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Abstract 67 

Identifying tumor DNA mismatch repair deficiency (dMMR) is important for precision medicine. 68 

We assessed tumor features, individually and in combination, in whole-exome sequenced (WES) 69 

colorectal cancers (CRCs) and in panel sequenced CRCs, endometrial cancers (ECs) and 70 

sebaceous skin tumors (SSTs) for their accuracy in detecting dMMR. CRCs (n=300) with WES, 71 

where MMR status was determined by immunohistochemistry, were assessed for microsatellite 72 

instability (MSMuTect, MANTIS, MSIseq, MSISensor), COSMIC tumor mutational signatures 73 

(TMS) and somatic mutation counts. A 10-fold cross-validation approach (100 repeats) evaluated 74 

the dMMR prediction accuracy for 1) individual features, 2) Lasso statistical model and 3) an 75 

additive feature combination approach. Panel sequenced tumors (29 CRCs, 22 ECs, 20 SSTs) were 76 

assessed for the top performing dMMR predicting features/models using these three approaches. 77 

For WES CRCs, 10 features provided >80% dMMR prediction accuracy, with MSMuTect, 78 

MSIseq, and MANTIS achieving ≥99% accuracy. The Lasso model achieved 98.3%. The additive 79 

feature approach with ≥3/6 of MSMuTect, MANTIS, MSIseq, MSISensor, INDEL count or TMS 80 

ID2+ID7 achieved 99.7% accuracy. For the panel sequenced tumors, the additive feature 81 

combination approach of ≥3/6 achieved accuracies of 100%, 95.5% and 100%, for CRCs, ECs, 82 

and SSTs, respectively. The microsatellite instability calling tools performed well in WES CRCs, 83 

however, an approach combining tumor features may improve dMMR prediction in both WES and 84 

panel sequenced data across tissue types. 85 

 86 

Keywords: Colorectal cancer, DNA mismatch repair deficiency, endometrial cancer, Lynch 87 
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Introduction 110 

DNA mismatch-repair (MMR) deficiency (dMMR) is an important molecular phenotype of 111 

solid tumors characterized by the presence of microsatellite instability (MSI) and/or loss of 112 

expression of one or more of the DNA MMR proteins, MLH1, MSH2, MSH6 and PMS2. 113 

Identifying dMMR tumors is important for understanding disease prognosis1, response to immune 114 

checkpoint inhibition therapy2 and to identify people with Lynch syndrome. Lynch syndrome is 115 

the most common inherited cancer predisposition disorder and, therefore, the Evaluation of 116 

Genomic Applications in Practice and Prevention Working Group recommends that all newly 117 

diagnosed colorectal (CRC) and endometrial cancers (EC) are screened for dMMR to improve the 118 

identification of carriers3,4. 119 

The dMMR mutator phenotype arises in tumors where errors occur during the DNA 120 

replication process5. Specifically, defects in the components of the MMR system responsible for 121 

the recognition of mismatches such as single nucleotide variants (SNVs) and insertion-deletions 122 

(INDELs), can lead to the development of numerous frameshift mutations in coding and non-123 

coding microsatellite regions6. dMMR is related to biallelic inactivation of one of the MMR genes, 124 

resulting from either somatic methylation of the MLH1 gene promoter region7 or double somatic 125 

MMR gene mutations8 (sporadic dMMR), or germline pathogenic variants in the MMR genes9 or 126 

deletions in the 3′ end of the EPCAM gene10 (inherited dMMR). CRC, EC and sebaceous skin 127 

tumors (SSTs), including sebaceous adenomas, carcinomas and sebaceomas, are tissue types that 128 

demonstrate the highest frequencies of dMMR where up to 26%11, 31%11 and 31%12 of these tissue 129 

types, respectively, present with the dMMR phenotype, followed by stomach cancer at 19%11. 130 

The most common approach for identifying dMMR tumors is by assessing MMR protein 131 

expression through immunohistochemistry (MMR IHC)13,14 and/or by testing for high levels of 132 
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microsatellite instability using polymerase chain reactions (MSI-PCR)15. While both screening 133 

methodologies are commonly used, each present advantages and limitations. The advantages of 134 

performing MMR IHC include simple experimental execution, short turnaround time, low 135 

associated costs as well as giving an indication of the defective gene16. However, false positive or 136 

false negative MMR IHC results can occur due to technical artefacts, variable performance of 137 

different MMR antibodies and inherent variability in the interpretation of the staining by different 138 

pathologists16. Further challenges include the interpretation of weaker staining in less proliferative 139 

tissue and heterogenous patterns of MMR protein loss17–24.  140 

While MMR IHC is more widely adopted in the clinical setting, MSI-PCR remains the gold 141 

standard for detecting dMMR16; to date multiple markers have been identified to call MSI in tumor 142 

samples25. The limitations for MSI-PCRs include additional laboratory implementation 143 

requirements related to tissue DNA extraction and increased labor costs; both can lead to a delay 144 

in receiving test results16. Nonetheless, MMR IHC and MSI-PCR methodologies have proven to 145 

be effective for identifying dMMR in CRC samples26 with a reported concordance of 91.9%16, but 146 

the accuracy for either of these tools can decrease when applied to different tissue types27. As next-147 

generation sequencing (NGS) becomes more widely adopted for precision oncology, there is an 148 

increasing need to accurately determine tumor MMR status using NGS data. 149 

To date, several tools have been developed to assess MSI from NGS data, including 150 

MSISensor28, MSIseq29, MANTIS30 and more recently MSMuTect31. To the best of our 151 

knowledge, the comparison of these four MSI tools on the same tumors has not yet been performed. 152 

In addition to MSI, other tumor features derived from NGS have been shown to be associated with 153 

dMMR, such as tumor mutational burden (TMB)32 and tumor mutational signatures (TMS)33. 154 
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TMB, characterized by high SNV and INDEL counts, is a biomarker for response to immune 155 

checkpoint inhibition therapy34,35 and is increased in dMMR tumors36.  156 

TMS aggregate tens to thousands of the observed somatic mutations within a tumor into 157 

patterns related to the underlying mutational processes37,38. The predominant TMS framework, 158 

published on the COSMIC website, defines 107 different signature definitions categorized into 159 

three distinct subgroups: 1) 78 single base substitutions (SBS) where seven of the SBS signatures 160 

(SBS6, SBS14, SBS15, SBS20, SBS21, SBS26 and SBS44) are associated with dMMR; 2) 18 161 

small (1 to 50 base pair) insertions and deletions or ID signatures where ID1, ID2, and ID7 are 162 

associated with dMMR, and 3) 11 doublet base substitutions or DBS signatures where DBS7 and 163 

DBS10 have both been previously associated with dMMR33. However, DBS signatures have a 164 

reported low prevalence in CRC compared with other tissue types so were excluded from our 165 

study38. Previously, we have shown that the combination of individual TMS can improve the 166 

ability of TMS to discriminate important molecular and genetic subtypes of CRC, including 167 

identifying germline biallelic carriers of pathogenic variants in the MUTYH gene by combining 168 

SBS18 and SBS3639,40. We further observed that the combination of ID2 with ID7 (TMS ID2+ID7) 169 

was the most informative for differentiating dMMR from pMMR CRCs amongst all possible TMS 170 

combinations39. To date, the comparison of MSI calling tools, somatic mutation counts, TMB and 171 

TMS tumor features for determining the dMMR status in CRC tumors has not yet been undertaken. 172 

 In this study, we assessed 104 tumor features derived from whole-exome sequencing 173 

(WES) (Table 1), consisting of the MSI prediction tools (MSMuTect, MANTIS, MSIseq and 174 

MSISensor), TMS (78 SBS and 18 ID signatures), TMS ID2+ID7, TMB and individual SNV and 175 

INDEL somatic mutation counts for their accuracy in predicting dMMR status in 300 well-176 

characterized CRCs. Secondly, we investigated whether a combination of these tumor features, 177 
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using either a statistical model or a simple approach that added individual features together 178 

