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Summary20

Background. Throughout the COVID-19 pandemic, human mobility has played a central21

role in shaping disease transmission. In this study, we develop a mechanistic model to22

calculate disease incidence from commercially-available US mobility data over the course of23

2020. We use it to study, at the US state level, the lag between infection and case report. We24

examine the evolution of per-contact transmission probability, and its dependence on mean25

air temperature. Finally, we evaluate the potential of the model to produce short-term26

incidence forecasts from mobility data.27

Methods. We develop a mechanistic model that relates COVID-19 incidence to time series28

contact index (CCI) data collected by mobility data vendor Cuebiq. From this, we perform29

maximum-likelihood estimates of the transmission probability per CCI event. Finally, we30

retrospectively conduct forecasts from multiple dates in 2020 forward.31

Findings. Across US states, we find a median lag of 19 days between transmission and32

case report. We find that the median transmission probability from May onward was about33

20% lower than it was during March and April. We find a moderate, statistically significant34

negative correlation between mean state temperature and transmission probability, r = −.57,35

N = 49, p = 2× 10−5. We conclude that for short-range forecasting, CCI data would likely36

have performed best overall during the first few months of the pandemic.37

Interpretation. Our results are consistent with associations between colder temperatures38

and stronger COVID-19 burden reported in previous studies, and suggest that changes in the39

per-contact transmission probability play an important role. Our model displays good po-40

tential as a short-range (2 to 3 week) forecasting tool during the early stages of a future pan-41

demic, before non-pharmaceutical interventions (NPIs) that modify per-contact transmission42

probability, principally face masks, come into widespread use. Hence, future development43

should also incorporate time series data of NPI use.44

1. Introduction45

As of end of early June 2022, the global COVID-19 pandemic has produced 530M recorded46

cases and 6.3M recorded deaths worldwide1. Throughout its course, the complex epidemi-47

ology of the disease has been shaped, above all, by the changes in human behavior it has48

elicited. Indeed, in a counterfactual world that took no measures against it, the course of49

the pandemic would have been simple and catastrophic; it is estimated [1]2 that about 90%50

of the world’s population would have been infected in a single massive wave lasting roughly51

two months, with a death toll of about 40 million.52

1https://covid19.who.int/
2The original report published by the Collaborating Centre for Infectious Disease Modelling and

collaborators: https://www.imperial.ac.uk/mrc-global-infectious-disease-analysis/covid-19/

report-12-global-impact-covid-19/
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The most immediate response consisted of the near-universal lock-downs which began in53

rapid succession around the world in spring of 2020. The publication of freely-available54

worldwide human mobility data by Google3, Apple4 and Facebook5, and the re-purposing of55

business intelligence mobility data from vendors such as Cuebiq6 and Safegraph7, has made56

it possible to trace changes in mobility with high spatial and temporal resolution, and to57

directly observe the results of mobility-related measures enacted to counter disease trans-58

mission. Numerous studies have examined the connection between mobility and COVID-1959

epidemiology. Some use statistical models to characterize associations between measures of60

mobility and measures of disease burden (e.g. [2], [3], [4], [5]). Others use hybrid approaches61

that combine statistical and mechanistic models (e.g. [6] [7] [8]), in some cases with the help62

of artificial intelligence (e.g. [9]). Many further examples are given in the systematic review63

of Zhang et al.[10].64

Our approach here is almost entirely mechanistic. Changes in human mobility affect65

disease transmission by modifying the rate of person-to-person contacts. Most available66

mobility data is in the form of indices that are indirect proxies for contact rate, and which67

require additional work (e.g. [11]) to infer contact rate itself. Here, we use data from US68

mobility data provider Cuebiq, which probes person-to-person contact rate more directly69

(see Section 3), thus lending itself better to use in a mechanistic model. This allows us to70

estimate, within a proportionality constant, the per-contact transmission probability of the71

disease. We restrict our analysis to 2020 in order to avoid complication due to i) emergence72

of new variants, ii) vaccination and iii) significant accumulation of post-infection natural73

immunity in the population.74

In 2020, prior to the availability of COVID vaccines, the evolution of per-contact trans-75

mission probability over time within a given region reflected the time-varying practice of76

non-pharmaceutical interventions (NPIs), notably mask-wearing and short-range social dis-77

tancing (i.e. maintaining a minimum separation of e.g. 6ft among people). Note that the78

latter is technically encompassed within the contact rate, however the mobility data we use79

does not have a high enough spatial resolution to discern the degree to which distancing on80

the scale of a few meters is practiced.81

An association of colder temperatures/climates with different measures of COVID-19 bur-82

den has been reported in multiple studies (see [12] for a 2020 systematic review; more recent83

studies include [13], [14] and [15]). Using our model results, we compare the transmission84

probability across US states during spring of 2020, at the onset of the pandemic.85

