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 2 

Summary of the Main Point (38/40 Words) 24 

Although SARS-CoV-2 continues to cause morbidity and mortality year-round due to its high 25 

transmissibility and rapid viral evolution, our results suggest that COVID-19 activity in the 26 

United States and Europe peaks during the traditional winter viral respiratory season.  27 

 28 

  29 
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ABSTRACT (248/250 words) 30 

Background 31 

Determining whether SARS-CoV-2 is or will be seasonal like other respiratory viruses is critical 32 

for public health planning, including informing vaccine policy regarding the optimal timing for 33 

deploying booster doses. To help answer this urgent public health question, we evaluated 34 

whether COVID-19 case rates in the United States and Europe followed a seasonal pattern using 35 

time series models. 36 

 37 

Methods 38 

We analyzed COVID-19 data from Our World in Data from Mar 2020 through Apr 2022 for the 39 

United States (and Census Region) and five European countries (Italy, France, Germany, Spain, 40 

and the United Kingdom). For each, anomalies were identified using Twitter’s decomposition 41 

method and Generalized Extreme Studentized Deviate tests. We performed sensitivity analyses 42 

to determine the impact of data source (i.e., using US Centers for Disease Control and Prevention 43 

[CDC] data instead of OWID) and whether findings were similar after adjusting for multiple 44 

covariates. Finally, we determined whether our time series models accurately predicted seasonal 45 

influenza trends using US CDC FluView data.  46 

 47 

Results 48 

Anomaly plots detected COVID-19 rates that were higher than expected between November and 49 

March each year in the United States and Europe. In the US Southern Census Region, in addition 50 

to seasonal peaks in the fall/winter, a second peak in Aug/Sep 2021 was identified as anomalous. 51 

Results were robust to sensitivity analyses. 52 
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 53 

Conclusions 54 

Our results support employing annual protective measures against SARS-CoV-2 such as 55 

administration of seasonal booster vaccines or other non-pharmaceutical interventions in a 56 

similar timeframe as those already in place for influenza prevention.  57 
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 5 

Introduction (2492 / 3000 Words) 58 

The Coronavirus Disease (COVID-19) pandemic has caused unprecedented worldwide 59 

morbidity, mortality, and social and economic disruption. Globally, waves of disease have 60 

primarily corresponded with the emergence of new variants of concern—which have shown 61 

increased transmissibility,1 improved ability to evade vaccine- or infection-induced immunity,2 62 

or both. Vaccination strategies to date have struggled to keep pace, and booster doses have been 63 

deployed to bolster protection against infection and symptomatic disease and maintain peak 64 

levels of protection against severe disease throughout the pandemic.3-7  65 

Nearly all respiratory viruses capable of causing human infection show distinct seasonal 66 

patterns and result in waves of illness during the winter months.8,9 These patterns are likely 67 

caused by a combination of host, pathogen, and environmental factors, including increased 68 

indoor activity in the winter months and seasonal temperature and humidity fluctuations known 69 

to impact viral stability outside of the host.8,10-12 To date, there is still speculation about whether 70 

SARS-CoV-2 currently follows—or will follow in the future—similar seasonal patterns.13-15 71 

Determining this is critical for public health planning, including informing vaccine policy about 72 

the optimal timing for deploying booster doses. To help answer this urgent public health 73 

question, we evaluated whether rates of COVID-19 in the United States and Europe followed a 74 

seasonal pattern using time series models.  75 

 76 

Methods 77 

Primary analysis 78 

Data describing daily frequencies of COVID-19 cases were obtained from the public-use 79 

Our World in Data (OWID) website. For analysis purposes, daily data from OWID were 80 
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aggregated into weeks for the period between weeks ending March 3, 2020, and April 9, 2022. 81 

We calculated rates for the United States and European Union Five countries (EU5; France, 82 

Germany, Italy, Spain, and the United Kingdom) using country-specific estimated population 83 

sizes and report rates per 1,000,000 for new weekly cases during the study period.16 We further 84 

stratified data from the United States into the four US Census Bureau Regions (Northeast, 85 