(additive feature combination), could improve the dMMR prediction accuracy in WES CRC 179 

tumors. Finally, we evaluated the effectiveness of the top performing tumor features from the WES 180 

analysis, individually and in combination, in an independent set of CRC, EC and SST tumors that 181 

had undergone targeted multigene panel sequencing for their dMMR prediction accuracy. 182 

 183 

Materials and Methods 184 

 185 

Study Cohort 186 

The study population included men and women retrospectively identified from five studies 187 

where pMMR or dMMR status was determined by MMR IHC and where an etiology for dMMR 188 

status could be defined, namely a sporadic etiology caused by tumor MLH1 methylation or double 189 

somatic MMR mutations, or an inherited etiology caused by a germline MMR gene pathogenic 190 

variant (Lynch syndrome). The breakdown of participants included in this study by their dMMR 191 

and pMMR status, tissue type and by WES or panel sequencing is shown in Figure 1: 192 

1) the ANGELS study (Applying Novel Genomic approaches to Early-onset and suspected Lynch 193 

Syndrome colorectal and endometrial cancers)39 recruited participants that were diagnosed with 194 

CRC or EC between 2014 – 2021 who were referred from family cancer clinics across Australia 195 

(n=79). All ANGELS study participants provided informed consent and the study was approved 196 

by the University of Melbourne human research ethics committee (HREC#1750748) and 197 

institutional review boards at each family cancer clinic; 198 

2) CRC- or EC-affected participants from the ACCFR (Australasian Colorectal Cancer Family 199 

Registry) were selected from both population-based and clinic-based recruitment (n=139);  200 
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3) CRC-affected participants from the OFCCR (Ontario Familial Colorectal Cancer Registry) 201 

were population-based patients (<50 years old) recruited from the Cancer Care Ontario, Toronto, 202 

Canada (n=53). Study participants from both the ACCFR and OFCCR were recruited between 203 

1998 and 2008, and were included according to the recruitment policy and eligibility criteria 204 

previously described41,42. Informed consent was obtained from all study participants and the study 205 

protocol was approved by the institutional human ethics committee at both study sites;  206 

4) CRC-affected participants from the WEHI study (Walter and Eliza Hall Institute of Medical 207 

Research) were recruited from the Royal Melbourne Hospital (Parkville, VIC, Australia) and the 208 

Western Hospital Footscray (Footscray, VIC, Australia), between Jan 1, 1993, and Dec 31, 200939. 209 

All patients provided written informed consent. The study was approved by human research ethics 210 

committees at both sites (HREC 12/19) (n = 80); 211 

5) SST-affected participants from the MTS study (Muir-Torre Syndrome Study) were referred 212 

between July 2016 and September 2021 following clinical diagnostic MMR IHC testing by 213 

Sullivan Nicolaides Pathology service in Brisbane12 or by family cancer clinics in Australia. 214 

Informed consent was obtained from the study participants and the study protocol was approved 215 

by the human research ethics committee from the University of Melbourne (HREC#1648355) and 216 

by the relevant institutional human ethics committees (n = 20). 217 

 218 

Tumor Categorization 219 

MMR IHC testing was performed on formalin-fixed paraffin embedded (FFPE) tissues for 220 

all four MMR proteins for the ACCFR and OFCCR as previously described42–44, and a subset of 221 

these tumors also underwent MSI-PCR testing as previously described45. MMR IHC testing for 222 

the ANGELS and MTS studies was part of routine clinical assessment in pathology laboratories 223 
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across Australia, reported by the duty pathologist. Fresh-frozen tissue specimens from the WEHI 224 

study were assessed for MLH1, MSH2 and MSH6 MMR IHC and MSI-PCR tested using BAT25, 225 

BAT26, D5S346, D2S123 and D17S250 MSI markers. Germline MMR gene testing (as described 226 

in Buchanan et al.43) and tumor MLH1 promoter methylation testing by MethyLight (as described 227 

in Buchanan et al.46) were performed on all dMMR tumors showing loss of MLH1/PMS2 protein 228 

expression or sole PMS2 loss by IHC. Tumors were considered to have double somatic MMR 229 

mutations when they were found to have two pathogenic/likely pathogenic somatic mutations or a 230 

single somatic pathogenic/likely pathogenic mutation in combination with presence of loss of 231 

heterozygosity. Germline pathogenic variants and somatic MMR gene mutations were confirmed 232 

in WES and targeted panel sequencing data prior to analysis. Therefore, for each of the dMMR 233 

tumors included in this study we could confirm an inherited or acquired cause for their respective 234 

pattern of MMR IHC protein loss. Concurrently, for the pMMR tumors, we did not find evidence 235 

of a germline MMR pathogenic variant or double MMR somatic mutation in these tumor samples. 236 

All tumors in the study were assigned to one of four categories based on dMMR or pMMR 237 

status determined from MMR IHC and/or MSI-PCR and based on the cause for dMMR: 238 

1) dMMR-Lynch syndrome (dMMR-LS) – identified carrier of a germline pathogenic variant 239 

in one of the DNA MMR genes where the corresponding tumor showed commensurate loss of 240 

MMR protein expression by IHC;  241 

2) dMMR-MLH1 methylation (dMMR-MLH1me) – tumors were positive for methylation of 242 

the MLH1 gene promoter “C region”47 and showed loss of MLH1 and PMS2 protein expression 243 

by IHC without a germline MMR gene pathogenic variant;  244 
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3) dMMR-double somatic (dMMR-DS) – tumors harbored two somatic mutations (SNVs and/or 245 

loss of heterozygosity) in the same MMR gene that showed loss of protein expression by IHC with 246 

no identified pathogenic germline MMR gene variant; and  247 

4) MMR-proficient (pMMR) – tumors showed normal expression of all four MMR proteins and 248 

did not show presence of double somatic MMR gene mutations or a germline MMR gene 249 

pathogenic variant. 250 

The three dMMR subtypes dMMR-LS, dMMR-DS and dMMR-MLH1me were combined as a 251 

single dMMR tumor group in downstream analysis. 252 

 253 

Whole-Exome and Targeted Panel Sequencing Capture Regions 254 

The targeted panel was based on the design described in Zaidi et al.48 consisting of probes 255 

targeting the following regions: 1) 298 genes incorporating key hereditary CRC49–51 and EC52 risk 256 

genes and genes that are frequently mutated as identified by The Cancer Genome Atlas (TCGA) 257 

data32,53,54, 2) 28 microsatellite loci including the five ‘gold standard’ MSI markers (BAT25, 258 

BAT26, NR-21, NR-24, and MONO-27) currently implemented in routine MSI-PCR diagnostics, 259 

3) 212 homopolymer regions distributed genome-wide to assess for MSI in tumor samples and 4) 260 

56 copy number variants known to be susceptible to copy number changes in CRCs. The panel 261 

capture was 2.005 megabases (Mb) in size. The WES capture incorporates all exonic regions 262 

within the genome and is 67.296 Mb in size. The panel additionally included capture of intronic 263 

regions within the MMR genes, which the WES capture did not cover.  264 
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Next-Generation Sequencing 265 

In total, 300 CRC tumors were sequenced by WES and 71 tumors (29 CRCs, 22 ECs and 266 

20 SSTs) were sequenced by the targeted multigene panel (Figure 1). FFPE CRC, EC or SST 267 

tissues were macrodissected and DNA extracted using the QIAmp DNA FFPE Tissue Kit (Qiagen, 268 

Hilden, Germany) according to the manufacturer’s instructions. Peripheral blood-derived DNA 269 

was extracted using the DNeasy blood and tissue kit (Qiagen, Hilden, Germany) and sequenced as 270 

germline references. 271 

The WES capture was the Agilent Clinical Research Exome V2 kit (Agilent Technologies 272 

Santa Clara, United States) with sequencing performed on an Illumina NovaSeq 6000 comprising 273 

150 base pair (bp) paired-end reads performed at the Australian Genome Research Facility39. For 274 

the WEHI CRCs, exome-enrichment was performed using the TruSeq Exome Enrichment Kit 275 