Finally, we take an exploratory look at the potential of Cuebiq mobility data for short-term86

forecasting.87

2. Methods88

In this section we provide an overview of our model; the full derivation is given in Appendix89

A.90

We assume that the disease dynamics are adequately described by a Susceptible-Infected-91

Recovered (SIR) compartmental model [16] of a homogeneously mixed population. The92

3https://www.google.com/covid19/mobility/
4https://covid19.apple.com/mobility
5https://dataforgood.facebook.com/dfg/covid-19
6https://www.cuebiq.com/
7https://www.safegraph.com/
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equation for the rate of change of disease prevalence is then93

dI

dt
=

β(t)S(t)I(t)

N
− γI(t), (1)

where β(t) is the (time-dependent) rate of effective contacts, γ is the recovery rate from the94

infectious state, and N is the size of the total population. Effective contacts are ones which95

would transmit disease if they involved an infectious person. As long as a small enough96

proportion of the population has been infected that S/N ≈ 1—as was the case in 2020 for97

COVID throughout the US—the SIR model solution for the prevalence is98

I(t) = I0e
(β(t)−γ)t, (2)

see e.g. [17]. The incidence, i.e. the rate of new cases, is given by the first term on the99

right-hand side of Equation 1 alone. Substituting, we obtain100

inc(t) = inc0

(
β(t)

β0

)
e(β(t)−γ)t (3)

Furthermore, can decompose β(t) into101

β(t) = Ptrans(t) · cr(t), (4)

where cr(t) is the contact rate, while Ptrans(t) is the transmission probability per contact.102

Suppose we have time series data of incidence, inc0, inc1, ..., incn, and contact rate, cr0, cr1, ..., crn103

at evenly-spaced times t0, t1, ..., tn. Suppose further that this time interval is sufficiently short104

that we can consider Ptrans to be approximately constant throughout. With some more ma-105

nipulation (see Appendix A), we obtain an expression for the incidence at time tn in terms106

of the contacts occurring between times t0 and tn:107

(ln incn − ln inc0) = (ln crn − ln cr0) + Ptrans

n∑
i=1

cri − γ(tn − t0) (5)

In reality, reporting delays and the incubation and latent periods of the disease will together108

impose a distribution of delays between the time that transmission occurs and the time that109

the resulting cases are captured by surveillance. We can account for this by replacing the110

time series of cri with an appropriately lagged version (see Appendix A).111

3. Data112

For incidence, we use the US COVID-19 surveillance data compiled by the New York113

Times, available at https://github.com/nytimes/covid-19-data, aggregated at the state114

level.115

We obtain contact data from Cuebiq, a vendor of US mobility data sourced from mobile116

phone users who have opted into sharing location data through a California Consumer Pri-117

vacy Act (CCPA) compliant process, hereafter referred to as Cuebiq users. Several previous118

studies have assessed the representativeness of the data by calculating the correlation be-119

tween the spatial distribution Cuebiq user home locations, and the spatial distribution of the120

population as captured by US Census data. The studies found high correlations at the cen-121

sus tract level in Washington State [18], the Boston metropolitan area [19] and Philadelphia122

[20], and U.S.-wide at the county level [21], with Pearson correlation coefficients of 0.91, 0.8,123

0.72 and 0.94, respectively.124
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We make use of the so-called Cuebiq contact index, hereafter CCI. The CCI is a 7-day125

rolling average of the daily number of encounters that a Cuebiq user has with other Cuebiq126

users in a given county. An encounter is registered for every instance of two devices occupying127

the same 50-foot geohash region within the same 5 minute interval; hereafter we refer to this128

as a CCI encounter. The CCI index is described in more detail on Cuebiq’s website8,9.129

A CCI encounter thus amounts to a contact opportunity rather than an actual contact; in130

practice only a fraction fcontact of them will consist of two Cuebiq users encountering each131

other at a small enough separation to be meaningful for disease transmission (e.g. < 6 feet for132

