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Abstract 
 

Human genetic studies have provided substantial insight into the biological mechanisms 

governing ovarian ageing, yet previous approaches have been largely restricted to assessing 

common genetic variation. Here we report analyses of rare (MAF<0.1%) protein-coding variants 

in the exomes of 106,973 women from the UK Biobank study, implicating novel genes with 

effect sizes up to ~5 times larger than previously discovered in analyses of common variants. 

These include protein truncating variants in ZNF518A, which shorten reproductive lifespan by 

promoting both earlier age at natural menopause (ANM, 5.61 years [4.04-7.18], P=2*10-12) and 

later puberty timing in girls (age at menarche, 0.56 years [0.15-0.97], P=9.2*10-3). By integrating 

ChIP-Seq data, we demonstrate that common variants associated with ANM and menarche are 

enriched in the binding sites of ZNF518A. We also identify further links between ovarian ageing 

and cancer susceptibility, highlighting damaging germline variants in SAMHD1 that delay ANM 

and increase all-cause cancer risk in both males (OR=2.1 [1.7-2.6], P=4.7*10-13) and females 

(OR=1.61 [1.31-1.96], P=4*10-6). Finally, we demonstrate that genetic susceptibility to earlier 

ovarian ageing in women increases de novo mutation rate in their offspring. This provides direct 

evidence that female mutation rate is heritable and highlights an example of a mechanism for 

the maternal genome influencing child health. 
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Introduction 

 

Reproductive longevity in women varies substantially in the general population, and has a 

profound impact on fertility and health outcomes in later life1–3. Women are born with a non-

renewable ovarian reserve, which is established during foetal development. This reserve is 

continuously depleted throughout reproductive life, ultimately leading to menopause4–6. Variation 

in menopause timing is largely dependent on the differences in the size of the initial oocyte pool 

and the rate of follicle loss3. Natural fertility is believed to be closely associated with menopause 

timing, and it declines on average 10 years before the onset of menopause4,7. The effect of 

early menopause on infertility is becoming increasingly relevant due to the secular trend of 

delaying parenthood to later maternal age at childbirth, especially in Western populations. In 

addition, normal variation in reproductive lifespan is causally associated with the risk of a wide 

range of disease outcomes, such as type 2 diabetes mellitus, cancer and impaired bone health, 

further highlighting the need for better understanding of the regulators and physiological 

mechanisms involved in reproductive ageing1,8.  

 

The variation in timing of menopause reflects a complex mix of genetic and environmental 

factors that population-based studies have begun to unravel. Previous genome-wide association 

studies (GWAS) have successfully identified ~300 distinct common genomic loci associated 

with the timing of menopause1. These reported variants cumulatively explain 10% - 12% of the 

variance in ANM and 31-38% of the overall estimated SNP heritability1,9,10. The majority of these 

loci implicate genes that regulate DNA damage response (DDR), highlighting the particular 

sensitivity of oocytes to DNA damage due to the prolonged state of cell cycle arrest across the 

life-course1,7,11–20.  

 

Genetic studies for ANM to date have largely focussed on assessing common genetic variation, 

with little insight into the role of rarer, protein-coding variants. Initial exome-sequencing (WES) 

analyses in UK Biobank identified gene-based associations with ANM for CHEK2, DCLRE1A, 

HELB, TOP3A, BRCA2 and CLPB1,9. In this study, we aimed to explore the role of rare 

damaging variants in ovarian ageing in greater detail through a combination of enhanced 

phenotype curation, better powered statistical tests and assessment of different types of variant 

classes at lower allele frequency thresholds (Supplementary Note). Using these approaches 

we identify five genes harbouring variants of large effect that have not previously been 

implicated, highlighting ZNF518A as a major transcriptional regulator of ovarian ageing. 

Furthermore, we extend these observations to show that women at increased genetic risk of 

earlier menopause have increased rates of de novo mutations in their offspring. 
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Results 

Exome-wide gene burden associations with ANM 

To assess the impact of rare damaging variants on age at natural menopause (ANM), we used 

whole-exome sequencing (WES) data available in 106,973 post-menopausal UK Biobank 

female participants of European genetic-ancestry21. Individual gene burden association tests 

were conducted by collapsing genetic variants according to their predicted functional categories. 

We defined three categories of rare exome variants with minor allele frequency (MAF) < 0.1%: 

high-confidence Protein Truncating Variants (HC-PTVs), missense variants with CADD score ≥ 

25, and ‘damaging’ variants (defined as combination of HC-PTVs and missense variants with 

CADD ≥ 25). We analysed 17,475 protein-coding genes with the minimum of 10 rare allele 

carriers in at least one of the masks tested. The primary burden association analysis was 

conducted using BOLT-LMM22 (Supplementary Table 1). The low exome-wide inflation scores 

(e.g. PTV λ=1.047) and the absence of significant association with synonymous variant burden 

for any gene indicate our statistical tests are well calibrated (Supplementary Figure 1).  

We identified rare variation in nine genes associated with ANM at exome-wide significance 

(P<1.08*10-6, Figures 1 and 2, Supplementary Figures 2 and 3). These were confirmed by an 

independent group of analysts using different QC and analysis pipelines (Supplementary 

Tables 1, 2). Three of these genes have been previously reported in UKBB WES analysis9 - we 

confirm the associations of CHEK2 (beta=1.57 years, 95% CI: 1.23-1.92, P=1.60*10-21, N=578 

damaging allele carriers) and HELB (beta=1.84, 95% CI: 1.08-2.60, P=4.20*10-7, N=120 HC-

PTV carriers) with later ANM and a previously borderline association of HROB with earlier ANM 

(beta= -2.89 years, 95% CI: 1.86-3.92, P=1.90*10-8, N=65 HC-PTV carriers). In addition, our 

previous ANM GWAS analyses1 identified an individual low-frequency PTV variant in BRCA2, 

which we now extend to demonstrate that, in aggregate, BRCA2 HC-PTV carriers exhibit 1.18 

years earlier ANM (beta= -1.18, 95% CI: 0.72-1.65, P=2.60*10-7, N=323). Rare variants in the 

remaining five genes – ETAA1, ZNF518A, PNPLA8, PALB2 and SAMHD1 have not been 

previously implicated in ovarian ageing. Effect sizes of these associations range from 5.61 years 

earlier ANM for HC-PTV carriers in ZNF518A, to 1.35 years later ANM for women carrying 

damaging alleles in SAMHD1. This contrasts with a maximum effect size of 1.06 years (median 

0.12 years) for common variants (MAF>1%) identified by previous ANM GWAS1. 
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Figure 1: Exome-wide associations with age at natural menopause. (A) Manhattan plot showing 

gene burden test results for age at natural menopause. Genes passing exome-wide significance 

(P<1.08*10-6) are indicated, with point shape signifying the variant class tested. (B-E) QQ plots for (B) 

high confidence PTVs (C) CADD ≥ 25 missense variants (D) damaging variants.  