Midwest, West, and South).17 86 

For our primary analysis, we used Twitter’s time series decomposition followed by 87 

generalized extreme studentized deviate (GESD) anomaly detection to identify outlying COVID-88 

19 rates over time.18 This method has been shown to reliably detect anomalies in other 89 

transmissible infectious diseases.19-21 This decomposition and anomaly detection method first 90 

decomposes time series data into trend, seasonal, and remainder components. The trend 91 

component is extracted using piecewise medians and median absolute deviations, which are 92 

appropriate for weekly seasonality and multimodal observed data.18 After decomposition, 93 

anomalies were detected using GESD, which does not require a priori specification of the 94 

number of outliers (as many other outlier tests do), but instead requires the specification of a 95 

range for what should be considered non-outlying data points. 22 We specified a 95% normal 96 

range (alpha = 0.05) with a maximum of 30% of the data to be detected as anomalous to balance 97 

the risk of false positives and negatives. 98 

 99 

Sensitivity analyses 100 

To test the robustness of our findings, we performed several sensitivity analyses. First, 101 

we evaluated the impact of choosing different thresholds for the maximum amount of data to be 102 

detected as anomalous (ranging from 1–50%) compared to the base case of 30% for both the US 103 
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and EU5 OWID data. To determine the impact of the data source, we repeated the primary 104 

analysis (described above) using national COVID-19 case rate data from the US Centers for 105 

Disease Control and Prevention (CDC) instead of US data derived from OWID.23  106 

In addition to the methodology used in the primary analysis (i.e., Twitter’s time series 107 

decomposition with GESD anomaly detection), we also used Meta’s (previously Facebook) 108 

Prophet24,25 approach to decompose US time series rates and adjust for potentially confounding 109 

factors in an additive, linear time series. In the Meta Prophet model, we adjusted for the age-110 

specific proportion of fully vaccinated individuals over time, US holidays, predominant 111 

circulating variant (omicron, delta, or alpha or wild type), and seasonality (weekly and yearly). 112 

US vaccine uptake data were obtained from US CDC.26 Age-group-specific vaccine uptake data 113 

were collapsed into a single value for each day by calculating a weighted average of the age-114 

group-specific proportion of the population who was fully vaccinated (i.e., defined as two doses 115 

of mRNA vaccine or one dose of a single dose adenoviral vector vaccine) and corresponding 116 

age-group-specific population size based on 2022 United States Census Bureau estimates.27 117 

Binary indicators of US holidays included were specified by the model as regressors based on 118 

calendar day(s). They included New Year’s Day, Martin Luther King Jr. Day, Washington’s 119 

Birthday, Memorial Day, Independence Day (Observed), Independence Day, Labor Day, 120 

Columbus Day, Veterans Day, Thanksgiving, Christmas Day, Christmas Day (Observed), and 121 

New Year’s Day (Observed). We also added holiday effects for two weeks of an annual spring 122 

break (Mar 16, 2020 – Mar 27, 2020; Mar 15, 2021 – Mar 26, 2021; and Mar 14, 2022 – Mar 25, 123 

2022) and extra days before Christmas Day through New Year’s Day to account for potential 124 

significant holiday travel effects (Dec 21, 2020 – Jan 3, 2021; and Dec 20, 2021 – Jan 2, 2022). 125 

SARS-CoV-2 variant frequencies by date for the United States were obtained from 126 
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covariants.org.28 Variant frequencies were summed by week to match COVID-19 case data. 127 

Primary circulating variant was defined as the most frequent variant identified each week and 128 

was categorized into three groups: wild type/Wuhan or alpha (Mar 9, 2020 – Apr 4, 2021), delta 129 

(Apr 5, 2021 – Dec 13, 2021), or omicron (Dec 14, 2021 – Apr 9, 2022). In the Prophet model, 130 

weekly and yearly seasonality were set to automatic detection, while daily seasonality was turned 131 

off as we only had daily reports that were not time-stamped. Uncertainty interval widths were set 132 

to 95%, with 2,000 uncertainty samples used to compute the intervals. Markov chain Monte 133 