COVID-19). At the same time, only a fraction of the population are Cuebiq users. We thus133

calculate (Equation B.2) an adjusted index, CCI100&, which is the estimated rate of Cuebiq134

encounters if the entire population were Cuebiq users, under the assumption (see above) that135

Cuebiq users constitute a representative sample of the population. The relationship between136

contact rate and CCI is then137

cr = fcontactCCI100%, fcontact < 1, (6)

and so we can write Equation 5 as138

(ln incn − ln inc0) = (ln crn − ln cr0) + fcontactPtrans

n∑
i=1

CCI100%i
− γ(tn − t0) (7)

Appendix B describes the details of how a time series of PCCI is obtained for each state by139

fitting Equation 5 to COVID-19 case reports.140

4. Results141

Using Equation 5, we first determine the best-fit lag between CCI100% and incidence for142

each state, as described in Appendix B. Figure 1 shows the time series of CCI100% B.2)143

together with its lagged version for four example states. Using this lag, we then perform144

maximum-likelihood fits of the scaled transmission probability (fcontactPtrans) and initial145

incidence inc0 to observed incidence over successive 6-week intervals, again using Equation146

5. Results are shown in Figure 2, while Figure 3 shows the model-derived incidence using147

the maximum-likelihood values, together with the observed incidence. Fits for all 51 states148

are presented in the Supplementary Material.149

Figure 4 shows the distributions across all states of (fcontactPtrans) averaged over March and150

April 2020, (fcontactPtrans)early, together with the average across the rest of 2020, (fcontactPtrans)RoY .151

The former reflects a largely pre-mask measure of the transmission probability, while for the152

latter, transmission probability is modified by subsequent widespread yet heterogeneous153

adoption of masks across US. This figure also shows the distribution of best-fit mobility-154

transmission lags; the median is 19 days.155

Figure 5 shows (fcontactPtrans)early versus mean spring temperature for the states (excluding156

the District of Columbia)10 Computing the Pearson product-moment correlation coefficient of157

the two quantities, we find a moderate, statistically significant negative correlation, r = −.57,158

N = 49, p = 2 × 10−5. That is, colder temperatures tended to be associated with higher159

transmission probabilities in the initial stage of the pandemic, before differences in mask160

adoption among the states obscured the picture.161

8https://www.cuebiq.com/visitation-insights-contact-index/
9https://help.cuebiq.com/hc/en-us/articles/360041285051-Mobility-Insights-Mobility-Index-CMI-
10Data taken from https://www.currentresults.com/Weather/US/average-state-weather.php
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Figure 6 shows a simple demonstration of how the model developed here could be used162

for short-range forecasting, using Florida as an example. Additional examples are shown in163

the Supplementary Material. To perform a forecast starting from a given date T forward,164

we first fit our model to the previous six weeks, [T − 6w, T ], of incidence data and lagged165

CCI100% data to obtain a maximum-likelihood estimate of (fcontactPtrans). The best-fit lag166

between incidence and CCI is 15 days for Florida. This means that at time T , we still167

have lagged CCI data up to date T + 15d. Using this data, together with the estimate of168

(fcontactPtrans), we are thus able to run the model 15 days into the future. We retrospectively169

perform forecasts from dates T1 = 1 April 2020, T2 = 1 June, T3 =1 July and T4 = 25170

August, each date chosen to come just before a turnover in incidence from growth to decay171

or vice versa. The quality of each forecast can be visually assessed by comparing it to the172

actual incidence of cases reported over the forecast horizon.173

5. Discussion174

Across the 51 states, the scaled transmission probability averaged over the first two months175

of the pandemic (March and April 2020), (fcontactPtrans)early, has a median value of 0.0039.176

