each condition is defined by the span
				(the difficulty level of the last correct
				trial) multiplied by the stability (the
				total number of correct trials).
	short-term memory.	forward condition		difficulty increases every other trial, by increasing the length of the sequence of digits. Performance in each condition is defined by the span (the difficulty level of the last correct trial) multiplied by the stability (the

Interference Control

Orienting Attention	The gain in processing speed by	The difference in mean reaction time	Attention Network Test ⁵	See 'Speed and Attention'
	spatially orienting attention	(ms) between trials with spatial and		
		central cues		

Interference Control	The speed of suppressing irrelevant	The difference in mean reaction time		
	information	(ms) between trials with incongruent		
		and congruent targets		
Visual Processing Speed				
Set Speed	The speed of responding to target	Mean reaction time on set trials	Multisensory Integration Task ⁷	See 'Set Shifting'
	appearance			
Multisensory Integration Speed	The speed of integrating information	The difference in mean reaction time		
	from different sensory modalities.	between the visual shift trials and		
		audiovisual shift trials		
Visual Working Memory				
Visuo-spatial sketchpad	The capacity of encoding visual	Performance in the forward condition	Klingberg task ¹⁰	A sequence of yellow dot:
	information in short-term memory			presented on a four by four d
Visual Central Executive	The capacity of the central executive	The difference in performance		grid. Subjects are required to re
	to manipulate visual information in	between the backward and the		the sequence in the order
	short-term memory.	forward condition		presentation (forward) or reve
				order (backward) by clicking or
				relevant locations in the grid.
				difficulty increases every other
				by increasing the length of
				sequence or increasing the diffi
				of the virtual trajectory of the ye
				dots. Performance in each conditi

defined by the span (the difficulty level of the last correct trial) multiplied by the stability (the total number of correct trials).

Planning Time

Alerting Attention	The ability to achieve and maintain an	The difference in mean reaction time	Attention Network Test ⁵	See 'Speed and Attention'
	alert state.	between central cue trials and no cue		
		trials		
Planning Time	The time taken to plan ahead before	Mean of time to first response in trials	Tower of London ¹¹	Colored discs must be moved one by
	responding.	with correct answers		one from an initial state to match a
Planning Capacity	The ability to efficiently plan	Total items correct multiplied by the		goal state. Instructions are given to
	responses in problem solving	maximum correct difficulty degree		plan the whole sequence of moves
				that must be carried out mentally,
				before executing the sequence.
Multisensory Integration				
Multisensory Integration Accuracy	The accuracy of integrating	The difference in mean accuracy	Multisensory Integration Task ⁷	See 'Set Shifting'
	information from the different	between the visual shift trial and		
	sensory modalities.	audiovisual shift trial		

Note. Experimental procedures ('Tasks') that have been applied to generate test scores targeting specific neurocognitive functions ('Variables'), which in turn were clustered using component analysis

to retrieve overarching scores representing neurocognitive domains ('Domains). ms = milliseconds

Demographic and clinical characteristics	Patient group (n = 65)	Totale sample of eligible children (n = 119)	p-value
Sex, % boys	60.0	59.7	.08
Age at PICU admission (days), median (IQR)	43.0 (23.5-79.5)	45.0 (27.0-82.0)	.56
Mechanical ventilation (days), mean (SD)	6.6 (2.8)	6.3 (2.7)	.27
PICU stay (days), median (IQR)	7.4 (5.7-9.0)	6.88 (5.0-8.7)	.23

eTable 2. Comparison of included children with the total sample of eligible children

Note. PICU = Pediatric Intensive Care Unit

eTable 3. Exploratory analysis

Neurocognitive outcomes	R ² (%)	Beta (SE)	p-value	p-value after FDR- correction
Invasive mechanical ventilation duration				
FSIQ	0.2	0.01 (0.02)	.69	.69
Speed and attention	0.3	-0.00 (0.00)	.69	.69
Verbal memory	2.3	-0.00 (0.00)	.23	.69
Planning time	0.4	-0.00 (0.00)	.60	.69
Midazolam mean cumulative daydose				
FSIQ	0.5	2.10 (3.90)*	.59	.79
Speed and attention	0.3	0.09 (0.23)*	.69	.79
Verbal memory	0.1	0.07 (0.28)*	.79	.79
Planning time	0.7	0.17 (0.24)*	.50	.79
Midazolam highest cumulative daydose				
FSIQ	1.6	3.90 (4.18)*	.36	.54
Speed and attention	8.5	0.48 (0.22)*	.03	.13
Verbal memory	1.3	0.23 (0.28)*	.41	.54
Planning time	0.1	0.07 (0.27)*	.78	.78
Morphine mean cumulative daydose				
FSIQ	4.4	10.62 (6.29)*	.10	.34
Speed and attention	0.3	-0.17 (0.38)*	.65	.87
Verbal memory	3.0	0.62 (0.44)*	.17	.34
Planning time	0.0	0.03 (0.40)*	.93	.93
Morphine highest cumulative daydose				
FSIQ	0.0	0.63 (7.21)*	.93	.93
Speed and attention	1.0	-0.27 (0.39)*	.49	.65
Verbal memory	1.5	-0.42 (0.47)*	.38	.65
Planning time	1.1	-0.33 (0.45)*	.46	.65
Prednisone yes/no				
FSIQ	0.0	0.00 (7.47)	.99	.99
Speed and attention	0.7	0.30 (0.44)	.50	.97
Verbal memory	1.6	-0.52 (0.53)	.32	.97
Planning time	0.2	-0.16 (0.47)	.73	.97