(Illumina, San Diego, United States) and 100 bp paired-end read sequencing performed on an 276 

Illumina HiSeq 2000 at the Australian Genome Research Facility39. The on-target coverage for the 277 

300 WES samples had a median of 323.7 for the FFPE tumor DNA samples and 137.4 for blood-278 

derived DNA samples, with an interquartile range of 111.8 – 426.4 and 100.6 – 204.9, respectively. 279 

Library preparation for targeted panel sequencing was performed using the SureSelectTM 280 

Low Input Target Enrichment System (Agilent Technologies, Santa Clara, United States) using 281 

standard protocol and sequenced on an Illumina NovaSeq 6000 comprising 150 bp paired end 282 

reads performed at the Australian Genome Research Facility. The on-target coverage for the 71 283 

panel sequenced samples was (median and interquartile range) 919.3 and 694.6 – 1164.9 for FFPE 284 

tumor DNA samples and 160.6 and 135.8 – 178.0 for blood-derived DNA samples.  285 
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Bioinformatics Pipeline 286 

For both WES and targeted panel sequenced samples, adapter sequences were trimmed 287 

from raw FASTQ files using trimmomatic 0.3855 and aligned to the GRCh37 human reference 288 

genome using Burrows-Wheeler Aligner v. 0.7.12. Germline variants, somatic variants (SNVs) 289 

and somatic INDELs were called using Strelka (v. 2.9.2., Illumina) using the recommended 290 

workflow56. TMS were calculated using the pre-defined set of 78 SBS and 18 ID signatures 291 

published on COSMIC as version 3.2 (COSMIC, https://cancer.sanger.ac.uk/signatures/, last 292 

accessed date: June 15, 2022)33. Variants outside the WES and panel capture regions were 293 

excluded and variants with the PASS filter called from Strelka were retained. Additional variant 294 

filters included were restrictions to a minimum depth of 50x for germline and tumor samples with 295 

a minimum variant allele frequency of 10% as detailed previously39. 296 

 297 

Selection of Features of Interest 298 

 The 104 tumor features selected for analysis in this study are shown in Table 1. Several 299 

tools have been developed to assess MSI from NGS data. Our analysis focused on MSMuTect31, 300 

MANTIS30, MSIseq29 and MSISensor28. Tumors were classified as having high levels of MSI 301 

(MSI-H) or as microsatellite stable (MSS). We assessed all SBS (n=78) and ID (n=18) TMS as 302 

described by COSMIC33, but the DBS TMS were excluded due to their reported low prevalence 303 

in CRCs38. Previously, we have shown that combining ID2 and ID7 TMS enabled detection of 304 

dMMR CRCs39 and, therefore, was included as a tumor feature in this study. Somatic mutation 305 

counts, namely SNVs or INDELs, as well as TMB (SNV and INDEL mutation count combined / 306 

Mb) were each included, given previous associations with tumor dMMR status57.  307 

 308 
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Feature Performance Evaluation in WES data from CRCs 309 

We assessed the 104 tumor features calculated from WES from 209 pMMR CRCs and 91 310 

dMMR CRCs (pMMR:dMMR ratio = 2.3:1) (Figure 1). The dMMR CRCs comprised dMMR-LS 311 

tumors (n=49), dMMR-MLH1me tumors (n=26) and dMMR-DS tumors (n=16). All 300 CRCs 312 

were randomly partitioned into a training set (80% of CRCs) and a test set (20% of CRCs), while 313 

maintaining the same pMMR:dMMR ratio, using caret R package58. We performed a 10-fold cross 314 

validation approach on the training set (repeated 100x) to calculate the average classification 315 

accuracy by fitting a generalized linear model and determining the error rate, specificity, 316 

sensitivity, and the area under the curve (AUC) with corresponding 95% confidence intervals 317 

(CIs). Based on the unequal distribution of dMMR and pMMR tumors in the WES dataset, the no 318 

information rate was 69.5%, indicating that any feature with this prediction accuracy was 319 

equivalent to selecting a dMMR sample by chance. 320 

 321 

Tumor feature analysis of the WES CRC dataset comprised of three different approaches: 322 

A) Individual tumor feature assessment 323 

Each of the 104 tumor features were assessed individually and then ranked by their accuracy in 324 

identifying dMMR tumors. Individual CRC tumor features with a prediction accuracy >80% from 325 

the WES data were considered good predictors for differentiating dMMR from pMMR tumors and 326 

were included in downstream analyses. 327 

 328 

B) Generation of a statistical model by combining tumor features 329 

We investigated whether combining tumor features using a Lasso penalized regression model59 330 

could improve the overall dMMR prediction accuracy in CRC. Lasso enables the simultaneous 331 
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parameter estimation and variable selection as well as having been shown to reduce overfitting 332 

when compared to conventional maximum likelihood regression models. Lasso regression has a 333 

tuning parameter called lambda that controls which features are included in the regression model 334 

by shrinking the coefficient or “weighting” of individual features within the model towards zero, 335 

helping with the exclusion of some of the features from integration into the final model via a 336 

penalization process using cross-validation. 337 

 338 

C) Applying an additive feature combination count  339 

Our third approach investigated combining the top ranked individual tumor features in an additive 340 

approach (additive feature combination). Specifically, the tumor features that achieved a mean 341 

prediction accuracy >95% from the WES CRC analysis (from part A), were included in this 342 

approach and added together to give an overall count. The bimodal distribution supported a 343 

majority vote decision on dMMR status. 344 

 345 

Assessment of individual tumor features, the statistical model and additive feature combination 346 

approaches derived from the WES analysis on panel sequenced CRCs, ECs, and SSTs 347 

The top individual tumor features determined from (A), best performing Lasso model (B) 348 

and the additive feature combination approach (C) were then assessed for their dMMR prediction 349 

accuracy in three independent tumor sets comprised of n=29 CRCs, n=22 ECs and n=20 SSTs 350 

tested by targeted multigene panel sequencing. The no information rate for features analyzed from 351 

the panel dataset was at 71.8%, indicating a prediction accuracy of this value was similar to 352 

selecting a dMMR sample by chance. 353 

 354 
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Statistical Analysis 355 

All statistical analyses were done using the R programming language (v.4.1.0). The tidyverse 356 

package (v.1.3.1.)60 was used for data import, tidying and visualization purposes and the caret 357 

(v.6.0-9.0) package58 was used for cross-validation. Receiving operator curves (ROC) were 358 

generated using the pROC package (v.1.18.0)61, with the AUC being determined using the cvAUC 359 

package (v.1.1.4)62. Statistical models were fitted using the Lasso (glmnet, v.4.1-3)63 package. We 360 

used the cutpointr (v.1.1.1) package64 for estimation of the best “cut points” or “thresholds” which 361 

maximize the Youden-index (true positive rate minus false positive rate over all possible cut 362 

points), defined as the most optimal threshold in binary disease classification tasks. Here, the 363 

cutpointr package determines a recommended threshold that best differentiates dMMR from 364 

pMMR cases for each feature and validates its performance using bootstrapping. The average 365 

weight for each group was calculated using the plyr (v.1.0.7) package65. The ggplot2 (v.3.3.5) 366 

package66 was used for data visualization in combination with hrbrthemes (v.0.8.0)67 for histogram 367 

generation and ggrepel (v.0.9.1)68 for histogram annotations. Correlation scores between the 368 

dMMR and pMMR groups were estimated by a heteroscedastic two-tailed t-test. P-values <0.05 369 

were considered statistically significant. The 95% CIs for the WES data were calculated using the 370 

binomial (Clopper-Pearson) “exact” method69 and for the targeted panel data using the binom 371 

(v.1.1-1) package70 in R. 372 

 373 

Results 374 

For the initial performance evaluation of 104 tumor features we assessed 209 (69.7%) pMMR 375 