The transmission probability across the rest of the year, (fcontactPtrans)RoY , has a median177

value of 0.0031, about 20% lower (Figure 4, top). A marked decrease in transmission prob-178

ability is consistent with the overall increasing level of NPI adoption, principally mask-179

wearing, as the year progressed. Seasonality may also play a role. However, looking at the180

individual state time series of (fcontactPtrans) (see Figure 2 for four examples, and the Supple-181

mentary Material for the remaining 47 states) reveals significant heterogeneity, with some182

states (e.g. New Jersey, Florida) showing a clear reduction in PCCI after spring of 2020,183

yet others (e.g. Alaska) showing no clear time trend. This may be reflective of the hetero-184

geneity in the practice of NPIs that reduce per-contact transmission probability, primarily185

the adoption level of masks and the level of compliance with social distancing (which, since186

it occurs on a scale of a few meters, is not resolved in Cuebiq’s mobility data). Given the187

evidence of temperature dependence in COVID transmissibility, it may also be reflective of188

heterogeneity in seasonal weather patterns among states.189

Across all states, the median best-fit time lag between CCI100% and observed incidence190

is 19 days, though here, again, there is significant heterogeneity (Figure 4, bottom). The191

time between infection and case report is the sum of the incubation period of a disease,192

the diagnostic delay and the reporting delay. In the hypothetical case of instantaneous193

diagnosis and reporting, the delay would be due to the incubation period alone. Thus the194

smallest lag we observe, 11 days, constitutes an upper limit to the median incubation period.195

Meta-analyses have variously reported a mean COVID-19 incubation period of 6.5 (95% CI:196

5.9–7.1) days[22], 5.8 (95% CI: 5.0-6.7) days[23], 5.6 (95% CI: 5.2–6.0) days or 6.7 (95% CI:197

6.0–7.4) days[24], 5.74 (95% CI: 5.18-6.30) days[25], and 6.2 (95% CI 5.4, 7.0) days[26], all198

of which fall below 11 days. One source of variability may be heterogeneity in state-level199

reporting practices. Also, since the latent period is determined by in-host interaction, it may200

vary systematically by population characteristics (age distribution, comorbidity profile etc.),201

which may also contribute to the heterogeneity.202

Multiple studies have reported associations between colder temperatures and various met-203

rics of COVID burden (see Introduction). Our results suggest, specifically, an association204

between temperature and per-contact transmission probability. Although prior studies have205

found evidence that the COVID-19 virus half-life is reduced at higher temperatures ([27],206
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[28], [29]), it is important to note that our results do not by themselves imply that this par-207

ticular mechanism is responsible. Behavior could also contribute: People in warmer climates208

tend to spend a larger proportion of their time outdoors, thus a larger proportion of daily209

contacts will occur outdoors in, for example, springtime California versus springtime Alaska.210

And there is strong evidence to suggest that the outdoor risk of COVID transmission is211

substantially lower than the indoor risk (see [30] for a systematic review). Both these causal212

pathways, and more, could be operating together.213

In the forecasting demonstration shown in Figure 6, the sharp downturn in Florida in-214

cidence just after 1 April 2020 is reasonably well predicted, as is the return to incidence215

growth after 1 June. However, neither the downturn after 1 July nor the upturn beginning216

in late August are predicted. Indeed, Florida’s CCI100% (Figure 1) varies much less after the217

beginning of July than it does before. However, widespread mask mandates started coming218

into effect in Florida on 23 June; with a 15-day lag (i.e. 8 July) this is close to Florida’s219

second incidence peak. This suggests that at later time, variations in mask use, rather than220

in contact rate, may have played the dominant role in driving changes in transmission. We221

leave to future work a more sophisticated forecast model that incorporates mask use, where222

such data is available.223

The work presented here is subject to a number of limitations: i) Both our model and the224

data we use lack any stratification, thus any effects arising from heterogeneous demography,225

health status etc. within a given state are not accounted for. ii) Though previous studies226

all found high correlation between the geographic distribution of Cuebiq users and that of227

the population as a whole, this does not fully guarantee the represenativeness of Cuebiq228

users. iii) In comparing states to each other, we have made the assumption that the scaling229

(Equation B.1) between true contact rate and adjusted Cuebiq contact index is the same230

across all states. iv) We have assumed that within a given state, the lag between mobility231

and incidence, which we estimate using only the first four months of the pandemic, remains232

constant. v) We have argued that transmission probability changes more slowly over time233

than mobility, and thus approximated Ptrans as constant within successive 6-week periods.234

