Detailed description of qPCR analysis in CHARIOT-PRO

Briefly, RNA extraction was undertaken using the QIAsymphony PAXgene Blood RNA Kit on the QIAsymphony SP with 72 samples, in 3 batches of 24, per run, followed by spectrophotometry (Nanodrop) and gel densitometry (Agilent, TapeStation) for RNA quantification and quality control, respectively. Reverse transcription of 10 ng RNA per sample, in 10 μ L reactions, was performed using the miRCURY LNA RT Kit (QIAGEN). cDNA was diluted 100x and assayed in 10 μ L PCR reactions with the miRNA Ready-to-Use PCR Custom panel, using miRCURY LNA SYBR Green master mix, according to the miRCURY LNA miRNA PCR protocol; reactions, in 384-well plate format, were performed in a LightCycler 480 Real-Time PCR system (Roche), the amplification curves were visualised using the Roche LC software, Ct values determined, and provided to us for subsequent analyses Supplementary Table 1: Percentage of NA (ie Ct values > 35) per marker; those in bold font were not included in the subsequent analyses

miRNA	percentage NA (%)
hsa-let-7a-5p	3.75
hsa-let-7c-5p	0
hsa-let-7d-3p	0.94
hsa-let-7d-5p	0
hsa-miR-107	0
hsa-miR-125b-5p	0.10
hsa-miR-128-3p	5.11
hsa-miR-129-5p	100
hsa-miR-138-5p	99.90
hsa-miR-143-3p	92.39
hsa-miR-144-5p	0.73
hsa-miR-146a-5p	1.77
hsa-miR-150-3p	92.28
hsa-miR-15a-3p	99.17
hsa-miR-16-5p	0
hsa-miR-17-3p	93.01
hsa-miR-181c-5p	98.64
hsa-miR-191-5p	0.21
hsa-miR-195-5p	99.48
hsa-miR-19a-3p	0.10
hsa-miR-19a-5p	99.79
hsa-miR-21-3p	94.99
hsa-miR-210-3p	3.34
hsa-miR-26a-5p	0
hsa-miR-26b-3p	4.80
hsa-miR-27b-3p	2.19
hsa-miR-29c-3p	2.61
hsa-miR-30a-5p	77.69
hsa-miR-30d-5p	0
hsa-miR-31-5p	78.42
hsa-miR-340-3p	62.57
hsa-miR-342-3p	0
hsa-miR-361-5p	0.31
hsa-miR-363-3p	0.21
hsa-miR-425-5p	0
hsa-miR-454-3p	1.36
hsa-miR-455-5p	98.33

hsa-miR-483-3p	86.34
hsa-miR-5001-3p	69.97
hsa-miR-501-3p	3.75
hsa-miR-550a-3p	0.10
hsa-miR-671-3p	71.95
hsa-miR-885-5p	96.25
hsa-miR-92a-3p	0
hsa-miR-93-5p	0
hsa-miR-98-5p	26.38
UniSp3	0.31
UniSp6	0

Legend: removed markers are in bold

domain	miRNA	b	[95% CI]	Std. Error	t value	Pr(> t)	FDR adj.
							P value
Language Index	hsa.let.7a.5p	-2.39	[-4.10, -0.69]	0.868	-2.752	0.006	0.048
	hsa.let.7c.5p	-2.26	[-3.97, -0.56]	0.871	-2.601	0.009	0.049
	hsa.let.7d.5p	-3.06	[-1.67, 1.75]	1.023	-2.992	0.003	0.048
	hsa.miR.144.5p	-0.89	[-1.53, -0.25]	0.327	-2.723	0.007	0.048
	hsa.miR.93.5p	-1.88	[-3.31, -0.45]	0.728	-2.577	0.01	0.049
	hsa.miR.98.5p	-1.95	[-3.34, -0.55]	0.712	-2.735	0.006	0.048
Attention Index	hsa.miR.363.3p	-4.27	[-6.70, -1.85]	1.236	-3.457	0.001	0.017
Total Scale	hsa.miR.144.5p	-1.17	[-1.84, -0.51]	0.339	-3.464	0.001	0.016
Ethnicity coded as	white $= 0$, other $= 1$; A	POE genoty	be coded as e3/e4 or e	4/e4 = 1, other	= 0		

Supplementary Table 2: Regression coefficient with RBANS as outcome variable and miRNA normalised Ct value as predictor, model adjusted for age, gender, education years, ethnicity, APOE ε4 carrier status

Supplementary Table 3: Correlation matrix for the six significant miRNAs

	miR.128.3p	miR.144.5p	miR.146a.5p	miR.26a.5p	miR.29c.3p	miR.363.3p
miR.128.3p						
miR.144.5p	0.09					
miR.146a.5p	0.27	0.38				
miR.26a.5p	0.33	0.43	0.42			
miR.29c.3p	0.15	0.45	0.46	0.41		
miR.363.3p	0.26	0.35	0.46	0.52	0.55	

rho (spearman)