Carlo simulations (n=1,000) were used to calculate uncertainty intervals for the Prophet time 134 

series decomposed components.  135 

Finally, as a confirmatory sensitivity analysis, we applied both the anomaly detection and 136 

Prophet modeling approaches to US influenza data (rather than COVID-19 data) to assess the 137 

model would predict well-known seasonal patterns for influenza. Influenza case counts for the 138 

United States were obtained from US CDC FluView and included weekly case counts of 139 

influenza viruses reported to CDC through the National Respiratory and Enteric Virus 140 

Surveillance System at the national level.29 Total influenza cases was defined as the sum of all 141 

subtypes reported to clinical and public health laboratories from Mar 2, 2014, through Apr 5, 142 

2020. We excluded 2020/2021 and 2021/2022 influenza seasons due to the confounding effects 143 

of COVID-19 precautions on reducing the influenza burden. 30  144 

For anomaly detection, a base case of 30% maximum anomalies was used, and for 145 

Prophet modeling, US holidays, the primary circulating variant of the week, and the weekly 146 

population weighted mean of percent vaccine uptake were used for adjustment as indicated 147 

above for COVID-19 data. R version 4.1.2 (R Foundation for Statistical Computing, Vienna, 148 

Austria) was used for all analyses.  149 
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Results 150 

Anomaly plots detected COVID-19 rates that were higher than expected between 151 

November and March each year in the United States (Figure 1A) and EU5 (Figure 1B). In the 152 

United States, trends were similar for the North, Midwest, and West US Census Bureau Regions, 153 

with seasonal spikes in rates observed between November and February (Figures 2A-2C). In the 154 

Southern Region, in addition to seasonal peaks in the fall/winter, a second peak in the late 155 

summer of 2021 was identified as anomalous in Aug/Sep 2021, which returned to normal by Oct 156 

2021 (Figure 2D). This peak was not identified in the US Southern Region in 2020. 157 

Sensitivity analyses confirmed that the threshold for percent of observations detected as 158 

anomalous (supplementary appendix, Figures s1 – s12) had little impact on observed seasonal 159 

trends. In addition, seasonal US COVID-19 trends were similar if US CDC data were used 160 

instead of data from OWID (Figure s13). Sensitivity analyses using Meta’s Prophet model also 161 

showed a strong annual seasonal component for COVID-19 case rates from approximately 162 

December through February in the United States (Figure 3A), similar to the primary analysis. 163 

During the study period, the general trend of COVID-19 was increasing (Figure 3B), although 164 

with wide uncertainty intervals. Several strong holiday effects were identified near Christmas 165 

and New Year’s, spring break, and Independence Day (Figure 3C).  166 

Anomaly detection analyses using the same model specifications described for rates of 167 

COVID-19 also accurately predicted seasonal spikes of influenza between November and April 168 

over six US influenza seasons (Figure 4), consistent with current knowledge about annual 169 

influenza patterns in the United States.31 Further, Prophet modeling of influenza data showed 170 

remarkably similar trends as for COVID-19 (Figures s14 – s17), with slightly more residual 171 

variation, likely due to fewer regressors added to the model compared to COVID-19 data.  172 
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Discussion 173 

Although SARS-CoV-2 continues to circulate and cause disease year-round, we 174 

identified clear seasonal trends in rates of COVID-19 in the United States and Europe. Since the 175 

beginning of the pandemic, COVID-19 rates in the United States and EU5 have spiked in the 176 

months of December through March—the same months typical of seasonal respiratory virus 177 

epidemics in the northern hemisphere.31 These results are consistent with other coronaviruses 178 

that exhibit largely seasonal patterns32 and mathematical simulations of COVID-19 disease 179 

activity.13,14 There are many possible reasons for seasonality of respiratory viruses, including 180 

climate-related changes in viral transmissibility, modified host factors (e.g., waning of infection- 181 

or vaccine-induced immunity), and changes in human behavior during the winter months.8,15 182 