However, this approximation may not always hold well, in particular when a change in235

mask mandates falls within a given period. Also, during the phase of gradual relaxation236

after the initial lock-downs, mask use may have increased at a similar rate to mobility as237

businesses, public spaces etc. re-opened while at the same time requiring masking. vi) In238

our forecasting experiment, we have unfairly granted ourselves fore-knowledge of the state’s239

mobility-incidence lag, which was actually fit using the first four months of data. In practice,240

in the very beginning of a pandemic we would have to resort to using a range of plausible241

lags, the lower bound being the mean incubation period of the disease.242

6. conclusion243

Using a mobility index that can be considered a direct proxy of contact rate has allowed244

us to construct a fully mechanistic model that derives disease incidence from this data. As245

a result, we have been able to get direct insight into the variability of per-contact COVID-246

19 transmission in the U.S. both by state and by date. Our findings are consistent with247

associations between colder temperatures and stronger COVID-19 burden reported in pre-248

vious studies, and suggest that it is specifically changes in the per-contact transmission249

probability which play a role. As a forecast tool, the model would have performed best250

before NPIs that modified per-contact transmission probability—principally masks—came251
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into widespread use. To lift this limitation, future development should also incorporate time252

series data of NPI use. Our methodology is also readily extensible to other respiratory dis-253

eases such as influenza or RSV, contingent on the availability of good-quality surveillance254

data. Indeed, in a non-pandemic setting forecasting will be aided by the (likely) absence of255

NPIs, and by mobility following more predictable seasonal patterns rather than being driven256

by reaction to epidemiology. The availability of mobility data that even more directly probes257

person-to-person contacts, e.g. through Bluetooth proximity detection of the sort used in258

COVID exposure-notification apps, would also benefit the performance of this model.259
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[3] Kartal MT, Depren Ö, Depren SK. The relationship between mobility and COVID-19 pandemic: Daily282

evidence from an emerging country by causality analysis. Transportation Research Interdisciplinary283

Perspectives. 2021;10:100366.284

[4] Ilin C, Annan-Phan S, Tai XH, Mehra S, Hsiang S, Blumenstock JE. Public mobility data enables285

covid-19 forecasting and management at local and global scales. Scientific reports. 2021;11(1):1-11.286

[5] Sadowski A, Galar Z, Walasek R, Zimon G, Engelseth P. Big data insight on global mobility during the287

Covid-19 pandemic lockdown. Journal of big Data. 2021;8(1):1-33.288

[6] Cot C, Cacciapaglia G, Sannino F. Mining Google and Apple mobility data: temporal anatomy for289

COVID-19 social distancing. Scientific reports. 2021;11(1):1-8.290

[7] Chang S, Pierson E, Koh PW, Gerardin J, Redbird B, Grusky D, et al. Mobility network models of291

COVID-19 explain inequities and inform reopening. Nature. 2021;589(7840):82-7.292

[8] Liu M, Thomadsen R, Yao S. Forecasting the spread of COVID-19 under different reopening strategies.293

Scientific reports. 2020;10(1):1-8.294

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 22, 2022. ; https://doi.org/10.1101/2022.06.21.22276712doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.21.22276712


9
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Appendix A: The model in detail349

In an SIR model, the equation for rate of change of disease prevalence is350

dI

dt
=

β(t)S(t)I(t)

N
− γI(t), (A.1)

where β(t) is the time-dependent average number of effective contacts per person per unit351

time, γ is the recovery rate from the infectious state, and N is the size of the total population.352

Effective contacts are ones which would transmit disease if they involved an infectious person.353

As long as only a small fraction of the total population has become infected—as was the case354

in the US and most of the world throughout 2022—S/N ≈ 1, and the SIR model solution355

for the prevalence is356

I(t) = I0e
(β(t)−γ)t, (A.2)

see e.g. [17]. The incidence, i.e. the rate of change of cumulative cases C(t), is given by the357

first term on the right-hand side of Equation A.1 alone:358

inc(t) =
dC

dt
=

βS(t)I(t)

N
≈ β(t)I(t), (A.3)

where the approximate equality holds when, again, S/N ≈ 1. Substituting, we obtain359

inc(t) = β(t)I0e
(β(t)−γ)(t) = inc0

(
β(t)

β0

)
e(β(t)−γ)t (A.4)

where360

inc0 = β0I0. (A.5)

Since for an SIR model the instantaneous effective reproduction number is361

Reff (t) =
β(t)

γ

S(t)

N
(A.6)

thus we can also write the incidence in terms of the reproduction number:362

inc(t) = inc0

(
Reff (t)− 1

Reff,0 − 1

)
e(Reff (t)−1)γt (A.7)