 

We next sought to understand why previous analyses of UKBB WES data missed the 

associations we report here, and conversely why we did not identify associations with other 

previously reported genes. Of the seven genes identified by Ward et al.9, three were also 

identified by our study (CHEK2, HELB and HROB), three were recovered when we increased 

our burden test MAF threshold from 0.1% to 1% (DCLRE1A, RAD54L, TOP3A), and an 

additional gene fell just below our P value threshold when considering variants with <1% MAF 

(CLPB; P =1.2*10-5). In contrast, our discovery of novel associations that were not reported by 

Ward et al. (BRCA2, ETAA1, PALB2, PNPLA8, SAMHD1 and ZNF518A) were likely explained 

by differences in phenotype preparation, sample size, variant annotation and the statistical 

model used (see Supplementary Note and Supplementary Table 3). 
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Figure 2: Forest plot for gene burden associations with age at natural menopause. Exome-wide 

significant (P < 1.08*10-6) genes are displayed. Points and error bars indicate beta and 95% CI for the 

variant category indicated. Betas, CIs, Minor Allele Counts (MAC) and P values are derived from BOLT-
LMM. 

 

Exploring common variant associations at identified ANM genes 

To explore the overlap between common and rare variant association signals for ANM, we 

integrated our exome-wide results with data generated from the largest reported common 

variant GWAS of ANM1.  

Five of our nine identified WES genes (CHEK2, BRCA2, ETAA1, HELB and ZNF518A) mapped 

within 500kb of a common GWAS signal (Supplementary Table 4). Notably, we previously 

reported a common, predicted benign, missense variant (rs35777125-G439R, MAF=11%) in 

ETAA1 associated with 0.26 years earlier ANM. In contrast, our WES analysis identified that 

carriers of rare HC-PTVs in ETAA1 show a nearly 10-fold earlier ANM (beta= -2.28 years, 95% 

CI: 1.39-3.17, P=5.30*10-8, N=87). Furthermore, three independent non-coding common GWAS 

signals ~150kb apart (MAF: 2.8-47.5%, beta: -0.28-0.28 years per minor allele) were reported 

proximal to ZNF518A, whereas gene burden testing finds that rare HC-PTV carriers show nearly 

20-fold earlier ANM than common variant carriers (beta= -5.61 years, 95% CI: 4.04-7.18, 

P=2.10*10-12, N=28). 
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In addition there were two genes within 500kb of GWAS loci (BRCA1 and SLCO4A1) that were 

associated with ANM by gene burden testing at P<1.7*10-5. Effect sizes for common variant 

associations ranged from 0.07-0.24 years per allele at these loci, whereas gene burden tests for 

rarer variants at these same loci revealed much larger effect sizes: for BRCA1, 2.1 years earlier 

for PTVs (P=2.4*10-6) and for SLCO4A1, 1.13 years earlier ANM for damaging variants 

(P=1.1*10-5), with non-overlapping 95% confidence intervals between common and rare variant 

associations for BRCA1.  

Common ANM associated variants are enriched in ZNF518A 

binding sites 

Heterozygous loss of function of ZNF518A had the largest effect on ANM of the genes we 

identified. ZNF518A is a poorly characterised C2H2 zinc finger transcription factor, which has 

been shown to associate with PRC2 and G9A-GLP repressive complexes along with its paralog 

ZNF518B, suggesting a potential role in transcriptional repression23. ZNF518A localises robustly 

to 18,706 sites in the genome, based on ChIP-seq data available from ENCODE24,25 and binds 

primarily to gene promoters, with 33.5% (6,263) of ZNF518A binding sites within 2kb of a 

transcription start site (TSS) (Supplementary Figure 4a-c). Common variants associated with 

ANM1 were enriched in the transcriptional targets of ZNF518A (P=1.32*10-4) using fGWAS26. 

We further tested functional enrichment using signed linkage disequilibrium profile (SLDP) 

regression27. This confirmed the enrichment of ZNF518A binding sites near to loci associated 

with ANM and showed that its transcriptional repression is associated with earlier ANM 

(P=0.02), consistent with evidence from rare variant burden tests. Separating ZNF518A sites by 

those proximal (< 2Kb) and distal (>5kb) from a TSS, demonstrated this association was due to 

ZNF518A binding at regulatory regions distal to the TSS (proximal TSS P=0.3, distal ZNF518A 

P=0.002). Notably, these regulatory ZNF518A bound loci produce the largest association 

amongst an SLDP catalogue of 382 transcription factors and regulators (Supplementary Table 

5, Supplementary Figure 4d). These results suggest a different functional role for ZNF518A at 

TSS and more distal regulatory regions. In order to explore this further we assessed the 

sequence determinants of ZNF518A binding. De novo motif discovery identified an AT-rich motif 

enriched at distal regulatory ZNF518A binding sites, but not at TSS bound by ZNF518A. This 

AT-rich motif was centrally enriched within ZNF518A ChIP-seq peaks, and matched an 

unvalidated motif present in the JASPAR transcription factor motif database28 (Supplementary 

Figure 4e). We found the number of perfect instances of this AT-rich motif to be strongly 

associated with ZNF518A occupancy as assessed by ZNF518A ChIP-seq signal at distal 

regions but not at TSS (Supplementary Figure 4f,g). At distal regions, the maximal association 

between peaks greater than the median height was found at least seven motif instances 

(Hypergeometric right tail P < 10-389, Odds Ratio 7.41). These data suggest that ZNF518A is 

recruited by DNA sequence at distal sites, but at TSS may be recruited to gene promoters by 

interaction with another DNA binding factor. 

We next employed public in vitro differentiated human primordial germ like-cell data29,30 to 

assess the chromatin state at ZNF518A bound loci, directly comparing distal regions with TSS. 

ZNF518A bound TSS showed chromatin accessibility30 and were marked with H3K27ac29. In 
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contrast, distal regions lacked H3K27ac and showed minimal chromatin accessibility 

(Supplementary Figure 4h). Extending this comparison to the Epimap chromatin states31, we 

find that overall ZNF518A bound loci are enriched in active TSS and that distal ZNF518A 

regions are variously enriched in active and repressed chromatin (Supplementary Figure 4i,j). 

Consistent with previous data which has found ZNF518A in repressive complexes, these data 

suggest that ZNF518A is recruited by DNA sequence to distal regulatory regions where it acts to 

repress local chromatin.  

While ZNF518A is known to have diverse tissue expression including the ovary, we found that it 

was highly expressed in fetal germ cells at both the mitotic and meiotic stages (Supplementary 

Tables 6 and 7; Supplementary Figures 5 and 6). The eight other WES genes identified in 

this study were expressed at varying levels in fetal gonadal cells, oocytes and granulosa cells 

across different developmental stages (Supplementary Figures 5 and 6).  

Identified genes influence other aspects of health and disease 

Our genetic studies have previously shown that the genetic mechanisms regulating the end of 

reproductive life are largely distinct from those determining its beginning32,33. However, it is 

noteworthy that the largest reported GWAS for age at menarche identified a common variant 

signal at the ZNF518A locus for later puberty timing in girls (rs1172955, beta= 0.04 years, 95% 

CI: 0.03-0.05, P=6.6*10-12), which appears nominally associated with earlier ANM (beta=-0.04, 

95% CI: 0.01-0.06, P=6.6*10-3)32. To extend this observation, we found that our identified 

ZNF518A PTVs were also associated with later age at menarche (0.56 years, 95% CI: 0.14-

0.98, P=9.2*10-3). Furthermore, using fGWAS and SLDP, we discovered that, similar to ANM, 

common variants that influence puberty in girls were enriched in transcriptional targets of 

ZNF518A (Supplementary Table 5). These data suggest that loss of ZNF518A shortens 

reproductive lifespan, by delaying puberty and reducing age at menopause. 