CRCs and 91 (30.3%) dMMR CRCs sequenced by WES. The clinicopathological characteristics, 376 

pattern of MMR IHC loss and dMMR etiology are summarized in Supplementary Table 1. The 377 
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mean age at CRC diagnosis (± standard deviation, SD) for the dMMR group was 51 ± 15.0 with 378 

62.6% being female and 49 ± 16.3 with 55.5% being female for the pMMR group. The 379 

clinicopathological characteristics, pattern of MMR IHC loss and dMMR etiology for panel 380 

sequenced CRC (n=29), EC (n=22) and SST (n=20) tumors are summarized in Supplementary 381 

Table 2. Within the panel sequenced tumors, the proportion of dMMR for the CRC, EC and SST 382 

subsets was 72.4% (21/29), 81.8% (18/22) and 65.0% (13/20), respectively. The predominant 383 

dMMR subtype across the CRC WES and targeted panel sequenced tumors was dMMR-LS 384 

(53.8% and 66.7%, respectively). Within the dMMR subgroup, the most predominant pattern of 385 

loss observed in CRCs and ECs was MLH1/PMS2 (WES CRCs: 65.9%, panel CRCs: 47.6% and 386 

ECs: 50.0%), whereas for the SSTs tumors, this was MSH2/MSH6 loss (76.9%). Tumors showing 387 

less common patterns of MMR loss including solitary loss of MSH6 or PMS2 by IHC were present 388 

in both the WES CRCs (16.5%) and panel sequenced tumors (19.2%), however, sole PMS2 loss 389 

cases were absent from the EC and SST cohorts. 390 

 391 

Assessment of Tumor Features for dMMR Prediction Accuracy in WES CRCs 392 

A) Individual tumor feature assessment 393 

Twelve of the 104 tumor features derived from WES had a mean dMMR prediction 394 

accuracy >80% on the test dataset (Table 2). The mean accuracy for the remaining 92 features is 395 

shown in Supplementary Table 3. The four MSI tools were among the best predictors, with 396 

MSMuTect, MSIseq and MANTIS each achieving a mean prediction accuracy of ≥99.0% with 397 

MSMuTect achieving the highest accuracy (99.3%, 95% CI: 99.1%-99.5%) (Table 2). The 398 

combination of TMS ID2+ID7 achieved an accuracy of 96.8% (95% CI: 96.4%-97.2%), and 399 

outperformed these signatures individually (Table 2). To avoid collinearity issues between the 400 
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combined TMS ID2+ID7 variable with the individual TMS ID2 and TMS ID7 features, the latter 401 

were excluded from downstream analysis as they provided a lower prediction score. Therefore, the 402 

remaining 10 features were considered as the top 10 dMMR predictors and included in subsequent 403 

analyses (Figure 1). 404 

The mean, SD, and range of values for each of these top 10 dMMR predictive features by 405 

MMR status and by dMMR subtype for the 300 WES CRCs are shown in Supplementary Table 406 

4. For each of these features, the mean values were significantly different between the dMMR and 407 

pMMR CRCs (all p<1x10-12 from a two-tailed t-test), with TMS ID2+ID7 showing the most 408 

significant difference (p-value = 7.775x10-98), although MSISensor presented with the highest 409 

Cohen’s d effect size of 4.5, indicating that the means of the pMMR and dMMR groups differed 410 

by more than four times the SD (Supplementary Table 4). The variation in proportion or counts 411 

was larger in the dMMR tumors than in the pMMR tumors for all but one of these top 10 features 412 

where TMS ID2+ID7 demonstrated a broad range of values in the pMMR CRCs compared with 413 

the dMMR CRCs (Figure 2, Supplementary Table 4). 414 

The AUCs for the top 10 features when taking all possible thresholds into account are 415 

shown in Supplementary Figure 1. The MSI prediction tools MSMuTect, MSIseq, and MANTIS 416 

as well as INDEL count demonstrated the best AUCs. In addition, we calculated recommended 417 

thresholds for each feature for differentiating dMMR from pMMR CRCs using the methodology 418 

described in the methods (Supplementary Table 5). When applying these thresholds, it was not 419 

possible to achieve a complete separation between the dMMR and pMMR tumors for each of the 420 

tumor features (Figure 3). 421 

Investigation of the CRCs misclassified based on the individual tumor feature analysis 422 

demonstrated that the misclassification rate (error rate) for the MSI tools was low with MSMuTect 423 
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(2/300), MANTIS (1/300), MSIseq (1/300) and MSISensor (5/300) calling ≤5 incorrectly out of 424 

300 tumors (≤1.7% error rate). Of the CRCs misclassified by the MSI tools, only two tumors were 425 

misclassified by more than one MSI tool, both were dMMR-MLH1me CRCs classified as pMMR. 426 

Of note, one of these dMMR-MLH1me CRCs was misclassified as a pMMR tumor by 9 out of the 427 

top 10 tumor features. The second misclassified dMMR-MLH1me CRC was classified as pMMR 428 

by MSMuTect and MSISensor but classified as dMMR by MSIseq and MANTIS (overall 6/10 429 

features classified this CRC as dMMR). For INDEL count, 3/300 were incorrectly classified, 430 

where two pMMR CRCs were classified as dMMR. TMS ID2+ID7 had 10/300 incorrect 431 

classifications with seven pMMR tumors incorrectly called as dMMR. The remaining features 432 

from the top 10 prediction accuracy list demonstrated the following incorrect classifications: 433 

SBS20 (34/300), SBS54 (55/300), SBS15 (44/300) and TMB (19/300) encompassing incorrect 434 

calls in both directions (dMMR to pMMR and vice versa).  435 

 436 

B) Generation of a statistical model by combining tumor features 437 

 We assessed whether a combination of features within a statistical model could improve 438 

dMMR prediction accuracy. For this, we performed a Lasso penalized logistic regression. Here, 439 

after calculating the best lambda value, we found that the combination of TMS ID2+ID7 440 

(coefficient = 5.29), MANTIS (coefficient = 1.70), MSISensor (coefficient = 0.09) with SBS15 441 

(coefficient = 2.25) provided the best prediction accuracy from all possible feature combinations, 442 

demonstrating a mean accuracy of 98.3% (95% CI: 0.981-0.986), sensitivity of 0.973 (95% CI: 443 

0.966-0.980) and specificity of 1.000 (95% CI: 1.000-1.000) on the test set.  444 
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C) Assessing an additive feature combination count for dMMR prediction 445 

Based on the observation that the top performing tumor features from the individual feature 446 

analysis did not all misclassify the same CRCs lead us to explore a novel approach of combining 447 

tumor features together to increase the overall accuracy i.e., an additive tumor feature combination 448 

approach. This approach used a majority count of individual tumor features to overcome the small 449 

inaccuracies that each of the top tumor features displayed individually i.e., if one of these top 450 

dMMR predictive tumor features misclassified a CRC then the other top dMMR predictive tumor 451 

features would correctly classify the same CRC and, thereby, achieve the correct classification 452 

overall. Six of the top 10 features from the 10-fold cross-validation analysis demonstrated a mean 453 

prediction accuracy of >95% and thus had the least number of incorrect CRC tumor classifications, 454 

consisting of MSMuTect, MANTIS, MSIseq, MSISensor, INDEL count, and TMS ID2+ID7. We 455 

applied the recommended threshold for determining dMMR status determined previously for each 456 

tumor feature (Figure 3, Supplementary Table 5) to derive a count out of these six selected 457 

features, in which each feature is weighted equally. The results show a bimodal distribution across 458 

the 300 CRCs (Figure 4) where 0/6 to 2/6 features correctly classified all the pMMR CRCs and 459 

4/6 to 6/6 correctly classified all but one of the dMMR tumors with an accuracy of 99.7%. The 460 

only exception was the previously mentioned dMMR-MLH1me tumor, which did not meet the 461 

recommended thresholds for all six features and thus received a count of 0/6 features suggestive 462 

the CRC is pMMR rather than its initial dMMR status. 463 

 464 

A summary of the results from the WES CRC analysis for the three approaches is shown 465 

in Table 3 and Figure 1.  466 

 467 
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Assessment of individual tumor features, Lasso statistical model and additive feature combination 468 

approaches derived from the WES analysis on panel sequenced CRCs, ECs, and SSTs 469 