Taking the log of Equation A.4, we have363

(ln inc(t)− ln inc0) = (ln β(t)− ln β0) + (β(t)− γ) t (A.8)

Considering now an infinitesimally small time interval, dt, this becomes

d ln inc(t) = d ln β(t) + (β(t)− γ) dt

or364

d ln inc(t)

dt
=

d ln β(t)

dt
+ β(t)− γ (A.9)

Integrating with respect to t, we obtain, over a time interval [t0, t],365

(ln inc(t)− ln inc(t0)) = (ln β(t)− ln β(t0)) +

∫ t

t0

β(t′)dt′ − γ(t− t0) (A.10)

We can decompose β(t) into366

β(t) = Ptrans(t)cr(t), (A.11)

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 22, 2022. ; https://doi.org/10.1101/2022.06.21.22276712doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.21.22276712


11

where cr(t) is the contact rate, while Ptrans(t) is the transmission probability per contact.367

Note that we can then express the reproduction number as:368

Reff (t) =
Ptrans(t)cr(t)

γ
(A.12)

In general, both the contact rate and the transmission probability change over time, the369

latter due to changes in the practice of non-pharmaceutical interventions (NPIs) such as370

mask-wearing, as well as changes intrinsic to the disease, e.g. emergence of new variants.371

Since widespread changes in NPIs and in the relative distribution of variants are usually372

gradual, whereas contact patterns can change significantly from one day to the next (for373

example between a weekday and the weekend, or as the result of a mass gathering event),374

we expect Ptrans(t) to generally vary more slowly than cr(t). If Ptrans can be considered375

constant over the time interval [t0, t], then Equation A.10 becomes376

(ln inc(t)− ln inc(t0)) = (ln cr(t)− ln cr(t0)) + Ptrans

∫ t

t0

cr(t′)dt′ − γ(t− t0) (A.13)

Suppose we have time series data of incidence and contact rate reported with constant377

time interval δt, so that cri and inci are the contacts per person and the total number of378

new cases, respectively, occurring within the time interval ti−1 < t ≤ ti. We can then apply379

Equation A.13 in discrete form to obtain the change in incidence between a time t0 and time380

tn in terms of the contacts occurring during this time:381

(ln incn − ln inc0) = (ln crn − ln cr0) + Ptrans

n∑
i=1

cri − γ(tn − t0) (A.14)

In practice, disease incidence captured by surveillance will be subject to under-reporting,382

i.e. the reported incidence is383

inc = frep · inctrue (A.15)

where inctrue is the true underlying incidence, and frep is the fraction of cases reported. If
frep can be considered constant over the time interval [ta, tb], then if we now replace the
reported incidence with the true incidence in Equation A.14, the left-hand side becomes

ln

(
incb
frep

)
− ln

(
inca
frep

)
or

ln

(
fref · incb
frep · inca

)
,

thus frep cancels out and we recover the original equation. Therefore, when considering384

time intervals over which the degree of under-reporting can be considered constant, the385

relationship described by Equation A.13 is independent of under-reporting.386

A simplification we have made thus far is to assume that there is no lag between contacts
and their effect on reported incidence. In reality, reporting delays and the incubation and
latent periods of the disease will together impose a distribution of delays between the time
that transmission occurs and the time that the resulting cases are captured by surveillance.
If cases reported at time ti depend on contacts occurring between times ti−q and ti−p, with
q > p, then we can account for this by replacing cri with an appropriately lagged version,

cr′i = αi−qcri−q + αi−q+1cri−q+1 + ...+ αi−pcri−p. (A.16)
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Appendix B: Fitting the model to data387

The CCI of a given region is the daily number of instances of two Cuebiq users occupying388

the same 50ft x 50ft geohash grid cell within the same 5 minute interval, divided by the389

total number of Cuebiq users within that region. From this, we want to estimate the rate of390

encounters between Cuebiq users at distances ≤ dtrans, where dtrans is the maximum distance391

for potentially disease-transmitting contacts. Assuming an average movement speed v, the392

time to pass through a dtrans×dtrans cell is approximately dtrans/v. The proportionality con-393

stant between CCI and the contact rate within distance dtrans between Cuebiq users is given394

by the ratio of their associated space-time volumes. And, assuming that v is approximately395

constant, the contact rate is linearly proportional to CCI:396

crCuebiq ≈
(
dtrans
50ft

)2(
dtrans/v

5min

)
CCI = fcontactCCI (B.1)