We next explored what impact ANM-associated genes had on cancer outcomes and found a 

novel association of SAMHD1 damaging variants and HC-PTVs with ‘All cancer’ in both males 

(OR=2.12, 95% CI: 1.72-2.62, P=4.7*10-13) and females (OR=1.61, 95% CI: 1.31-1.96, P=4*10-

6; Figure 3, Supplementary Table 8-10). In addition we replicated previously reported 

associations with protein truncating variants in BRCA2, CHEK2 and PALB2 and cancer 

outcomes in males and females (Supplementary Tables 8-10). 
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Figure 3: Forest plot for ANM WES genes with significant gene burden associations for cancer 
phenotypes. Exome-wide significant (P < 1.08*10-6) genes are displayed, showing sex-stratified and 
combined results. Hormone sensitive cancers were only tested in males and females separately 
(Methods). The presented masks were selected based on the most significant association per gene and 
cancer type. Points and bars indicate OR and 95% CI for specific genes and their variant categories in 
cancer. Filled symbols indicate a result passing a Bonferroni-corrected significance threshold of P < 

1.08*10-6. 

 

SAMHD1 associations with cancer appear to be driven by increased risk for multiple site-

specific cancers, notably prostate cancer in males, mesothelioma in both males and females, 

and suggestive evidence for higher breast cancer susceptibility in females (Figure 4, 

Supplementary Table 11). Although the numbers of mutation carriers diagnosed with each 

site-specific cancer was small, the majority of these findings persisted using logistic regression 
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with penalised likelihood estimation, which is more robust to extreme case/control imbalance34 

(Supplementary Table 11).  

Cancer risk-increasing alleles in SAMHD1 were associated with later ANM, which is similar to 

the pattern demonstrated previously for CHEK2. This finding is consistent with a mechanism of 

disrupted DNA damage sensing and apoptosis, resulting in slowed depletion of the ovarian 

reserve1. In addition, we provide robust evidence for a previously described rare variant 

association for SAMHD1 with telomere length35, highlighting that rare damaging variants cause 

longer telomere length (P=1.4*10-59) (Supplementary Table 10, Supplementary Figure 7).  

 

 

Figure 4: Genetic susceptibility to premature ovarian ageing and increased risk for diverse cancer 
types. Plot showing the association between loss of ANM genes identified in this study and risk of 90 site 
specific cancers among UK Biobank participants. Summary statistics for cancer associations were 
obtained using a logistic regression with penalised likelihood estimation that controls for case/control 

imbalance (Methods)34. Associations highlighted in text passed exome-wide significance (P < 1.08*10-6). 

The y-axis is capped at -log10(P) = 30 for visualisation purposes; un-capped summary statistics can be 
found in Supplementary Table 11. F: females, M: males, C: sex-combined. 1°: primary cancer, 2°: 
secondary cancer. 

 

Genetic susceptibility to ANM in mothers influences de novo 

mutation rate in offspring 

Our previous common variant analyses demonstrated that many ANM associated variants 

implicate DNA damage repair (DDR) genes, an observation mirrored here in our rare variant 

associations. Therefore, we sought to test the hypothesis that inter-individual variation in these 

DDR processes would influence the mutation rate in germ cells and hence in the offspring. More 

specifically, we hypothesised that genetic susceptibility to earlier ovarian ageing would be 

associated with a higher de novo mutation (DNM) rate in the offspring. To test this, we analysed 
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8,089 whole-genome sequenced parent-offspring trios recruited in the rare disease programme 

of the 100,000 Genome Project (100kGP, Supplementary Figure 8). We calculated a 

polygenic score (PGS) for ANM in the parents based on our previously identified 290 common 

variants1 and tested this against the phased DNM rate in the offspring, adjusted for age. We 

found that maternal genetic susceptibility to earlier ANM was associated with an increased rate 

of maternally-derived DNMs in the offspring (rate ratio = 1.02 per SD of PGS, P=6.8*10-4, 

N=8,089 duos with European ancestry; Supplementary Table 12). We confirmed this finding in 

sensitivity analyses using the same data, in a two-sample Mendelian Randomization (MR) 

framework that can better model the dose-response relationship of these variants 

(Supplementary Table 13). These results were highly concordant, with all models showing a 

significant result and no heterogeneity (Pmin=6.3*10-5). In contrast, the paternal PGS was not 

associated with paternally-derived DNMs (P=0.51, N=8,029) nor was the maternal PGS 

associated with paternally-derived DNMs (P=0.55). 

 

Discussion 

Our study extends the number of genes implicated in ovarian ageing through the identification of 

rare, protein-coding variants. Effect sizes ranged from 5.61 years earlier ANM for HC-PTV 

carriers in ZNF518A, to 1.35 years later ANM for women carrying damaging variants in 

SAMHD1 compared to a maximum effect size of 1.06 years (median 0.12 years) reported for 

common variants (MAF>1%)1. Several of these effect estimates were comparable to those 

conferred by FMR1 premutations, which are currently used as part of the only routinely applied 

clinical genetics test for premature ovarian insufficiency (POI)36. Deleterious variants in three 

genes (CHEK2, HELB and SAMHD1) were associated with an increase in ANM and therefore 

represent potential therapeutic targets for enhancing ovarian stimulation in women undergoing 

in vitro fertilisation (IVF) treatment through short-term apoptotic inhibition. Seven of the nine 

ANM genes identified have known roles in DNA damage repair, and three of these are linked to 

ANM for the first time (PALB2, ETAA1 and HROB): PALB2 is involved in BRCA2 localization 

and stability and compound heterozygous mutations result in Fanconi anaemia and predispose 

to childhood malignancies37. ETAA1 accumulates at DNA damage sites in response to 

replication stress38–41 and HROB is involved in homologous recombination by recruiting the 

MCM8-MCM9 helicase to sites of DNA damage to promote DNA synthesis42,43. Homozygous 

loss-of-function of HROB is associated with POI44 and infertility in both sexes in mouse 

models42.  

Novel biological mechanisms of ovarian ageing were revealed by finding associations with two 

non-DDR genes (PNPLA8 and ZNF518A): PNPLA8 is a calcium-independent phospholipase45–

47 and a recessive cause of neurodegenerative mitochondrial disease and mitochondrial 

myopathy48–52; an association with reproductive phenotypes has not been described previously. 

ZNF518A belongs to the zinc finger protein family and is likely a transcriptional regulator for a 

large number of genes 23. We found that female carriers of rare protein truncating variants in 
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ZNF518A have shorter reproductive lifespan due to delayed puberty timing and earlier 

menopause. Enrichment of GWAS signals at ZNF518A binding sites suggests that ZNF518A 

regulates the genes involved in reproductive longevity by repression of elements distal to 

transcription start sites. 

 

While mutation in SAMHD1 is a common somatic event in a variety of cancers53–63, it has not 

been described as a germline risk factor previously. Recessive inheritance of SAMHD1 

missense and PTV variants have been associated with Aicardi–Goutieres syndrome, a 

congenital autoimmune disease64. Our identified damaging variants in SAMHD1 increased risk 

of ‘All cancer’ in males and females, as well as in sex-specific cancers, highlighting SAMHD1 as 

a novel risk factor for prostate cancer in males and hormone-sensitive cancers in females. 