To determine the generalizability of the findings from the three approaches performed on the 470 

WES CRCs, we tested 71 tumors with targeted panel sequencing data to evaluate performance on 471 

both a smaller capture and across different tissue types known to have a high prevalence of dMMR.  472 

 473 

A) Evaluation of the top performing individual features from WES analysis on the panel sequenced 474 

CRC, EC, and SST tumors 475 

Out of the top 10 dMMR tumor features from the WES CRC analysis, only four achieved a 476 

mean dMMR prediction accuracy of >80% in the panel sequenced CRC tumors (Table 4). For EC 477 

and SST tumors only one feature (MANTIS) and two features (MANTIS and TMS ID2+ID7), 478 

respectively, of the top 10 tumor features achieved a mean dMMR prediction accuracy of >80% 479 

(Table 4). Across the three tissue types, MANTIS demonstrated the highest mean accuracy, 480 

achieving 100% (95% CI: 88.1%-100.0%) accuracy in the panel sequenced CRCs, 86.4% accuracy 481 

in ECs (95% CI: 65.1%-97.1%) and 85% accuracy in SSTs (95% CI: 62.1%-96.8%) (Table 4). 482 

MSMuTect and INDEL count performed poorly in all three panel sequenced tissue types compared 483 

with their accuracy in the WES CRCs. MSMuTect and INDEL count are features that provide 484 

absolute counts that in our data were two orders of magnitude smaller in the panel sequenced 485 

tumors compared with the WES CRCs. The reduction in discriminatory ability is likely related to 486 

differences in the size (WES: 67.7 Mb and panel: 2.0 Mb) and location (additional coverage of 487 

intronic regions of the MMR genes in the panel capture) of the regions covered by the WES and 488 

panel captures resulting in a lower somatic mutation count. 489 
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The mean, SD, and range of values for each of these top 10 dMMR predicting features by 490 

MMR status and by dMMR subtype for each of CRC, EC and SST tissue types are shown in 491 

Supplementary Tables 6A, 6B, 6C and in Supplementary Figure 2, Supplementary Figure 3, 492 

and Supplementary Figure 4, respectively. The mean values of each of the top 10 predictors were 493 

significantly different between the dMMR and pMMR tumors in all three tissue types except for 494 

TMS SBS15 in CRCs, MSISensor in ECs, TMB in ECs and SSTs and, TMS SBS20 and TMS 495 

SBS54 in SSTs. MSMuTect consistently had the highest Cohen’s d effect size of all top 10 tumor 496 

features for each tissue type with the highest effect size observed in CRCs (3.2), indicating the 497 

mean of the dMMR and pMMR subgroups for this feature differ by approximately three SDs. 498 

 499 

B) Evaluation of the Lasso statistical model on the panel sequenced CRC, EC, and SST tumors 500 

From WES analysis, the Lasso statistical model comprised of TMS ID2+ID7, MANTIS, 501 

MSISensor and SBS15 achieved a mean prediction accuracy of 98.3%. When this model was 502 

applied, with the coefficients determined from the WES analysis, on these three independent panel 503 

sequenced tissue types, the prediction accuracies were lower (CRC: 89.7%, EC: 68.2% and SST: 504 

85.0%) (Table 3). 505 

 506 

C) Evaluation of the additive tumor feature combination approach on the panel sequenced CRC, 507 

EC, and SST tumors 508 

For each of the top 10 dMMR predictive tumor features we determined the optimal thresholds 509 

for the panel sequenced CRCs, ECs, and SSTs (Supplementary Table 5) and plotted them by 510 

tissue type (CRC - Supplementary Figure 5), (EC - Supplementary Figure 6), (SST - 511 

Supplementary Figure 7). The determined thresholds for MANTIS were consistent across both 512 
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WES and panel captures as well as across tissue types while the calculated thresholds for MSIseq 513 

were consistent for CRC across WES and panel captures but different to the thresholds determined 514 

for EC and SST. The remaining eight tumor features showed variability in their determined 515 

thresholds across both capture type and tissue type (Supplementary Table 5). As such, we applied 516 

the thresholds determined for each tissue type for the panel sequenced data in the additive feature 517 

combination approach below. 518 

 519 

The additive feature combination approach incorporates a count of MSMuTect, MANTIS, 520 

MSIseq, MSISensor, INDEL count and TMS ID2+ID7 tumor features to classify a tumor as 521 

dMMR. The distribution of the counts of these six tumor features determined for each tumor are 522 

shown for CRC (Supplementary Figure 8), EC (Supplementary Figure 9) and SSTs 523 

(Supplementary Figure 10). For each tissue type, all the dMMR tumors had ≥3/6 tumor features 524 

classify them as dMMR, except for a single dMMR-MLH1me EC (1/71, 1.4%) which scored 0/6 525 

and, therefore, was suggestive of pMMR status. This approach achieved accuracy scores of 100%, 526 

95.5% and 100%, for CRC, EC and SST, respectively (Table 3). 527 

 528 

A summary of the WES CRC and CRC, EC, and SST panel sequencing results for all three 529 

approaches is provided in Table 3. 530 

 531 

Discussion 532 

In this study, we compared tumor features calculated from next generation sequencing data 533 

for their accuracy in predicting dMMR status in 300 CRCs, 91 of which were dMMR determined 534 

by immunohistochemistry or MSI-PCR and with an established sporadic or inherited etiology for 535 
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their dMMR status. Ten features achieved >80% dMMR prediction accuracy from the WES CRC 536 

tumors, with the highest accuracy predictors being the MSI tools MSMuTect, MSIseq and 537 

MANTIS, all of which achieved ≥99% accuracy. The combination of TMS ID2+ID7 achieved the 538 

highest mean accuracy for dMMR prediction out of the 97 TMS features assessed. When applied 539 

to the targeted multi-gene panel setting, the performance of these 10 features was reduced not only 540 

in CRC but also for the EC and SST tumors. In addition, we investigated two approaches that 541 

combined these top 10 performing tumor features to improve the overall prediction accuracy. The 542 

Lasso generated model achieved 98.3% accuracy in WES CRCs although the performance of the 543 

model was reduced in the panel sequenced CRC, EC, and SST tumors. For both the WES CRCs 544 

and panel sequencing across tissue types, the additive tumor feature combination approach, where 545 

having ≥3 of the top 6 tumor features classify a tumor as dMMR, achieved the highest prediction 546 

accuracies of the three approaches tested. 547 

 548 

To date, multiple tools to detect MSI from NGS data have been developed71. NGS based MSI 549 

tool development has been constantly evolving since the introduction of MSISensor28 and 550 

mSINGS72, which were followed by MSIseq29, MANTIS30 and MSMuTect31. However, to the best 551 

of our knowledge, neither a comparison of more than three MSI detection tools on the same tumor 552 

sample nor the effectiveness of these MSI tools specifically on SST tumors has been performed to 553 

date. Previously, MANTIS has been compared to MSISensor with the former showing superior 554 

sensitivity (97.18% vs. 96.48%) and specificity (99.68% vs. 98.73%)30. This was supported by our 555 

findings, and we additionally showed that across the WES and panel tested CRCs, MANTIS 556 

provided the highest dMMR prediction accuracy and was shown to be the top performing feature 557 

in the EC and SST tumors as well. Recently, the United States Food and Drug Administration 558 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 21, 2022. ; https://doi.org/10.1101/2022.06.20.22276419doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.20.22276419
http://creativecommons.org/licenses/by-nc-nd/4.0/


 26 

(FDA) approved MSISensor for detecting MSI in metastatic CRCs for selecting patients for 559 

immune checkpoint inhibition therapy73. In our study, MSISensor had the lowest accuracy (97.7%) 560 

in WES CRCs of the four MSI tools tested, incorrectly classifying 5/300 CRCs. Seeking FDA 561 

approval for other MSI tools in addition to MSISensor is warranted based on our findings. 562 

