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Supplementary Figure 1. Sample sizes across studies and ancestries 
The left x-axis is showing VTE (venous thromboembolism) prevalence across the biobanks 
shaded by sampling strategy and the right x-axis is showing the number of VTE cases across the 
biobanks shaded by global ancestry labels. 
UCLA=UCLA Precision Health Biobank; MGI=Michigan Genomics Initiative; BioMe=Mount 
Sinai BioMe Biobank; BioVU=Biorepository at Vanderbilt University; UKBB=United Kingdom 
Biobank; ESTBB=Estonia Biobank; GNH=East London Genes and Health; CKB=China 
Kadoorie Biobank; AFR= African ancestry; MID=Middle Eastern ancestry; AMR=Admixed 
American ancestry; EAS=East Asian ancestry; NFE=non-Finnish European; FIN=Finnish 
ancestry; SAS=South Asian ancestry 
 

 
 
  



Supplementary Figure 2. Differential effect sizes between population-based and hospital-
based biobank meta-analyses  
Meta-analysis in only population-based biobanks (UK Biobank, Estonian Biobank, Genes and 
Health, China Kadoorie Biobank) and hospital-based biobanks (UCLA Precision Health 
Biobank, Michigan Genomics Initiative, Mount Sinai BioMe Biobank, Biorepository at Vanderbilt 
University ) was performed for index variants of genome wide significant loci for VTE. Only 4 loci 
have a p-value below 1x10-6 in both population-based and hospital-based meta-analyses. 
Overall, effect sizes are larger for population-based biobanks than hospital-based biobanks 
(slope=1.4, 95% CI 1.2-1.6). 
 

 
 



 
Supplementary Figure 3. Variants with nominally significant heterogeneity across 
ancestries 
Three variants (x-axis) had nominally (p-value < 0.05) significant heterogeneity across 
contributing ancestries. The estimated effect sizes (y-axis) shown here grouped by ancestry 
(NFE=non Finnish European; FIN=Finnish; AFR=African; ALL=combined ancestries in meta-
analysis) 

 
 
 
  



Supplementary Figure 4. Ancestry specific locus rs112106699 near DHRS3 
Summary statistics and forest plot for contributing cohorts and meta-analysis (in bold) at one genome 
wide significant variant. PoPS prioritized gene DHRS3 is 4.4kilobases (kb) from the tag SNP and 
VPS13D is 51.4 kb away. 
Freq=effect alelle frequency; Beta=estimated effect size from GWAS; BioMe_afr=Mount Sinai 
BioMe Biobank African ancestry; BioVU_afr=Biorepository at Vanderbilt University African 
ancestry; UKBB_afr=UK Biobank African ancestry; BioME_amr=Mount Sinai BioMe Biobank 
American ancestry; MGI_nfe=Michigan Genomics Initiative non-Finnish European ancestry; 
UKBB_nfe=UK Biobank non-Finnish European; UKBB_sas=UK Biobank South Asian ancestry 
 
 
 

 
  



Supplementary Figure 5. Scatterplot of effect sizes between discovery and replication 
datasets 
A. 

 
B. 

  
 



a. Scatterplot of effect sizes with standard error bars for INVENT+MVP (y-axis) versus GBMI 
meta-analysis (x-axis). Intercept and slope shown are from York’s regression (see STAR 
methods). 
b. Scatterplot of effect sizes with standard error bars for INVENT+MVP (x-axis) versus GBMI 
meta-analysis without BioVU. This is a sensitivity analysis since the INVENT meta-analysis 
included eMERGE samples that could overlap with those of BioVU. 
 
 
  



Supplementary Figure 6. Functional experiment pooling non-injected controls 
Boxplot of time to occlusion in seconds (y-axis) for pooled uninjected controls (purple) and 
targeted genes (injected). P-values from wilcoxon rank sum test comparing all uninjected 
controls to each targeted gene are shown for each paired test.  
sgRNA=single guide RNA 

 
 
  



Supplementary Figure 7. Quantile-quantile plot (QQplot) for meta-analysis 
Quantile-Quantile plot (QQplot) for meta-analysis p-values grouped and colored by minor allele 
frequency (MAF). Lambda at quantiles (0.001, 0.01, 0.1, 0.5, and 0.7) are calculated.  

 
 
 
 
 
 
 
 



Supplementary Figure 8. Comparison of DEPICT and PoPs using a gold standard gene set 
Specificity (x-axis) and sensitivity (y-axis) for prioritization of 41 gold standard VTE genes 
using DEPICT (reds) and PoPS (blues). The multi-ancestry meta-analysis was used (ALL) as 
well as the non-Finnish European ancestry meta-analysis (NFE).  
 