SAMHD1 has a role in preventing the accumulation of excess deoxynucleotide triphosphates 

(dNTPs), particularly in non-dividing cells65. A regulated dNTP pool is important for the fidelity of 

DNA repair, thus highlighting additional roles of this gene in facilitation of DNA end resection 

during DNA replication and repair65–70. SAMHD1 deficiency leads to resistance to apoptosis71,72, 

suggesting that delayed ANM might originate from slowed depletion of ovarian reserve due to 

disrupted apoptosis, analogous to the mechanism for CHEK2 that has been reported previously. 

  

Previous studies have demonstrated that parental age is strongly associated with the number of 

de novo mutations in offspring73, with the majority of these mutations arising from the high rate 

of spermatogonial stem cell divisions that underlie spermatogenesis throughout adult life of 

males74. Our current study provides the first direct evidence that maternal mutation rate is 

heritable, with women at higher genetic risk of earlier menopause transmitting an increased rate 

of de novo mutations to offspring. This could have direct implications for the health of future 

generations given the widely reported link between de novo mutations and increased risk of 

psychiatric disease and developmental disorders75–78. We speculate that if genetic susceptibility 

to earlier menopause influences de novo mutation rate, it is possible that non-genetic risk 

factors for earlier ANM, such as smoking and alcohol intake, would likely have the same 

effect79. Our observations makes conceptual sense given that menopause timing appears to be 

primarily driven by the genetic integrity of oocytes and their ability to sustain, detect, repair and 

respond to acquired DNA damage1. These observations also build on earlier work in mice and 

humans that BRCA1/2 deficiency increases the rate of double strand breaks in oocytes and 

reduces ovarian reserve80–82.  

 

An important limitation of our study, shared by many other similar large-scale exome 

sequencing studies, is that we were unable to replicate our findings in an independent cohort. 

Instead, we aimed to accumulate additional evidence where possible to support our 

observations and evaluate the biological plausibility of our findings. For example, the identified 

rare loss of function alleles in ZNF518A have the largest effect on ovarian ageing reported to 

date, which is supported by high expression in fetal germ cells, genome-wide significant 

common variants at the same locus, and the observation that ZNF518A binding sites genome-

wide are significantly enriched for common variant ANM association(s). For all identified genes 
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further experimental studies will ultimately be required to fully understand the biological 

mechanisms governing the observed effects on ovarian ageing. 

Methodology 

UK Biobank Data Processing and Quality Control 

To conduct rare variant burden analyses described in this study, we obtained Whole Exome 

Sequencing data (WES) for 454,787 individuals from the UK Biobank study83. Participants were 

excluded based on excess heterozygosity, autosomal variant missingness on genotyping arrays 

≥ 5%, or inclusion in the subset of phased samples as defined in Bycroft et al84. Analysis was 

restricted to participants with European genetic ancestry, leaving a total of 421,065 individuals. 

Variant quality control (QC) and annotation were performed using the UK Biobank Research 

Analysis Platform (RAP; https://ukbiobank.dnanexus.com/), a cloud-based central data 

repository for UK Biobank WES and phenotypic data. Besides the QC described by Backman et 

al.83, we performed additional steps using custom applets designed for the RAP. Firstly, we 

processed provided population-level Variant Call Format (VCF) files by splitting and left-

correcting multi-allelic variants into separate alleles using ‘bcftools norm’85. Secondly, we 

performed genotype-level filtering applying ‘bcftools filter’ separately for Single Nucleotide 

Variants (SNVs) and Insertions/Deletions (InDels) using a missingness-based approach. Using 

this approach, we set to missing (i.e. ./.) all SNV genotypes with depth < 7 and genotype quality 

< 20 or InDel genotypes with a depth < 10 and genotype quality < 20. Next, we applied a 

binomial test to assess an expected alternate allele contribution of 50% for heterozygous SNVs; 

we set to missing all SNV genotypes with a binomial test p. value ≤ 1x10-3. Following genotype-

level filtering we recalculated the proportion of individuals with a missing genotype for each 

variant and filtered all variants with a missingness value > 50%. The variant annotation was 

performed using the ENSEMBL Variant Effect Predictor (VEP) v10486 with the ‘--everything’ flag 

and plugins for CADD87 and LOFTEE88 enabled. For each variant we prioritised the highest 

impact individual consequence as defined by VEP and one ENSEMBL transcript as determined 

by whether or not the annotated transcript was protein-coding, MANE select v0.97, or the VEP 

Canonical transcript. Following annotation, variants were categorised based on their predicted 

impact on the annotated transcript. Protein Truncating Variants (PTVs) were defined as all 

variants annotated as stop gained, frameshift, splice acceptor, and splice donor. Missense 

variant consequences are identical to those defined by VEP. Only autosomal or chrX variants 

within ENSEMBL protein-coding transcripts and within transcripts included on the UKBB ES 

assay83 were retained for subsequent burden testing. 

Exome-wide association analyses in the UK Biobank 

In order to perform rare variant burden tests, we used a custom implementation of BOLT-LMM 

v2.3.689 for the RAP. Two primary inputs are required by BOLT-LMM: i) a set of genotypes with 

minor allele count > 100 derived from genotyping arrays to construct a null linear mixed effects 

model and ii) a larger set of variants collapsed on ENSEMBL transcript to perform association 
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tests. For the former, we queried genotyping data available on the RAP and restricted to an 

identical set of individuals included for rare variant association tests. For the latter, and as 

BOLT-LMM expects imputed genotyping data as input rather than per-gene carrier status, we 

created dummy genotype files where each variant represents one gene and individuals with a 

qualifying variant within that gene are coded as heterozygous, regardless of the number of 

variants that individual has in that gene.  

 

To test a range of variant annotation categories for MAF < 0.1%, we created dummy genotype 

files for high confidence PTVs as defined by LOFTEE, missense variants with CADD ≥ 25, and 

damaging variants that included both high confidence PTVs and missense variants with CADD 

≥ 25. For each phenotype tested, BOLT-LMM was then run with default parameters other than 

the inclusion of the ‘lmmInfOnly’ flag. To derive association statistics for individual markers, we 

also provided all 26,657,229 individual markers regardless of filtering status as input to BOLT-

LMM. All tested phenotypes were run as continuous traits corrected by age, age2, sex, the first 

ten genetic principal components as calculated in Bycroft et al84 and study participant ES batch 

as a categorical covariate (either 50k, 200k, or 450k).  

For discovery analysis in the primary trait of interest, age at natural menopause, we analysed 

17,475 protein-coding genes with the minimum of 10 rare allele carriers in at least one of the 

masks tested using BOLT-LMM (Supplementary Table 1). The significant gene-level 

associations for ANM were identified applying Bonferroni correction for the number of masks 

with MAC≥10 (N=46,251 masks) in 17,475 protein-coding genes (P: 0.05/46,251 = 1.08*10-6) 

(Supplementary Table 2).The age at natural menopause results obtained via BOLT-LMM are 

available in Supplementary Table 1. Furthermore, in order to compare and explain potential 

differences between our WES results and the previously published one9, we ran the above 

described approach using MAF < 1%, a cutoff applied by Ward et al. (Supplementary Table 3, 

Supplementary Note).  

 

To generate accurate odds ratio and standard error estimates for binary traits, we also 

implemented a generalised linear model using the statsmodels package90 for python in a three 

step process. First, a null model was run with the phenotype as a continuous trait, corrected for 

control covariates as described above. Second, we regressed carrier status for individual genes 

on the residuals of the null model to obtain a preliminary P value. Thirdly, all genes were again 

tested using a full model to obtain odds ratios and standard errors with the family set to 

‘binomial’. Generalised linear models utilised identical input to BOLT-LMM converted to a 

sparse matrix.  