Regardless of the mechanisms, knowledge of pathogen seasonality is imperative for instituting 183 

targeted interventions to decrease disease burden.  184 

Accordingly, our findings have important vaccine policy implications. Booster doses of 185 

COVID-19 vaccines administered before the winter months will likely have the most significant 186 

public health impact on COVID-19 disease burden. This is analogous to providing influenza 187 

vaccine before peak flu activity each year. Because SARS-CoV-2 is considerably more 188 

transmissible than influenza and other seasonal respiratory viruses, it remains possible that year-189 

round SARS-CoV-2 activity will remain elevated compared to other pathogens. Providing more 190 

than one booster dose of COVID-19 vaccines each year, however, has proven programmatically 191 

challenging, and concerns regarding “booster fatigue” are increasing.33,34 Thus, timing the 192 

administration of an annual COVID-19 vaccine, and thus peak vaccine protection, with the likely 193 

timing of peak COVID-19 disease activity (i.e., the winter viral respiratory season based on our 194 

results) may be the most prudent approach in the near term. Despite evidence that protection 195 
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provided by current mRNA COVID-19 vaccines wanes significantly against omicron infection 196 

and symptomatic disease after only 3 to 4 months—even after a booster4,7,35—this short-term 197 

protection could still provide meaningful defense against SARS-CoV-2 infection if deployed just 198 

before seasonal waves that last 3 to 4 months on average. Moreover, it remains unknown 199 

whether variant-adapted vaccines may improve durability of protection against infection and 200 

symptomatic disease for even longer than current wild-type formulations. Whether additional 201 

boosters at a frequency greater than once annually are needed for some high-risk groups will 202 

likely be a careful balance between epidemiological, benefit-risk, and programmatic 203 

considerations moving forward.  204 

There has been much debate about whether the goal of vaccination programs should be 205 

only to prevent severe disease or if it should include preventing infection and reducing 206 

transmission.36 We now know that vaccination alone is unlikely to lead to the eradication or 207 

elimination of SARS-CoV-2. However, deploying vaccines on schedule that times peak 208 

protection to correspond with peak disease activity can still have a meaningful impact on 209 

flattening future waves of infection and disease in addition to ensuring protection against severe 210 

illness is maintained year-over-year. Lessening the burden of SARS-CoV-2 infection remains an 211 

important goal and corresponds with fewer long-term consequences of infection such as post-212 

acute sequelae37-39 and other disruptive societal and economic consequences.40  213 

A more nuanced finding from our study was that, in the United States, southern States 214 

might be experiencing second summer waves, as has been previously suggested.41 There could 215 

be many reasons behind this additional summer wave. Some possible explanations include lower 216 

vaccination rates or use of nonpharmaceutical interventions in southern US States compared to 217 

other regions,42 changes in behavioral patterns including end-of-summer vacations to southern 218 
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States, or increased indoor gathering due to excessive heat during this time in the US south. 219 

Visually, there were slight increases in rates within other US Census regions during this time, 220 

however, they were within the expected variability of case rates. It is reasonable to assume that 221 

there would have been higher rates during these months in all regions had adequate protections 222 

(e.g., vaccination, nonpharmaceutical interventions) been less prevalent. 223 

In sensitivity analyses, our methodology accurately detected anomalous rates of influenza 224 

virus infection in the United States, underscoring the utility of anomaly detection for detecting 225 

seasonal patterns in common respiratory viruses. Although the ‘influenza season’ appeared to be 226 

slightly longer than the ‘COVID-19 season,’ this could be due to the additional prevention 227 

measures taken for COVID-19, including masking and social distancing. These interventions are 228 

highly effective for influenza, as evidenced by the near disappearance of influenza infection 229 

during the height of the COVID-19 pandemic in the United States.30 230 

Our results have limitations. First, we could not account for potential underreporting of 231 

cases, which may have a large effect more recently with increases in at-home SARS-CoV-2 232 

testing that may not be reported.43 Further, statistical modeling may not fully reflect the 233 