 



Supplementary Table 1: Previous VTE studies from the NHGRI-EBI GWAS catalog as of 
October 2021 
Accompanying excel file  
* GWAS for platelet thrombin activation 
** GWAS for factor 5 plasma levels 
Genome-wide association studies for Venous Thromboembolism in the GWAS Catalog (Buniello et al., 
2019) as of June 2022. References: (Trégouët et al., 2009) (Germain et al., 2011) (Heit et al., 2012) 
(Greliche et al., 2013) (Tang et al., 2013) (Germain et al., 2015) (Hernandez et al., 2016) (Hinds et al., 
2016) (Rühle et al., 2017) (Heit et al., 2017) (Klarin et al., 2017) (Thibord et al., 2019) (Klarin et al., 
2019) (Deguchi et al., 2020) (Rodriguez et al., 2020) (Mateos et al., 2020) (Herrera-Rivero et al., 2021) 
 
Supplementary Table 2. Gold standard coagulation genes with associations with Venous 
Thromboembolism  
Genes known to be associated with blood coagulation and/or platelet disorder functional assays and 
human genetics assays known from the literature(Downes et al., 2019). The list is filtered for genes that 
are not duplicated in zebrafish for experimental purposes. Notably, the landscape of gold standard genes 
is slightly different from the genes identified via genome wide association studies (GWASs). 
Accompanying excel file 
* Also associated with platelet disorder 
 
Supplementary Table 3. 38 genome-wide significant loci from GBMI meta-anlaysis 
Accompanying excel file 
31 lead SNPs are within 500 kb of a variant previously reported in GWAS or sequencing studies, 
resulting in 9 potentially novel associations  
 
Supplementary Table 4. Meta-analysis of replication and leave BioVU out GBMI meta-analysis 
Accompanying excel file 
Of the 37 markers available for replication in the INVENT+MVP meta-analysis, 34 are genome-wide 
significant (5x10-8) with inverse variance based meta-analysis and two sided p-value. This sensitivity 
analysis accounts for possible inclusion of samples in both the INVENT+MVP analysis and the GBMI 
meta-analysis with BioVU included. 
 
Supplementary Table 5. KEGG Pathways 
Accompanying excel file 
Kyoto Encyclopedia of Genes and Genomes (KEGG, Human cell signaling and metabolic pathways 
version 2021) enriched in 38 prioritized genes from genome-wide significant loci. Adjusted p-value is 
using Benjamini-Hochberg method for multiple hypothesis testing. 
 
Supplementary Table 6. Gene Ontology (GO) Biological Processes  
Accompanying excel file 
Gene Ontology (GO) terms for biological processes (2021 version) enriched in 38 prioritized genes from 
genome-wide significant loci. Adjusted p-value is using Benjamini-Hochberg method for multiple 
hypothesis testing. 
 



 
Supplementary Table 7. Gene Ontology (GO) Molecular Function 
Accompanying excel file 
Gene Ontology (GO) terms for biological processes (2018 version) enriched in 38 prioritized genes from 
genome-wide significant loci. Adjusted p-value is using Benjamini-Hochberg method for multiple 
hypothesis testing. 
 
 
 
 
  



Supplementary Table 8: Case and control definitions used in analysis plan provided to 
participating biobanks 
Note, the replication cohort INVENT defined also included cases from self-report which were interview 
with a trained nurse to confirm diagnosis(Klarin et al., 2017). 
 

Subset ICD codes Description 

cases inclusion 
(ICD10) 

I80.1, I80.2, 
I82.2 , I26.0, 
I26.9 

Hospitalization for ICD-10 Code I80.1 or I80.2 - phlebitis and 
thrombophlebitis of the femoral vein or other deep vessels of lower 
extremities; 
 
Hospitalization for ICD-10 Code I82.2 - embolism and thrombosis of vena 
cava; 
 
Hospitalization for ICD-10 Code I26.0 or I26.9 - pulmonary embolism with 
or without acute cor pulmonale; 

cases inclusion 
(ICD9) 

451.11, 453.40, 
453.2, 453.77, 
453.87, 415.1  

cases inclusion 
(OPCS codes) L79.1 or L90.2 

Hospitalization for OPCS-4 Procedures Codes L79.1 or L90.2 - open 
venous thrombectomy of lower limb vein or inferior vena cava filter 
insertion. 
Open venous thrombectomy of lower limb vein or inferior vena cava filter 
insertion. 

controls 
exclusion 
(ICD10) 