Phenotype derivation 

Age at natural menopause was derived for individuals within the UK Biobank, who were deemed 

to have undergone natural menopause, i.e. not affected by surgical or pharmaceutical 

interventions, as follows: 

Firstly, European female participants (n=245,820) who indicated during any of the attended 

visits having had a hysterectomy were collated (fields 3591 and 2724) and their reported 

hysterectomy ages were extracted (field 2824) and the median age was kept (n=47,218 and 
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46,260 with reported ages). The same procedure was followed for participants indicating having 

undergone a bilateral oophorectomy (surgery field 2834 and age field 3882, n=20,495 and 

20,001 with reported ages).  

For individuals having indicated the use of hormone replacement therapy (HRT; field 2814), 

HRT start and end ages were collated (fields 3536 and 3546, accordingly) across the different 

attended visits (n=98,104). In cases where the reported chronological HRT age at later attended 

visits was greater than that at previous visits, the later instances were prioritised, i.e. as they 

would potentially indicate an updated use of HRT. In cases where different HRT ages were 

reported, but not in chronologically increasing order, the median age was kept.  

Menopausal status was determined using data across instances (field 2724) and prioritising the 

latest reported data, to account for changes in menopause status. For participants indicating 

having undergone menopause, their reported ages at menopause were collated (field 3581) 

using the same procedure as for HRT ages (n=158,264). 

 

Exclusions were then applied to this age at menopause, as follows: 

 

● Participants reporting undergoing a hysterectomy and/or oophorectomy, but not the age 

at which this happened (n=958 and 494, accordingly) 

● Participants reporting multiple hysterectomy and/or oophorectomy ages, which were 

more than 10 years apart (n=38 and 23, accordingly) 

● Participants reporting multiple HRT start and/or end ages, which were not in 

chronologically ascending order and were more than 10 years apart (n=124 and 137, 

accordingly) 

● Participants reporting multiple ages at menopause, which were not in chronologically 

ascending order and were more than 10 years apart (n=73) and participants who 

reported both having and not having been through menopause and no other 

interventions (n=98) 

● Participants having undergone a hysterectomy/oophorectomy before or during the year 

they report undergoing menopause 

● Participants starting HRT prior to undergoing menopause and participants reporting HRT 

use, with no accompanying dates 

 

The resulting trait was representative of an age at natural menopause (ANM, n=115,051) and 

was used in downstream analyses. Two additional ANM traits were also calculated, windsorized 

one by coding everyone reporting an ANM younger than 34, as 34 used in the discovery 

analysis as the primary phenotype (n=115,051 total, reduced to 106,973 after covariate-

resulting exclusions), and one by only including participants reporting ANM between 40 and 60, 

inclusive (n=104,506), treated as a sensitivity analysis. 

All manipulations were conducted in R (v4.1.2) on the UKB Research Analysis Platform (RAP; 

https://ukbiobank.dnanexus.com/). 
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Phenome-wide association analysis 

In order to test the association of ANM identified genes in other phenotypes, we processed 

additional reproductive ageing-related phenotypes, including age at menarche, cancer, telomere 

length (TL) and sex hormones (SH). All tested phenotypes were run as either continuous (age 

at menarche, TL and SH) or binary traits (cancer) corrected by age, age2, sex, the first ten 

genetic principal components as calculated in Bycroft et al84, and study participant ES batch as 

a categorical covariate (either 50k, 200k, or 450k). Phenotype definitions and processing used 

in this study are described in Supplementary Tables 8 and 9. Only the first instance (initial 

visit) was used for generating all phenotype definitions unless specifically noted in 

Supplementary Table 8. In case of cancer-specific analysis data from cancer registries, death 

records, hospital admissions and self-reported were harmonised to ICD10 coding. If a 

participant had a code for any of the cancers recorded in ICD10 (C00-C97) then they were 

counted as a case for this phenotype. Minimal filtering was performed on the data, with only 

those cases where a diagnosis of sex-specific cancer was given in contrast to the sex data 

contained in UK Biobank record 31, was a diagnosis not used. For more information on cancer-

specific analysis refer to Supplementary Tables 9 and 11.  

Cancer PheWAS Associations 

To test for an association between genes we identified as associated with menopause timing 

(Supplementary Table 2, Figure 1) and 90 individual cancers as included in cancer registries, 

death records, hospital admissions and self-reported data provided by UK Biobank (e.g. breast, 

prostate, etc.) we utilised a logistic model with identical covariates as used during gene burden 

testing (N = 2430 tests) (Supplementary Tables 9 and 11). As standard logistic regression can 

lead to inflated P value estimates in cases of severe case/control imbalance91, we also 

performed a logistic regression with penalised likelihood estimation as described by Firth34 

(Supplementary Table 12). Models were run as discussed in Kosmidis et al.92 using the 

‘brglm2’ package implemented in R. brglm2 was run via the ‘glm’ function with default 

parameters other than “family” set to “binomial”, “method” set to “brglmFit”, and “type” set to 

"AS_mean".  

WES sensitivity analysis using REGENIE 

To replicate the primary findings and account for potential bias that could be introduced by 

exclusively using one discovery approach, a second analyst independently derived the age at 

menopause phenotype using a previously published method93 and conducted additional burden 

association analysis using the REGENIE regression algorithm (REGENIEv2.2.4; 

https://github.com/rgcgithub/regenie). REGENIE implements a generalised mixed-model region-

based association test that can account for population stratification and sample relatedness in 

large-scale analyses. REGENIE runs in 2 steps94, which we implemented on the UKBiobank 

RAP: In the first step, genetic variants are aggregated into gene specific units for each class of 

variant called masks. We selected variants in CCDS transcripts deemed to be high confidence 

by LOFTEE88 with MAF<0.1% and annotated using VEP86. We created three masks, 
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independently of primary analysis group: (1) loss-of-function (LOF) variants (stop-gain, 

frameshift, or abolishing a canonical splice site (-2 or +2 bp from exon, excluding the ones in the 

last exon)) or missense variants with CADD score >30, (2) LOF or missense variants with 

CADD score >25, (3) all missense variants. In the second step, the three masks were tested for 

association with ANM. We applied an inverse normal rank transformation to ANM and included 

recruitment centre, sequence batch and 40 principal components as covariates. For each gene, 

we present results for the transcript with the smallest burden P value. The results for the 

sensitivity analysis performed via REGENIE are available in Supplementary Table 1.  

Common variant GWAS lookups 

Genes within 500kb upstream and downstream of the 290 lead SNPs from the latest GWAS of 

ANM1 were extracted from the exome-wide analysis. There were a total of 2149 genes within 

the GWAS regions. Burden tests in these genes with a Bonferroni corrected P value of <2.3*10-5 

(0.05/2149) were highlighted. The results are available in Supplementary Table 4.  