 563 

MSMuTect has been trained on 20 different tissue types using WES data and, therefore, it 564 

was not surprising it had the highest mean accuracy of the top performing tumor features in our 565 

WES CRC analysis. MSMuTect has been designed to accurately detect somatic MSI indels using 566 

a count of indels from the captured sequencing region31. Thus, the MSI indel count from WES data 567 

(67.7 Mb) could be up to ~34x larger than that from panel data (2.0 Mb), which likely explains the 568 

poor performance of this tool observed in our panel sequencing data test sets. When we adjusted 569 

the MSMuTect threshold for calling dMMR for panel data, MSMuTect showed improved 570 

discrimination of dMMR from pMMR tumors. This increase in prediction accuracy was also 571 

observed for the INDEL count where adjusting the threshold for panel data improved the overall 572 

performance. Adjusting the threshold for panel sequencing data enabled the inclusion of 573 

MSMuTect and INDEL count as two of the six tumor features in our additive feature combination 574 

approach that ultimately performed well on panel sequenced tumors. Tumor features that calculate 575 

a percentage rather than raw counts such as MANTIS, MSISensor, SBS TMS and ID TMS are 576 

more adaptable to changes in capture size. For example, our results showed that the calculated 577 

thresholds for differentiating dMMR from pMMR for MANTIS were consistent across both WES 578 

and panel captures as well as across tissue types. Therefore, we recommend training features that 579 

incorporate a count of genomic variants, such as INDELs, SNVs and MSMuTect on the capture 580 

size to improve dMMR prediction accuracy. 581 
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 582 

While three ID TMS (ID1, ID2 and ID7) are reported to be associated with dMMR33, our 583 

results showed that the combination of ID2 and ID7 TMS achieved the highest dMMR prediction 584 

accuracy of any of the TMS features in WES CRC tumors, outperforming ID2 or ID7 alone. Of 585 

the seven SBS TMS that are associated with dMMR (SBS6, SBS14, SBS16, SBS20, SBS21, 586 

SBS26 and SBS44)33, only two, TMS SBS15 and TMS SBS20, showed >80% dMMR prediction 587 

accuracy in WES CRC tumors, but were shown to be poor predictors in the panel sequenced 588 

tumors. Interestingly, TMS SBS54 was one of the top 10 dMMR predictors from the WES CRC 589 

analysis, although currently its proposed etiology in COSMIC is related to a “possible sequencing 590 

artefact and/or a possible contamination with germline variants”33. Another study has shown that 591 

SBS15, SBS20 and SBS54 are observed in CRCs with a high immune cytolytic activity (CYT) 592 

compared with CYT-low CRCs74. CYT-high CRCs have been shown to correlate with an increased 593 

somatic mutation load and high levels of MSI75, this may explain the observation of TMS SBS15, 594 

TMS SBS20 and TMS SBS54 demonstrating >80% dMMR prediction accuracy in our WES CRC 595 

analysis. 596 

 597 

The combination of tumor features via the Lasso regression model achieved similar mean 598 

accuracy as the four MSI tools individually in the WES CRC analysis. The Lasso calculated final 599 

model that best distinguished dMMR from pMMR tumors in the WES CRC cohort consisted of 600 

TMS ID2+ID7, MANTIS, MSISensor and TMS SBS15. The statistical approach used to determine 601 

the final model assigns a ‘weight’ (coefficient value) or confidence of how well each feature 602 

detects dMMR. As per generalized linear modelling methodology, the weight of any given feature 603 

is reduced as the model incorporates additional features. Hence, with MANTIS being one of the 604 
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best predictors, its weighting was reduced when other features were added to the final model. This 605 

resulted in the Lasso model prediction accuracy being lower than MANTIS alone. Of note, since 606 

most of the approaches taken (i.e., assessing features individually or in combination) already 607 

achieved a very high prediction accuracy of ~99%, alternate modelling approaches such as 608 

Random Forest would not result in a significant improvement in dMMR prediction accuracy. 609 

 610 

Strengths of our study were a large sample of tumors including dMMR tumors with 611 

confirmed sporadic or inherited etiology concordant with MMR IHC and MSI-PCR results for 612 

both the WES and panel sequenced datasets. Tumor MMR status combined with identified 613 

etiology provided a more reliable reference group of CRCs than would a group based on MMR 614 

IHC test results without etiological confirmation given the known challenges that can lead to false 615 

positive and negative MMR IHC results16. We assessed many tumor features that can be readily 616 

derived from NGS data ensuring that our findings have potential to be easily implemented in 617 

clinical diagnostics. We applied our findings from WES to panel data to determine the 618 

generalizability of our findings to smaller panel captures such as those that are currently used in 619 

clinical diagnostics. We showed the applicability of our findings on tissue types that display a high 620 

proportion of dMMR phenotype. Our dMMR tumor samples included those with the frequent 621 

pattern of MMR IHC namely MLH1/PMS2 loss and MSH2/MSH6 loss but also tumors with 622 

solitary MSH6 loss or solitary PMS2 loss, ensuring we covered the spectrum of dMMR tissue 623 

types which is particularly relevant given the identified challenges associated with interpretation 624 

of solitary MSH6 loss76.  625 

 626 
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There were several limitations of our study including testing of only three tissue types. 627 

Testing of these tumor features and approaches in other tissue types such as stomach cancer, which 628 

also has a high prevalence of dMMR overall and dMMR related to Lynch syndrome, would 629 

determine the suitability of these tumor features for inclusion in an additive feature combination 630 

approach in a pan-cancer setting. In addition, the sample size for the panel sequenced tumors was 631 

limited for all three tissue types, however, there was a high proportion of dMMR in the tumors 632 

tested (72.4% for CRC, 81.8% for EC and 65.0% for SST). No tumor feature or approach achieved 633 

100% accuracy in the CRC WES analysis. This was largely related to a single tumor (dMMR-634 

MLH1me) from the WES CRC analysis that was called incorrectly by 9/10 top individual tumor 635 

features suggesting the CRC was pMMR. Therefore, we repeated the MLH1 methylation testing 636 

for this tumor using both MethyLight and MS-HRM assays. Both assays found no evidence of 637 

MLH1 methylation in the tumor. These new MLH1 methylation results and the pMMR 638 

classification from our analysis suggest the initial dMMR classification was a false positive. If this 639 

CRC would initially have been categorized as a pMMR tumor, then MANTIS and MSIseq would 640 

have achieved 100% accuracy in the WES CRC analysis. Furthermore, the identification of an 641 

initial tumor misclassification provides strong support for evaluating multiple dMMR prediction 642 

tumor features and highlights the advantage of combining these features through an additive 643 

feature combination approach.  644 

 645 

Conclusion 646 

Our findings provide an important comparison of tumor features for dMMR prediction, 647 

highlighting performance differences between capture size and tissue types. Our results 648 

demonstrate the high accuracy of multiple individual tumor features including the MSI calling 649 
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tools MSMuTect, MSIseq, MANTIS and MSISensor, as well as INDEL count and the combination 650 

of TMS ID2+ID7 for predicting dMMR status using WES CRCs. Moreover, our findings highlight 651 

the benefit of combining these six tumor features in a simple additive feature combination 652 

approach to improve dMMR prediction accuracy, particularly in targeted panel sequencing data 653 

from CRC, EC, or SST tumors. With the reported inaccuracies of MMR IHC and the increasing 654 

application of clinical NGS testing of tumor tissue, accurately deriving dMMR status from this 655 

NGS data will have important implications for diagnostics and targeted therapy and likely improve 656 

patient outcomes and cancer prevention.  657 
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Figures 951 

 952 

Analysis 1. Assessment of tumor features for dMMR prediction accuracy in WES CRCs

TRAINING DATASET 
(80% of cohort)