intricacies of preventing transmissible infectious diseases, such as the impact of waning 234 

immunity or changes in testing, nonpharmaceutical interventions, or healthcare-seeking behavior 235 

over time. Despite this, our sensitivity analysis using Meta’s Prophet model, which controlled for 236 

vaccination coverage over time, holidays, and the dominant SARS-CoV-2 variant each week, 237 

also showed a strong annual seasonal component for rates of COVID-19. Moreover, we found 238 

seasonal patterns over the duration of the entire pandemic despite changes in testing and 239 

mitigation behaviors over time. Although the pandemic is in its third year, the amount of data 240 

available for forecasting was limited compared to other common seasonal viruses. Because of 241 
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this, forecasts may change rapidly in the months or years ahead. Another limitation is that our 242 

findings are not generalizable beyond the United States and Europe, and more research is needed 243 

to understand if seasonal patterns in SARS-CoV-2 activity are seen in the Southern Hemisphere 244 

or Asia-Pacific regions. Finally, with SARS-CoV-2, there is always the potential for new 245 

variants to emerge that could meaningfully escape prior vaccine- or infection-induced immunity 246 

and cause epidemics outside of regular seasonal patterns. Thus, the public health community 247 

should continue to plan and maintain capability for this possibility. 248 

Although SARS-CoV-2 continues to cause morbidity and mortality year-round due to its 249 

high transmissibility and continued rapid viral evolution, our results suggest that COVID-19 250 

activity in the United States and Europe peaks during the traditional winter viral respiratory 251 

season. Thus, employing annual protective measures against SARS-CoV-2 such as administering 252 

seasonal booster vaccines or other non-pharmaceutical interventions in a similar timeframe as 253 

those already in place for influenza prevention (i.e., beginning in early autumn) is a prudent 254 

strategy to stay ahead of likely forthcoming seasonal waves of COVID-19. Additional 255 

confirmatory studies including those conducted in the Southern Hemisphere and other regions 256 

outside of the United States and Europe, however, are needed. 257 

  258 
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Figure 1:  Twitter time series decomposition with generalized extreme studentized deviate (GESD) 
anomaly detection of COVID-19 rates, Mar 7, 2020 – Apr 9, 2022. Panel A: United States Our World 
in Data; Panel B: EU5: Italy, Germany, France, Spain, and the United Kingdom, Our World in Data.  
 
Shaded areas represent the normal range of data points. 
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393 

  

Figure 2:  Twitter time series decomposition with generalized extreme studentized deviate (GESD) 
anomaly detection of COVID-19 rates, Mar 7, 2020 – Apr 9, 2022, United States, by Census Region.  
 
Panel A, Northeast Region; Panel B, Midwest Region; Panel C, West Region; Panel D, South Region.  
Data Source: Our World in Data 
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 394 
395 

               A  

  

Figure 3:  COVID-19 rates from the Prophet decomposed model with Markov chain Monte Carlo 
Simulated 95% uncertainty intervals, Mar 7, 2020 – Apr 9, 2022, adjusted for US holidays, dominant 
variant, and age-weighted vaccine uptake, United States.  
 
Panel A: Annual seasonal component aggregated over study period; Panel B, Trend Component; Panel 

C, Holiday Component; Panel D, Residual Component. Data Source: Our World in Data 
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 396 
 397 

 

Figure 4: Twitter time series decomposition with generalized extreme studentized deviate 

(GESD) anomaly detection of Influenza cases, Mar 1, 2014 – Apr 10, 2020. Shaded areas 

represent the normal range of data points. Data Source: United States Centers for Disease 