Analysis of GWAS and WES genes expression profiles in human 

female germ cells at various stages of development 

We studied the mRNA abundance of WES genes during various stages of human female germ 

cell development using single-cell RNA sequencing data (Supplementary Tables 6 and 7). We 

used the processed single cell RNA resequencing datasets from two published studies. This 

included single-cell RNA sequencing data from foetal primordial germ cells of human female 

embryos (Accession code: GSE8614695), and from oocyte and granulosa cell fractions during 

various stages of follicle development (Accession code: GSE10774696). A pseudo score of 1 

was added to all values before log transformation of the dataset. The samples from fetal germ 

cells (FGCs) were categorised into sub-clusters as defined in the original study. The study by Li 

et al95 had identified 17 clusters by performing a t-distributed stochastic neighbour embedding 

(t-SNE) analysis and using expression profiles of known marker genes for various stages of 

fetal germ cell development. In our analysis we have included four clusters of female FGCs 

(Mitotic, Retinoic Acid (RA) responsive, Meiotic, Oogenesis) and four clusters containing 

somatic cells in the fetal gonads (Endothelial, Early_Granulosa, Mural_Granulosa, 

Late_Granulosa). Software packages for R - tidyverse (https://www.tidyverse.org/), pheatmap, 

(https://CRAN.R-project.org/package=pheatmap), reshape2 

(https://github.com/hadley/reshape), were used in processing and visualising the data. 

Functional enrichment tests for ZNF518A transcription factor 

binding sites using fGWAS and SLDP 

fGWAS (v.0.3.6), a hierarchical model for joint analysis of GWAS and genomic annotations, was 

implemented to test the functional enrichment of ANM GWAS hits in ZNF518A transcription 

factor binding sites26. The fGWAS input file contained the ANM GWAS summary stats derived 

from the Reprogen study1 annotated for ZNF518A binding sites. The ZNF518A annotation file 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 23, 2022. ; https://doi.org/10.1101/2022.06.23.22276698doi: medRxiv preprint 

https://www.tidyverse.org/
https://cran.r-project.org/package=pheatmap
https://github.com/hadley/reshape
https://doi.org/10.1101/2022.06.23.22276698
http://creativecommons.org/licenses/by-nd/4.0/


was derived from the ENCODE ChIP-seq data from human HEK293 cell line97 the optimal 

independent discovery rate peak calling against hg19 [ENCFF415VBF] was used. The ANM 

GWAS hits were annotated for the presence/absence of the ZNF518A transcription factor 

binding sites in a binary way (0, 1), with ‘1’ if the SNP falls within the transcription factor binding 

site and ‘0’ otherwise. The fGWAS tool available from https://github.com/joepickrell/fgwas and 

was run in annotation mode “-w” for the describe ZNF518A annotation. Detailed description of 

fGWAS methodology is available in Pickrell et al, 201426. In short, the genome is split into 

independent blocks, which are allowed to contain either a single polymorphism that causally 

influences the trait or none. fGWAS then models the prior probability that any given block 

contains an association and the conditional prior probability that any given SNP in the block is 

the causal one, with probabilities allowed to vary according to functional annotations. The priors 

are then estimated using an empirical Bayes approach. The fGWAS output contained the 

maximum likelihood parameter estimates for each parameter in the model, in this case 

ZNF518A, with the lower and upper bound of the 95% confidence interval (CI) on the 

parameter. The P value was calculated from lower and upper CI in 3 following steps: (1) 

Standard error (SE) calculation: SE = (Upper CI − Lower CI)/(2*1.96); (2) Test statistics 

calculation: Z=Estimate / SE; and (3) P value calculation: P = exp(−0.717*Z − 0.416*Z2). 

 

Signed LD profile (SLDP) regression was applied to explore the directional effect of a signed 

functional annotation, ZNF518A, on a heritable trait like ANM using GWAS summary statistics. 

More specifically, we tested whether alleles that are predicted to increase the binding of the 

transcription factor ZNF518A have a genome-wide tendency to increase or decrease timing of 

menopause in women. The SLDP tool was installed from https://github.com/yakirr/sldp, with the 

comprehensive methodological steps described in Reshef et al, 201827. For the analysis to be 

conducted, SLDP required GWAS summary statistics for ANM, signed LD profiles for ZNF518A 

binding, signed background model and reference panel in a SLDP compatible format. For the 

reference we used a 1000 Genomes Phase 3 European reference panel in plink format, which 

contained approximately 10M SNPs and 500 people and was available for download at the 

‘refpanel’ page. The ANM GWAS summary statistics, available from our latest Reprogen study1, 

was pre-processed using the ‘preprocesspheno’ tool from the SLDP package. To conduct this 

step, we also obtained the list of regression SNPs along with the LD scores for the reference 

panel from the ‘refpanel’ page. The pre-processing step included filtering down to SNPs that are 

also present in the reference panel, harmonising alleles to the reference, and multiplying the 

summary statistics by the SLDP regression weights. In addition, we applied the 

‘preprocessrefpanel’ tool to compute a truncated singular value decomposition (SVD) for each 

LD block in the reference panel. These SVDs were later used to weight the SLDP regression. 

The ZNF518A annotation file was obtained from the ENCODE CHIP-seq analysis, as described 

above, and preprocessed using the ‘preprocessannot’ tool that turns signed functional 

annotations into signed LD profiles. Prior to running SLDP, we also obtained the signed 

background LD profiles that enabled us to control for systematic signed effects of minor alleles, 

which could arise from either population stratification or negative selection. SLDP was then run 

on our data using ‘sldp’ function. To explore the relevance of ZNF518A for menopause timing in 

comparison to other transcription regulators, we tested whether genome-wide sequence 

changes introduced by SNP alleles identified in ANM GWAS increase or decrease binding of 
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additional 382 transcription factors (TFs). The preprocessed annotation files for 382 TFs derived 

from ENCODE CHIP-seq experiments, were available for download at the annotation data 

page. The results are available in Supplementary Table 5. 

 

Functional analysis of ZNF518a binding sites 

ZNF518A peaks were derived from unique genomic regions in ENCODE accession 

ENCFF415VBF described above. Quantification of ChIP-seq signal by aligning paired-end 

replicates (ENCFF174HBR, ENCFF574GQY, ENCFF808AJP, ENCFF453FDD) to the hg19 

genome with Bowtie2 v2.3.5.198 with options “-I 0 -X 1000 –no-discordant –no-mixed”, reads 

were filtered for those with MAPQ > 30 with samtools v1.10. Assessment of H3K27ac29 and 

chromatin accessibility by ATAC-seq30 in day 4 human primordial germ cell like cells 

(hPGCLCs) at ZNF518A peaks was performed. For H3K27ac single end reads from accessions 

GSM4257216, GSM4257217, GSM4257218 were obtained and aligned with Bowtie2 v2.3.5.1 

with default settings and MAPQ > 30 reads retained as above. For ATAC-seq paired-end reads 

were obtained from accessions GSM3406938, GSM3406939 and mapped and filtered as 

ZNF518A reads above. 

 

Quantification of ChIP-seq and ATAC-seq signals for peak heights, heatmaps was performed 

with https://github.com/owensnick/GenomeFragments.jl. Peak to TSS distances were calculated 

against Gencode v36 release liftover to hg19 using GenomicFeatures.jl and 

https://github.com/owensnick/ProximityEnrichment.jl. We consider four categories of peaks: 

TSS intersecting, TSS proximal (TSS < 2000kb, outside gene body), Gene body intersecting, 

Intergenic and Distal (TSS > 5kb). 