Step 2: Partition tumors 
into 80:20 datasets

TEST DATASET
(20% of cohort)

10-fold cross-validate the 
dataset and repeat this 100x

Analysis 2. Assessment of A) individual tumor features, B) statistical model and C) additive feature 
combination approaches derived from the WES analysis on panel sequenced CRCs, ECs and SSTs

A) Individual feature
MANTIS Mean Accuracy
CRC                    100.0%
EC                        86.4%
SST                      85.0%

B) Statistical model
Lasso Mean Accuracy
CRC                      89.7%
EC                         68.2%
SST                       85.0%

C) Additive feature combination
Model Mean Accuracy
≥3/6 of MSMuTect + MANTIS + MSIseq
+ MSISensor + INDEL count + TMS ID2+ID7
CRC    100.0%
EC     95.5%
SST     100.0%

A) Top 10 individual tumor features
Tumor Feature Mean Accuracy
1. MSMuTect                99.3%
2. MSIseq                      99.1%
3. MANTIS                     99.0%
4. INDEL count             98.9%
5. MSISensor                97.7%
6. TMS ID2+ID7            96.8%
7. SBS20                        88.4%
8. SBS54                        83.4%
9. TMB                           83.3%
10. SBS15                        82.4%

C) Additive feature combination
Model Mean Accuracy
≥3/6 of MSMuTect   99.7%
+ MANTIS + MSIseq 
+ MSISensor + INDEL
count + TMS ID2+ID7

B) Statistical model of 
combining tumor features 
Model Mean Accuracy
Lasso 98.3%

Whole Exome Sequenced (WES) CRC N = 300
dMMR N = 91 pMMR N = 209

Microsatellite instability (MSI)
MANTIS – MSIseq – MSMuTect – MSISensor

Tumor Mutational 
Burden (TMB)

INDEL / SNV 
counts

Tumor Mutational Signatures
SBS and ID

Step 1: Tumor feature assessment

Step 3: Train the different approaches on 
the training set and validate on the test set.

Panel Sequenced Tumors N = 71 (CRCs N = 29, ECs N = 22 and SSTs N = 20)
dMMR N = 51 pMMR N = 20
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Figure 1. Overview of the study design. In total, 300 whole-exome sequenced (WES) colorectal 953 

cancers (CRCs) consisting of 91 DNA mismatch repair deficient (dMMR) and 209 DNA mismatch 954 

repair proficient (pMMR) tumors were analyzed. We investigated 104 tumor features for their 955 

ability to distinguish dMMR from pMMR tumors consisting of four MSI tools, 97 tumor 956 

mutational signature definitions (TMS), tumor mutation burden (TMB) calculated as mutations 957 

per mega base, somatic insertion / deletion (INDEL) and somatic single nucleotide variant (SNV) 958 

counts. We performed a 10-fold cross-validation approach with 100 repeats to calculate the mean 959 

accuracy on the test dataset. (A) The top 10 ranked individual tumor features, (B) a Lasso 960 

regression model and (C) an additive feature combination approach was tested to determine the 961 

benefit of combining tumor features to improve dMMR prediction. The findings from these three 962 

approaches were tested on an independent set of targeted panel sequenced tumors of CRC, 963 

endometrial cancer (EC) and sebaceous skin tumor (SST) tissue types with reported mean 964 

accuracies.965 
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 47 

Figure 2. Tumor distribution of the top 10 DNA mismatch repair (MMR) deficient (dMMR) predicting features in the whole exome 967 

sequenced (WES) colorectal cancers (CRCs) by MMR subtype. Boxplots showing the distribution of tumors by MMR status (MMR-968 

proficient (pMMR) versus dMMR) as well as stratified by dMMR subtype - dMMR-LS (Lynch syndrome), dMMR-DS (double somatic 969 

MMR gene mutations) and dMMR-MLH1me (MLH1 promoter methylation) for each of the top 10 predicting features MSMuTect, 970 

MANTIS, MSISensor, MSIseq, INDEL (insertion / deletion) count, TMB (tumor mutation burden calculated as mutations / mega base), 971 

TMS (tumor mutational signature) ID2+ID7, TMS SBS15, TMS SBS20 and TMS SBS54 as determined from the WES CRC analysis. 972 

ID, small insertions / deletions; SBS, single base substitution.  973 



 48 

 974 

Figure 3. Determination of thresholds for differentiating DNA mismatch repair (MMR) deficient (dMMR) from MMR-proficient 975 

(pMMR) colorectal cancers (CRCs) using whole exome sequencing (WES) data for each of the top 10 performing tumor features. Bar 976 

graphs presenting the distribution of tumors after applying the recommended thresholds (red line) for each of the top 10 predicting tumor 977 

features MSMuTect, MANTIS, MSISensor, MSIseq, INDEL count, TMB, TMS ID2+ID7, TMS SBS15, TMS SBS20 and TMS SBS54 978 

as determined from the WES CRC analysis. Orange coloring indicates pMMR and blue coloring represents dMMR status. ID, small 979 

insertions / deletions; SBS, single base substitution.  980 
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 981 



 50 

Figure 4. The additive tumor feature combination approach demonstrating the distribution of counts of the top six tumor features by the 982 

DNA mismatch repair (MMR) status of the 300 colorectal cancers (CRCs) with whole exome sequencing (WES). Bar graphs presenting 983 

the distribution of tumors after applying the additive tumor feature combination approach with the recommended thresholds from the 984 

WES CRC analysis using a count of ≥3 out of the top six predictors from the WES CRC analysis, consisting of MSMuTect, MANTIS, 985 

MSIseq, MSISensor, INDEL (insertion / deletion) count and TMS (tumor mutational signature) ID2+ID7 (small insertions / deletions) 986 

for MMR status calling: MMR-deficient (dMMR) versus MMR-proficient (pMMR). 987 
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Tables 988 

Table 1. The breakdown of the 104 tumor features calculated from next generation sequencing analysis included in this study. 989 

Feature Type Count Name Reference 

Total N = 104     

Microsatellite instability (MSI) Tools N = 4 MSISensor Niu et al., 2014 

  MSIseq Huang et al., 2015 

  MANTIS Kautto et al., 2017 

    MSMuTect Maruvka et al., 2017 

Tumor mutational signatures (TMS) N = 97 SBS  (N = 78) Tate et al., 2018 

  ID  (N = 18) Tate et al., 2018 

    ID2+ID7 Georgeson et al., 2021 

Somatic mutation counts N = 3 INDELs  

  SNVs  

    TMB (SNVs + INDELs/ MB) Muzny et al., 2012 

The 104 tumor features can be categorized into three distinct groups: microsatellite instability (MSI) tools, tumor mutational signatures 990 

(TMS) and somatic mutation counts. These features have previously been shown to be associated with MSI / DNA mismatch repair 991 

status as indicated by the provided references. The MSI group consists of four MSI tools namely MSISensor, MSIseq, MANTIS and 992 

MSMuTect. TMS consisted of 78 single base substitutions (SBS), 18 small insertions / deletions (IDs) and TMS ID2+ID7. The somatic 993 
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mutation count consisted of the single nucleotide variant count, larger insertions / deletions count and the tumor mutation burden (TMB), 994 

which was calculated as the combination of SNVs and INDELs counts per megabase. 995 

  996 
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Table 2. Performance of the top tumor features demonstrating a prediction accuracy >80% ranked by highest mean accuracy from 997 

whole-exome sequenced (WES) colorectal cancers (CRCs). 998 

Tumor 

Feature 

Mean 

Accura

cy 

Error 

Rate 

95% CI: 

(Accuracy) 

Mean 

Sensitivi

ty 

95% CI: 

(Sensitivity) 

Mean 

Specificity 

95% CI: 

(Specifity) 

Mean AUC 95% CI: 

(AUC) 