I81, I82.0, 
I80.0, I80.3, 
I80.8, I80.9, 
D68 

portal vein thrombosis (I81), Budd-Chiari syndrome (I82.0), superficial or 
unclear site of thrombophlebitis (I80.0, I80.3, I80.8, I80.9), or known 
coagulation defects (D68). 

controls 
exclusion 
(ICD9) 

452,453.0,451.
0,451.89,451.9,
286  

 
 
 
  



Supplementary Table 9: Effective sample sizes across ancestries 
UCLA=UCLA Precision Health Biobank; MGI=Michigan Genomics Initiative; BioMe=Mount 
Sinai BioMe Biobank; BioVU=Biorepository at Vanderbilt University; UKBB=United Kingdom 
Biobank; ESTBB=Estonia Biobank; GNH=East London Genes and Health; CKB=China 
Kadoorie Biobank 
 

Ancestries Cohorts Cases Controls Effective 
Sample Size 

African BioMe, BioVU, UKB, 
UCLA 

1,466 31,042 5,477 

Admixed American BioMe, UCLA 1,037 12,479 3,772 

East Asian CKB, UCLA 193 77,462 741 

Finnish FinnGen 9,176 209,616 NA 

Non-Finnish European BioMe, BioVU, EstBB, 
MGI, UCLA, UKB 

15,970 681,106 61,678 

South Asian GNH, UKB 145 23,585 576 

Total  27,987 1,035,290 107,409 

  



Supplementary Table 10. Sample size for VTE in each cohort by ancestry, sexes combined 
UCLA=UCLA Precision Health Biobank; MGI=Michigan Genomics Initiative; BioMe=Mount 
Sinai BioMe Biobank; BioVU=Biorepository at Vanderbilt University; UKBB=United Kingdom 
Biobank; ESTBB=Estonia Biobank; GNH=East London Genes and Health; CKB=China 
Kadoorie Biobank; AFR= African ancestry; MID=Middle Eastern ancestry; AMR=Admixed 
American ancestry; EAS=East Asian ancestry; NFE=non-Finnish European; FIN=Finnish 
ancestry; SAS=South Asian ancestry 
 

Biobank Ancestry Case Control 

BioMe afr 477 6287 

BioMe nfe 253 8903 

BioMe amr 494 8647 

BioVU afr 434 14295 

BioVU nfe 2295 65621 

CKB eas 61 75294 

ESTBB nfe 1177 131802 

FinnGen fin 9176 209616 

GNH sas 84 14793 

MGI afr 231 2935 

MGI nfe 2999 47845 

UCLA afr 195 1031 

UCLA amr 543 3832 

UCLA eas 132 2168 

UCLA nfe 1503 15138 

UKBB afr 129 6494 

UKBB sas 61 8792 

UKBB nfe 7743 411797 

Total 27987 1035290 

 
 



 
 
Supplementary Table 11. Effective Sample Sizes for each cohort, by ancestries, by sex 
Accompanying excel file  
Effect sample sizes for each cohort, each ancestry group for both sexes combined and stratified 
by sex. Sample names with “leave” are for each leave one biobank out meta-analysis performed. 
UCLA=UCLA Precision Health Biobank; MGI=Michigan Genomics Initiative; BioMe=Mount 
Sinai BioMe Biobank; BioVU=Biorepository at Vanderbilt University; UKBB=United Kingdom 
Biobank; ESTBB=Estonia Biobank; GNH=East London Genes and Health; CKB=China 
Kadoorie Biobank; AFR= African ancestry; MID=Middle Eastern ancestry; AMR=Admixed 
American ancestry; EAS=East Asian ancestry; NFE=non-Finnish European; FIN=Finnish 
ancestry; SAS=South Asian ancestry 
 
 
Supplementary Table 12.  Replication cohort sample sizes by ancestry groups 
INVENT=International Network on Venous Thrombosis 
MVP=Million Veteran Program  
 

Cohort and ancestry Cases Controls 

INVENT European  15,572 113,430 

INVENT African  799 14,353 

MVP European 18,952 411,746 

MVP African  5,521 103,791 

MVP Hispanic 1,188 45,634 

Total 42,032 688,954 

 
 
Supplementary Table 13. Genetic instruments for two-sample Mendelian Randomization 
Accompanying excel file  
18 single nucleotide polymorphisms (SNPs) selected as genetic instruments.  
EAF=effect allele frequency; SE=standard error 
 
Supplementary Table 14. Efficient single guide RNAs (sgRNA) for CRISPR/Cas9 mediated 
genome editing. 
Accompanying excel file 
Genes of interest identified for validation in zebrafish and the corresponding sgRNAs used for 
CRISPR/Cas9 genome editing knockdown. 
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