Dexamethasone yes/no				
FSIQ	2.0	-4.73 (4.22)	.27	.45
Speed and attention	1.6	-0.25 (0.25)	.32	.45
Verbal memory	1.5	0.29 (0.30)	.33	.45
Planning time	0.1	0.08 (0.27)	.77	.77
Sedatives, analgesics, anesthetics and corticosteroids				
FSIQ	0.4	-0.01 (0.02)	.60	.60
Speed and attention	1.6	-0.00 (0.00)	.31	.51
Verbal memory	1.2	-0.00 (0.00)	.38	.51
Planning time	5.2	-0.00 (0.00)	.07	.27

Note. FDR-correction = correction for false discovery rate. *Beta represents a change of the dependent variable by the independent variable times 10.

Confounding analysis

As the patient group had significant lower gestational age as compared to the control group, this could theoretically be a confounder in the observed differences between the patient and control group. Therefore, we assessed whether the neurocognitive variables that were significantly different between the patient and control group, were also related to gestational age. This was the case for FSIQ (p=.030) and for verbal memory (p=.002), but not for speed and attention (p=.071) nor for planning time (p=.124). In order to create a patient and control group comparable on gestational age, we excluded 5 children in the patient group with gestational age <32 weeks en 9 children in the control group with gestational age >41.5 weeks (median (IQR) respectively 38.36 (36.89-40.11) weeks and 39.57 (38.00-40.43) weeks, p=.259). Subsequently, we repeated the group comparisons for FSIQ and verbal memory, which replicated the previously reported differences difference respectively significant group (mean (SE) -8.46 (2.24), p<.001 and -0.47 (0.15), p=.003). These findings indicate that the observed evidence for neurocognitive impairments are not accounted for by premorbid differences in gestational age.

Demographic and clinical	mean (SE) difference between	p-value
characteristics and neurocognitive	patient and control group	
outcomes		
Demographic and clinical		
characteristics		
Age at time testing (years)	-0.20 (0.24)	.41
Sex (% boys)	0.57 (0.37)	.13
Socioeconomic status	0.01 (0.12)	.96
Gestational age (weeks)*	-0.15 (0.12)	.23
Neurocognitive outcomes		
FSIQ	-7.71 (2.25)	.001
Speed and attention	-0.40 (0.17)	.02
Set shifting	-0.18 (0.18)	.32
Verbal memory	-0.44 (0.15)	.005
Visuomotor integration	0.25 (0.18)	.16
Verbal working memory	-0.27 (0.17)	.12
Interference control	0.33 (0.16)	.05
Visual processing speed	-0.12 (0.17)	.49
Visual working memory	-0.30 (0.18)	.11
Planning time	0.32 (0.18)	.08
Multisensory Integration	0.04 (0.18)	.83

Note. Patient group n = 55, control group n = 67: Excluded in patient group: gestational age <32 weeks, bronchopulmonary dysplasia, cardiopulmonary resuscitation, traumatic brain injury, septic shock, delirium, Pediatric Index of Mortality 2 score >10, extra-corporeal membrane oxygenation, more than two PICU admissions. Excluded in control group: gestational age >41.5 weeks to have a comparable gestational age between patient and control group. * Van der Waerden transformation of gestational age to obtain a normal distribution.

References

1. Van Der Waerden B. Mathematical statistics springer-verlag. ew York; 1969.

2. Holland SM. Principal components analysis (pca). 2008.

3. Rummel RJ. Applied factor analysis. Northwestern University Press; 1988.

4. Kaiser HF. The application of electronic computers to factor analysis. Educational and psychological measurement; 1960. p. 141–51.

5. Fan J, McCandliss BD, Sommer T, Raz A, Posner MI. Testing the efficiency and independence of attentional networks. *J Cogn Neurosci* 2002; **14**(3): 340-7.

6. De Kieviet JF, Stoof CJ, Geldof CJ, et al. The crucial role of the predictability of motor response in visuomotor deficits in very preterm children at school age. *Dev Med Child Neurol* 2013; **55**(7): 624-30.

7. Königs M, Weeda WD, van Heurn LW, et al. Pediatric traumatic brain injury affects multisensory integration. *Neuropsychology* 2017; **31**(2): 137-48.

8. Saan RJ, & Deelman, B. G. . Nieuwe 15-Woorden Test A en B, 15-WT A en 15-WT B. 1986.

9. Wechsler D. Wechsler Intelligence Scale for Children (3rd ed.) (WISC-III): Manual. San Antonio, TX: The Psychological Corporation.; 1991.

10. Nutley SB, Söderqvist S, Bryde S, Humphreys K, Klingberg T. Measuring working memory capacity with greater precision in the lower capacity ranges. *Dev Neuropsychol* 2010; **35**(1): 81-95.

11. Shallice T. Specific impairments of planning. *Philos Trans R Soc Lond B Biol Sci* 1982; **298**(1089): 199-209.