 

To perform de novo motif discovery we used Homer v4.11.199 using findMotifsGenome.pl with 

options “hg19 -size 200”. We ran this on all ZNF518A peaks, distal peaks and those intersecting 

TSS, we recovered a motif matching JASPAR28 unvalidated motif UN0199.1 in all peak sets 

apart from those intersecting TSS. We then used https://github.com/exeter-tfs/MotifScanner.jl to 

quantify the occurrence of all instances of motif UN0199.1 in ZNF518A peaks.  

We downloaded the 18-state ChromHMM100 models for all 833 biosamples in Epimap31 from 

http://compbio.mit.edu/epimap/. We calculated the intersection between each state in each 

biosample and either all ZNF518A peaks or distal ZNF518A peaks using GenomicFeatures.jl. 

We calculated odds ratios from contingency tables using the approximation of bedtools101 and 

Giggle102, by estimating total genomic intervals as hg19 genome size divided by the sum of the 

mean ZNF518A peak size and the chromatin state interval size. 

 

De novo mutation rate analyses 

We calculated polygenic scores (PGSs) in participants from the rare disease programme of the 

100,000 Genome Project (100kGP) v14. There are 77,901 individuals in the Aggregated Variant 

Calls (aggV2) after excluding participants whose genetically inferred sex is not consistent with 
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their phenotypic sex. We restricted the PGS analysis to individuals of European ancestry, which 

was predicted by the Genomics England Bioinformatics team using a random forest model 

based on genetic principal components (PCs) generated by projecting aggV2 data onto the 

1000 Genomes phase 3 PC loadings. We removed one sample in each pair of related probands 

with kinship coefficient > 1/(2^4.5), i.e. up to and including third degree relationships. Probands 

with the highest number of relatives were removed first. Similarly, we retained unrelated 

mothers and fathers of these unrelated probands. It left us with 8,089 mother-offspring duos and 

8,029 father-offspring duos. 

 

We used the lead variants (or proxies, as described below) for genome-wide significant loci 

previously reported for ANM1 to calculate PGS in the parents. In 100kGP, we removed variants 

with minor allele frequency (MAF) <0.5% or missing rate >5% from the aggV2 variants prepared 

by the Genomics England bioinformatics team. For lead variants that did not exist in 100kGP, 

we used the most significant proxy variants with linkage disequilibrium (LD) r2 >0.5 if available in 

100kGP. This resulted in a PGS constructed from 287 of the 290 previously reported loci. We 

regressed out 20 genetic PCs that were calculated within the European subset from the PGS 

and scaled the residuals to have mean = 0 and standard deviation = 1. Higher PGS indicates 

later age at menopause. 

 

De novo mutations (DNMs) were called in 10,478 parent offspring trios by the Genomics 

England Bioinformatics team. The detailed analysis pipeline is documented at: https://research-

help.genomicsengland.co.uk/display/GERE/De+novo+variant+research+dataset. Extensive 

quality control (QC) and filtering were applied by Kaplanis et al. as described previously103. De 

novo single nucleotide variants (dnSNVs) were phased using a read-based approach based on 

heterozygous variants near the DNM that were able to be phased to a parent. About one third of 

the dnSNVs were phased, of which three quarters were paternally phased (Supplementary 

Figure 8, Supplementary Table 12). 

 

In association models, we accounted for parental age, the primary determinant of the number of 

DNMs, and various data quality metrics as described in103:  

● Mean coverage for the child, mother and father (child_mean_RD, mother_mean_RD, 

father_mean_RD) 

● Proportion of aligned reads for the child, mother and father (child_prop_aligned, 

mother_prop_aligned, father_prop_aligned) 

● Number of SNVs called for child, mother and father (child_SNVs, mother_SNVs, 

father_SNVs) 

●  Median variant allele fraction of DNMs called in child (median_VAF) 

● Median ‘Bayes Factor’ as outputted by Platypus for DNMs called in the child. This is a 

metric of DNM quality (median_BF). 

We first tested the association between parental PGSs and total dnSNV count in the offspring in 

a Poisson regression:  

 

𝑑𝑛𝑆𝑁𝑉𝑠_total = 𝛽0 + 𝛽1𝑝𝑎𝑡𝑒𝑟𝑛𝑎𝑙_𝑃𝐺𝑆 + 𝛽2𝑚𝑎𝑡𝑒𝑟𝑛𝑎𝑙_𝑃𝐺𝑆 +  
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𝛽3𝑝𝑎𝑡𝑒𝑟𝑛𝑎𝑙_𝑎𝑔𝑒 + 𝛽4𝑚𝑎𝑡𝑒𝑟𝑛𝑎𝑙_𝑎𝑔𝑒 + 
𝛽5𝑐ℎ𝑖𝑙𝑑_𝑚𝑒𝑎𝑛_𝑅𝐷 + 𝛽6𝑚𝑜𝑡ℎ𝑒𝑟_𝑚𝑒𝑎𝑛_𝑅𝐷 + 𝛽7𝑓𝑎𝑡ℎ𝑒𝑟_𝑚𝑒𝑎𝑛_𝑅𝐷 + 

𝛽8𝑐ℎ𝑖𝑙𝑑_𝑝𝑟𝑜𝑝_𝑎𝑙𝑖𝑔𝑛𝑒𝑑 + 𝛽9𝑚𝑜𝑡ℎ𝑒𝑟_𝑝𝑟𝑜𝑝_𝑎𝑙𝑖𝑔𝑛𝑒𝑑 + 𝛽10𝑓𝑎𝑡ℎ𝑒𝑟_𝑝𝑟𝑜𝑝_𝑎𝑙𝑖𝑔𝑛𝑒𝑑 + 
𝛽11𝑐ℎ𝑖𝑙𝑑_𝑠𝑛𝑣𝑠 + 𝛽12𝑚𝑜𝑡ℎ𝑒𝑟_𝑠𝑛𝑣𝑠 + 𝛽13𝑓𝑎𝑡ℎ𝑒𝑟_𝑠𝑛𝑣𝑠 + 

𝛽14𝑚𝑒𝑑𝑖𝑎𝑛_𝑉𝐴𝐹 + 𝛽15𝑚𝑒𝑑𝑖𝑎𝑛_𝐵𝐹 
We also fitted Poisson regression models to test the association between the PGS of one of the 

parents and the dnSNVs in the offspring that were phased to the relevant parent. 

 

The paternal model included paternal PGS, age, and data quality metrics that are related to the 

proband and the father: 

 

𝑑𝑛𝑆𝑁𝑉𝑠_𝑝𝑎𝑡𝑒𝑟𝑛𝑎𝑙 = 𝛽0 + 𝛽1𝑝𝑎𝑡𝑒𝑟𝑛𝑎𝑙_𝑃𝐺𝑆 + 𝛽2𝑝𝑎𝑡𝑒𝑟𝑛𝑎𝑙_𝑎𝑔𝑒 +  
𝛽3𝑐ℎ𝑖𝑙𝑑_𝑚𝑒𝑎𝑛_𝑅𝐷 + 𝛽4𝑓𝑎𝑡ℎ𝑒𝑟_𝑚𝑒𝑎𝑛_𝑅𝐷 + 

𝛽5𝑐ℎ𝑖𝑙𝑑_𝑝𝑟𝑜𝑝_𝑎𝑙𝑖𝑔𝑛𝑒𝑑 + 𝛽6𝑓𝑎𝑡ℎ𝑒𝑟_𝑝𝑟𝑜𝑝_𝑎𝑙𝑖𝑔𝑛𝑒𝑑 + 
𝛽7𝑐ℎ𝑖𝑙𝑑_𝑠𝑛𝑣𝑠 + 𝛽8𝑓𝑎𝑡ℎ𝑒𝑟_𝑠𝑛𝑣𝑠 + 

𝛽9𝑚𝑒𝑑𝑖𝑎𝑛_𝑉𝐴𝐹 + 𝛽10𝑚𝑒𝑑𝑖𝑎𝑛_𝐵𝐹 
 

 