MSMuTect 99.3% 0.7% 99.1% - 

99.5% 

97.6% 96.9% - 

98.3% 

100.0% - 98.8% 98.5% - 99.1% 

MSIseq 99.1% 0.9% 98.9% - 

99.4% 

97.7% 97.0% - 

98.3% 

99.8% 99.6% - 

100.0% 

98.7% 98.4% - 99.1% 

MANTIS 99.0% 1.0% 98.8% - 

99.2% 

97.1% 96.4% - 

97.7% 

99.9% 99.8% - 

100.0% 

98.5% 98.1% - 98.8% 

INDEL count 98.9% 1.1% 98.7% - 

99.2% 

97.7% 97.0% - 

98.3% 

99.5% 99.2% - 

99.8% 

98.6% 98.2% - 98.9% 

MSISensor 97.7% 2.3% 97.3% - 

98.0% 

93.4% 92.4% - 

94.5% 

99.5% 99.3% - 

99.7% 

96.5% 96.0% - 97.0% 

TMS 

ID2+ID7 

96.8% 3.2% 96.4% - 

97.2% 

94.2% 93.2% - 

95.2% 

97.9% 97.5% - 

98.4% 

96.0% 95.5% - 96.6% 
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TMS ID2 93.3% 6.7% 92.8% - 

93.8% 

90.7% 89.5% - 

91.9% 

94.4% 93.7% - 

95.1% 

92.6% 92.0% - 93.1% 

TMS SBS20 88.4% 11.6

% 

87.6% - 

89.2% 

68.9% 66.6% - 

71.2% 

97.0% 96.4% - 

97.6% 

82.9% 81.8% - 84.1% 

TMS ID7 87.6% 12.4

% 

87.0% - 

88.3% 

74.2% 72.6% - 

75.9% 

93.5% 92.8% - 

94.2% 

83.9% 83.0% - 84.7% 

TMS SBS54 83.4% 16.6

% 

82.6% - 

84.2% 

59.4% 57.5% - 

61.4% 

93.9% 93.1% - 

94.7% 

76.7% 75.6% - 77.7% 

TMB 83.3% 16.7

% 

82.6% - 

83.9% 

57.8% 55.2% - 

60.4% 

94.5% 93.7% - 

95.2% 

76.1% 75.0% - 77.3% 

TMS SBS15 82.4% 17.6

% 

81.5% - 

83.3% 

58.8% 56.5% - 

61.1% 

92.8% 91.9% - 

93.7% 

75.8% 74.6% - 77.0% 

The mean accuracy values after 10-fold cross-validation with 100 repeats, error rate, mean sensitivity, mean specificity, and mean area 999 

under the curves (AUCs) with corresponding 95% confidence intervals (CIs) are shown for each of the top 10 predicting tumor features 1000 

MSMuTect, MSIseq, MANTIS, INDEL (insertion / deletion) count, MSISensor, TMS (tumor mutational signature) ID2+ID7, TMS 1001 

ID2, TMS SBS20, TMS ID7, TMS SBS54, TMB (tumor mutation burden) and TMS SBS15 from the WES CRC analysis. ID, small 1002 

insertions, and deletions; SBS, single base substitutions. 1003 

  1004 
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Table 3. Summary of the best dMMR prediction results by individual tumor feature, Lasso regression model and the additive feature 1005 

combination approach for the whole-exome sequencing (WES) colorectal cancers (CRCs) and the panel sequenced CRCs, endometrial 1006 

cancers (ECs) and sebaceous skin tumors (SST). 1007 

  Performance of best 

Individual Feature 

Performance of Statistical Model Performance of Additive Feature Combination Approach 

WES Feature Mean 

Accuracy 

Lasso Mean 

Accuracy 

Feature Combination Mean 

Accuracy 

CRC MSMuTect 99.3% MANTIS + TMS ID2+ID7 + 

MSISensor + TMS SBS15 

98.3% MSMuTect + MANTIS + MSIseq + 

MSISensor + INDEL count + TMS ID2+ID7 

99.7% 

              

PANEL Feature Accuracy Lasso Accuracy Feature Combination Accuracy 

CRC MANTIS 100.0% MANTIS + TMS ID2+ID7 + 

MSISensor + TMS SBS15 

89.7% MSMuTect + MANTIS + MSIseq + 

MSISensor + INDEL count + TMS ID2+ID7 

100.0% 

EC  MANTIS 86.4% MANTIS + TMS ID2+ID7 + 

MSISensor + TMS SBS15 

68.2% MSMuTect + MANTIS + MSIseq + 

MSISensor + INDEL count + TMS ID2+ID7 

95.5% 

SST MANTIS 85.0% MANTIS + TMS ID2+ID7 + 

MSISensor + TMS SBS15 

85.0% MSMuTect + MANTIS + MSIseq + 

MSISensor + INDEL count + TMS ID2+ID7 

100.0% 
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This table provides the top performing results from A) individual tumor feature, B) statistical model application (Lasso) and C) additive 1008 

feature combination approach assessments for WES CRCs as well as targeted panel sequenced CRCs, ECs and SSTs. 1009 

TMS, tumor mutational signature; ID, small insertions, and deletions; SBS, single base substitution; INDEL count, insertions / deletions. 1010 

  1011 
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Table 4. Assessment of top performing tumor features from whole-exome sequenced (WES) colorectal cancers (CRCs) in panel 1012 

sequenced CRC, endometrial cancer (EC) and sebaceous skin tumor (SST) test sets. 1013 
 

CRC EC SST 

Tumor 

Feature 

Mean 

Accuracy 

95% CI Error 

Rate 

Mean 

Accuracy 

95% CI Error 

Rate 

Mean 

Accuracy 

95% CI Error 

Rate 

MSMuTect 27.6% 12.7% - 47.2% 72.4% 18.2% 5.2% - 40.3% 81.8% 35.0% 15.4% - 

59.2% 

65.0% 

MSIseq 82.8% 64.2% - 94.2% 17.2% 68.2% 45.1%. -

86.1% 

31.8% 65.0% 40.8% - 

84.6% 

35.0% 

MANTIS 100.0% 88.1% - 

100.0% 

0.0% 86.4% 65.1% - 

97.1% 

13.6% 85.0% 62.1% - 

96.8% 

15.0% 

INDEL count 27.6% 12.7% - 47.2% 72.4% 18.2% 5.2% - 40.3% 81.8% 35.0% 15.4% - 

59.2% 

65.0% 

MSISensor 96.6% 82.2% - 99.9% 3.4% 77.3% 54.6% - 

92.2% 

22.7% 75.0% 50.9% - 

91.3% 

25.0% 

TMS 

ID2+ID7 

82.8% 64.2% - 94.2% 17.2% 63.6% 40.7% - 

82.8% 

36.4% 85.0% 62.1% - 

96.8% 

15.0% 
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TMS SBS20 69.0% 49.2% - 84.7% 31.0% 50.0% 28.2% - 

71.8% 

50.0% 40.0% 19.1% - 

63.9% 

60.0% 

TMS SBS54 51.7% 32.5% - 70.6% 48.3% 36.4% 17.2% - 

59.3% 

63.6% 40.0% 19.1% - 

63.9% 

60.0% 

TMB 44.8% 26.4% - 64.3% 55.2% 31.8% 13.9% - 

54.9% 

68.2% 35.0% 15.4% - 

59.2% 

65.0% 

TMS SBS15 44.8% 26.4% - 64.3% 55.2% 27.3% 10.7% - 

50.2% 

72.7% 60.0% 36.1% - 

80.9% 

40.0% 

Table presents the prediction accuracies, error rates and corresponding 95% confidence intervals (CIs) for panel sequenced CRCs, ECs 1014 

and SSTs for the top 10 predicting tumor features MSMuTect, MSIseq, MANTIS, INDEL (insertions / deletions count), MSISensor, 1015 

TMS (tumor mutational signature) ID2+ID7, TMS SBS20, TMS SBS54, TMB (tumor mutation burden, mutations / mega base) and 1016 

TMS SBS15 from WES CRC analysis applied on panel sequenced CRCs, ECs and SSTs. ID, small insertions, and deletions; SBS, single 1017 

base substitution. 1018 