Since only a fraction of the total population are Cuebiq users, the CCI only captures a397

fraction of the total contacts experienced by a person per day. In order to estimate CCI100%,398

the hypothetical CCI which would be measured if the entire population were Cuebiq users,399

we additionally obtain from Cuebiq the time series of total number of Cuebiq user devices400

seen on day i across a given region, nCuebiqi . Insofar as the Cuebiq users can be considered401

a representative sample of the general population, we can then estimate CCI100% on day i402

across a given region by rescaling the CCI as follows:403

CCI100%i
= CCIi ·

Npop

nCuebiqi

(B.2)

where Npop is the population size of the region. Our estimate for the total contact rate is404

then405

cr = fcontactCCI100% (B.3)

We can then write Equation 5 as406

(ln incn − ln inc0) = (ln crn − ln cr0) + fcontactPtrans

n∑
i=1

CCI100%i
− γ(tn − t0) (B.4)

where PCCI = fcontactPtrans is the transmission probability per Cuebiq encounter.407

We conduct our analysis at the state level, and thus aggregate incidence and Cuebiq data408

(both of which are provided at the county level) accordingly. In order to calculate the409

lagged version of the time series of CCI100%i
as per Equation A.16, we make the simplifying410

assumption that q = p + 7. Given that the CCI is already computed as a 7-day rolling411

average, we then only need to find p for each state. To do so, we perform a two-step412

optimization. First, we select a time window tj < t ≤ tk within the available data. We then413

lag the time series of CCI100%i
by values of L = 0, 1, 2, ..., 50. For each value of L, we use414

the R optimization function optim() to find the value of PCCI which produces the best fit415

of Equation B.4 to the observed incidence over the time window, in the sense of minimizing416

the negative log likelihood (NLL).417

We take as tj the day on which cumulative cases first reached or exceeded 10 in a given418

state. We repeat the above fitting procedure with tk = 1 May 2020, tk = 1 June 2020, and tk419

= 1 July 2020, each time computing a best-fit lag. We then take the average of these three420

as the best-fit lag p for the given state. Using p, we compute the lagged CCI time series for421

the state as per Equation A.16, which we then use to fit Equation B.4 to reported incidence.422
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We do so over successive 6-week time intervals, going from tj until the end of 2020, thus423

obtaining a best-fit PCCI for each interval.424
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Figure 1. The rescaled seven-day rolling average Cuebiq contact index,
CCI100%, for four states during 2020 (black points). Also shown is the same
data lagged by the best-fit mobility-incidence delay for the given state, ob-
tained as described in Appendix B
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Figure 2. PCCI , the probability of an effective Cuebiq contact (see Equation
6) from the same rolling fits computed computed at six-week intervals (gray
dotted lines) for Figure 3. Gray bands denote the 95% confidence interval for
each interval.
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Figure 3. Model incidence (blue curve segments; blue bands show 95% con-
fidence interval) from Equation 5, using the maximum-likelihood fits of PCCI

(see Figure 2) and initial incidence inc0 to the time series of observed incidence
(black dots) and CCI100% (see Figure 1) for four states. Fits are performed
over successive six-week intervals (delimited by dotted vertical lines).
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Figure 4. Top: Distribution across all 51 states of early (March 1 to April
30, 2020) average PCCI (white; dashed line shows median = 0.0039), and rest-
of-year (May 1 to December 31, 2020) average PCCI (green, dotted line shows
median = 0.0031). Bottom: distribution across all 51 states of best-fit lag
between reported incidence and mobility (dashed line shows median = 19 days).
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Figure 5. Early (1 March to 30 April) PCCI versus average winter temper-
ature by state (excluding DC). A moderate, statistically significant negative
correlation exists, r(49) = −.57, p = 2× 10−5, i.e. lower temperatures tend to
be associated with higher PCCI .
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Figure 6. Illustration of the application of our fitting methodology to short-
range forecasting, using the state of Florida as an example. Forecasts are
performed at different times (dashed vertical lines), each time using a fitting
time window of the previous six weeks to estimate PCCI . The forecast time
horizon is equal to the mobility-transmission lag, which for Florida is estimated
as 15 days. Also shown for comparison is 23 June (solid vertical line), the date
on which widespread mask mandates started coming into effect in Florida,
starting with Miami-Dade County.
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