Similarly, the maternal model was as follows: 

 

𝑑𝑛𝑆𝑁𝑉𝑠_𝑚𝑎𝑡𝑒𝑟𝑛𝑎𝑙 = 𝛽0 + 𝛽1𝑚𝑎𝑡𝑒𝑟𝑛𝑎𝑙_𝑃𝐺𝑆 + 𝛽2𝑚𝑎𝑡𝑒𝑟𝑛𝑎𝑙_𝑎𝑔𝑒 +  
𝛽3𝑐ℎ𝑖𝑙𝑑_𝑚𝑒𝑎𝑛_𝑅𝐷 + 𝛽4𝑚𝑜𝑡ℎ𝑒𝑟_𝑚𝑒𝑎𝑛_𝑅𝐷 + 

𝛽5𝑐ℎ𝑖𝑙𝑑_𝑝𝑟𝑜𝑝_𝑎𝑙𝑖𝑔𝑛𝑒𝑑 + 𝛽6𝑚𝑜𝑡ℎ𝑒𝑟_𝑝𝑟𝑜𝑝_𝑎𝑙𝑖𝑔𝑛𝑒𝑑 + 
𝛽7𝑐ℎ𝑖𝑙𝑑_𝑠𝑛𝑣𝑠 + 𝛽8𝑚𝑜𝑡ℎ𝑒𝑟_𝑠𝑛𝑣𝑠 + 

𝛽9𝑚𝑒𝑑𝑖𝑎𝑛_𝑉𝐴𝐹 + 𝛽10𝑚𝑒𝑑𝑖𝑎𝑛_𝐵𝐹 
 

 

Finally, as a sanity check, we assessed the association between the maternal PGS and 

paternally phased dnSNVs, and vice versa: 

 

𝑑𝑛𝑆𝑁𝑉𝑠_𝑝𝑎𝑡𝑒𝑟𝑛𝑎𝑙 = 𝛽0 + 𝛽1𝑚𝑎𝑡𝑒𝑟𝑛𝑎𝑙_𝑃𝐺𝑆 + 𝛽2𝑝𝑎𝑡𝑒𝑟𝑛𝑎𝑙_𝑎𝑔𝑒 +  
𝛽3𝑐ℎ𝑖𝑙𝑑_𝑚𝑒𝑎𝑛_𝑅𝐷 + 𝛽4𝑓𝑎𝑡ℎ𝑒𝑟_𝑚𝑒𝑎𝑛_𝑅𝐷 + 

𝛽5𝑐ℎ𝑖𝑙𝑑_𝑝𝑟𝑜𝑝_𝑎𝑙𝑖𝑔𝑛𝑒𝑑 + 𝛽6𝑓𝑎𝑡ℎ𝑒𝑟_𝑝𝑟𝑜𝑝_𝑎𝑙𝑖𝑔𝑛𝑒𝑑 + 

𝛽7𝑐ℎ𝑖𝑙𝑑_𝑠𝑛𝑣𝑠 + 𝛽8𝑓𝑎𝑡ℎ𝑒𝑟_𝑠𝑛𝑣𝑠 + 
𝛽9𝑚𝑒𝑑𝑖𝑎𝑛_𝑉𝐴𝐹 + 𝛽10𝑚𝑒𝑑𝑖𝑎𝑛_𝐵𝐹 

 
𝑑𝑛𝑆𝑁𝑉𝑠_𝑚𝑎𝑡𝑒𝑟𝑛𝑎𝑙 = 𝛽0 + 𝛽1𝑝𝑎𝑡𝑒𝑟𝑛𝑎𝑙_𝑃𝐺𝑆 + 𝛽2𝑚𝑎𝑡𝑒𝑟𝑛𝑎𝑙_𝑎𝑔𝑒 +  

𝛽3𝑐ℎ𝑖𝑙𝑑_𝑚𝑒𝑎𝑛_𝑅𝐷 + 𝛽4𝑚𝑜𝑡ℎ𝑒𝑟_𝑚𝑒𝑎𝑛_𝑅𝐷 + 
𝛽5𝑐ℎ𝑖𝑙𝑑_𝑝𝑟𝑜𝑝_𝑎𝑙𝑖𝑔𝑛𝑒𝑑 + 𝛽6𝑚𝑜𝑡ℎ𝑒𝑟_𝑝𝑟𝑜𝑝_𝑎𝑙𝑖𝑔𝑛𝑒𝑑 + 

𝛽7𝑐ℎ𝑖𝑙𝑑_𝑠𝑛𝑣𝑠 + 𝛽8𝑚𝑜𝑡ℎ𝑒𝑟_𝑠𝑛𝑣𝑠 + 

𝛽9𝑚𝑒𝑑𝑖𝑎𝑛_𝑉𝐴𝐹 + 𝛽10𝑚𝑒𝑑𝑖𝑎𝑛_𝐵𝐹 
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Mendelian Randomization 

Instrumental variable selection 

MR analysis was applied to examine the likelihood of a causal effect of polygenic score (PGS) of 

age at natural menopause on the risk of de novo mutation rates in the offspring (Supplementary 

Table 13). In this approach, genetic variants that are significantly associated with an exposure of 

interest are used as instrumental variables (IVs) to test the causality of that exposure on the 

outcome of interest104–106. For a genetic variant to be a reliable instrument, the following 

assumptions should be met: (1) the genetic instrument is associated with the exposure of interest, 

(2) the genetic instrument should not be associated with any other competing risk factor that is a 

confounder, and (3) the genetic instrument should not be associated with the outcome, except via 

the causal pathway that includes the exposure of interest104,107. Genotypes at all variants were 

aligned to designate the ANM PGS-increasing alleles as the effect alleles as described above 

and this was used as a genetic instrument of interest. The effect sizes of genetic instruments 

(genotypes in the mother) on maternally phased de novo SNVs in the offspring estimated in 8,089 

duos were obtained from Genomics England. 

MR Frameworks 

The MR analysis was conducted using the inverse-variance weighted (IVW) model as the primary 

model due to the highest statistical power108. However, as it does not correct for heterogeneity in 

outcome risk estimates between individual variants109, we applied a number of sensitivity MR 

methods that better account for heterogeneity110. These include MR Egger to identify and correct 

for unbalanced heterogeneity (‘horizontal pleiotropy’), indicated by a significant Egger intercept 

(P<0.05)111, and weighted median (WM) and penalised weighted median (PWM) models to 

correct for balanced heterogeneity112. In addition, we introduced the MR Radial method to exclude 

variants from each model in cases where they are recognized as outliers113. The results were 

considered as significant based on the P value significance consistency across different primary 

and sensitivity models applied. The results are available in Supplementary Table 13. Finally, in 

order to calculate the effect of ANM on offspring de novo mutation rate when comparing women 

with ANM at two extremes of the ANM distribution curve, we multiplied the effect obtained by MR 

IVW, i.e. a de novo count beta per 1 year change in ANM, by 20, an arbitrary number that 

compares women with ANM 20 years apart.  
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