Control and Prevention FluView 
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Figure s1. Twitter time series decomposition with generalized extreme studentized deviate 
(GESD) anomaly detection of US COVID-19 case rates, Mar 7, 2020 – Apr 9, 2022, with 1% 
maximum anomalies, Data Source: OWID 
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Figure s2. Twitter time series decomposition with generalized extreme studentized deviate 
(GESD) anomaly detection of EU-5 Country COVID-19 case rates, Mar 7, 2020 – Apr 9, 2022, 
with 1% maximum anomalies, Data Source: OWID 
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Figure s3. Twitter time series decomposition with generalized extreme studentized deviate 
(GESD) anomaly detection of US COVID-19 case rates, Mar 7, 2020 – Apr 9, 2022, with 5% 
maximum anomalies, Data Source: OWID 
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Figure s4. Twitter time series decomposition with generalized extreme studentized deviate 
(GESD) anomaly detection of EU-5 Country COVID-19 case rates, Mar 7, 2020 – Apr 9, 2022, 
with 5% maximum anomalies, Data Source: OWID 
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Figure s5. Twitter time series decomposition with generalized extreme studentized deviate 
(GESD) anomaly detection of US COVID-19 case rates, Mar 7, 2020 – Apr 9, 2022, with 10% 
maximum anomalies, Data Source: OWID 
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Figure s6. Twitter time series decomposition with generalized extreme studentized deviate 
(GESD) anomaly detection of EU-5 Country COVID-19 case rates, Mar 7, 2020 – Apr 9, 2022, 
with 10% maximum anomalies, Data Source: OWID 
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Figure s7. Twitter time series decomposition with generalized extreme studentized deviate 
(GESD) anomaly detection of US COVID-19 case rates, Mar 7, 2020 – Apr 9, 2022, with 20% 
maximum anomalies, Data Source: OWID 
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Figure s8. Twitter time series decomposition with generalized extreme studentized deviate 
(GESD) anomaly detection of EU-5 Country COVID-19 case rates, Mar 7, 2020 – Apr 9, 2022, 
with 20% maximum anomalies, Data Source: OWID 
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Figure s9. Twitter time series decomposition with generalized extreme studentized deviate 
(GESD) anomaly detection of US COVID-19 case rates, Mar 7, 2020 – Apr 9, 2022, with 40% 
maximum anomalies, Data Source: OWID 
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Figure s10. Twitter time series decomposition with generalized extreme studentized deviate 
(GESD) anomaly detection of EU-5 Country COVID-19 case rates, Mar 7, 2020 – Apr 9, 2022, 
with 40% maximum anomalies, Data Source: OWID 
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Figure s11. Twitter time series decomposition with generalized extreme studentized deviate 
(GESD) anomaly detection of US COVID-19 case rates, Mar 7, 2020 – Apr 9, 2022, with 50% 
maximum anomalies, Data Source: OWID 
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Figure s12. Twitter time series decomposition with generalized extreme studentized deviate 
(GESD) anomaly detection of EU-5 Country COVID-19 case rates, Mar 7, 2020 – Apr 9, 2022, 
with 50% maximum anomalies, Data Source: OWID 
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Figure s13. Twitter time series decomposition with generalized extreme studentized deviate 
(GESD) anomaly detection of US COVID-19 case rates, Mar 7, 2020 – Apr 9, 2022, with 30% 
maximum anomalies, Data Source: US CDC 
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Figure s14. Seasonal component of Influenza cases from the Prophet decomposed model with 
Markov chain Monte Carlo Simulated 95% uncertainty intervals, Mar 1, 2014 – Apr 10, 2020, 
holiday-adjusted, United States. Data Source: US CDC 
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Figure s15. Holiday component of Influenza cases from the Prophet decomposed model with 
Markov chain Monte Carlo Simulated 95% uncertainty intervals, Mar 1, 2014 – Apr 10, 2020, 
holiday-adjusted, United States. Data Source: US CDC 
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Figure s16. Trend component of Influenza cases from the Prophet decomposed model with 
Markov chain Monte Carlo Simulated 95% uncertainty intervals, Mar 1, 2014 – Apr 10, 2020, 
holiday-adjusted, United States. Data Source: US CDC 
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Figure s17. Residual component of Influenza cases from the Prophet decomposed model with 
Markov chain Monte Carlo Simulated 95% uncertainty intervals, Mar 1, 2014 – Apr 10, 2020, 
holiday-adjusted, United States. Data Source: US CDC 
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