Ν

11	1	r	r	1		1
	miR.128.3p	miR.144.5p	miR.146a.5p	miR.26a.5p	miR.29c.3p	miR.363.3p
miR.128.3p						
miR.144.5p	798					
miR.146a.5p	804	796				
miR.26a.5p	805	802	801			
miR.29c.3p	799	795	798	798		
miR.363.3p	804	798	801	804	798	

P values

	miR.128.3p	miR.144.5p	miR.146a.5p	miR.26a.5p	miR.29c.3p	miR.363.3p
miR.128.3p						
miR.144.5p	0.0128					
miR.146a.5p	< 0.0001	< 0.0001				
miR.26a.5p	< 0.0001	< 0.0001	< 0.0001			
miR.29c.3p	< 0.0001	< 0.0001	< 0.0001	< 0.0001		
miR.363.3p	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	

Supplementary Table 4: miRNA gene environment

RefSeq	chr	strand	length	start	end	N SNPs*	RefSeq of genes within ± 200 kb of the gene
MIR128-1	2	+	82	136422967	136423048	60	R3HDM1, MIR128-1
MIR144	17	-	86	27188551	27188636	99	SDF2, SUPT6H, PROCA1, RAB34, RPL23A, SNORD42B, SNORD4A, SNORD42B, SNORD4B, SNORD42A, TLCD1, NEK8, TRAF4, FAM222B, ERAL1, MIR451A, MIR451B, MIR144, MIR4732, FLOT2, DHRS13, PHF12, LOC101927018, SEZ6, PIPOX
MIR146A	5	+	99	159912359	159912457	206	MIR3142HG, MIR146A
MIR26A1	3	+	77	38010895	38010971	109	CTDSPL, MIR26A1
MIR29C	1	-	88	207975197	207975284	181	<i>CR1, CR1L, CD46, MIR29B2CHG, MIR29C, MIR29B2, LOC148696, CD34</i>
MIR363	Х	-	75	133303408	133303482	25	MIR363
*number of S Legend: chr:	SNPS M chromo	linor Allel osome, Ref	e Frequency Seq National	≥ 0.05 Center for Bio	otechnology Info	ormation Ref	Ference Sequence, SNP: Single Nucleotide Polymorphism

Supplementary figure 1: haplotype blocks MIR29C

Supplementary Table 5: Pathway enrichment analysis of the six significantly dysregulated miRNAs in the blood for targeted genes highly expressed in the brain

ID	Description	FDR	intersection	cluster	mirnas	N mirnas
GO:1905710	positive regulation of membrane permeability	0.005	GSK3B,SLC25A5,YWHAE,BLOC1S2	cellular architecture	hsa-miR-26a-5p	1
REAC:R-HSA-975110	TRAF6 mediated IRF7 activation in TLR7/8 or 9 signaling	0.006	IRAK1,IRF7	toll like receptor signaling pathway	hsa-miR-146a-5p	1
GO:0006476	protein deacetylation	0.006	RCOR1,PHB,SFPQ,MTA3	protein synthesis	hsa-miR-26a-5p	1
GO:0090559	regulation of membrane permeability	0.006	GSK3B,SLC25A5,YWHAE,BLOC1S2	cellular architecture	hsa-miR-26a-5p	1
REAC:R-HSA-9006925	Intracellular signaling by second messengers	0.007	GSK3B,RPS27A,TNRC6B,RCOR1,MDM2,PPP2R5D,MTA3,PRKX	cellular signaling	hsa-miR-146a-5p, hsa-miR- 146a-5p, hsa-miR-26a-5p, hsa-miR-26a-5p	4
REAC:R-HSA-9006925	Intracellular signaling by second messengers	0.007	GSK3B,RPS27A,TNRC6B,RCOR1,MDM2,PPP2R5D,MTA3,PRKX	cellular signaling	hsa-miR-146a-5p, hsa-miR- 146a-5p, hsa-miR-26a-5p, hsa-miR-26a-5p	4
GO:0098732	macromolecule deacylation	0.007	RCOR1,PHB,SFPQ,MTA3	protein synthesis	hsa-miR-26a-5p	1
GO:1905214	regulation of RNA binding	0.009	CDK9,NUCKS1	transcription and splicing	hsa-miR-26a-5p	1
REAC:R-HSA-1257604	PIP3 activates AKT signaling	0.009	GSK3B,RPS27A,TNRC6B,RCOR1,MDM2,PPP2R5D,MTA3	tyrosine kinase signaling	hsa-miR-26a-5p	1
REAC:R-HSA-212165	Epigenetic regulation of gene expression	0.009	GSK3B,UBTF,TDG,MTA3,POLR2E	epigenetic changes	hsa-miR-26a-5p	1
REAC:R-HSA-3700989	Transcriptional Regulation by TP53	0.009	CCNE1,RPS27A,YWHAE,TNRC6B,MDM2,CDK9,POLR2E,COX5A	transcription and splicing	hsa-miR-26a-5p, hsa-miR- 29c-3p	2
GO:0016032	viral process	0.013	RPS27A,DDB1,PDE12,PHB,CDK9,POLR2E,NUCKS1	viral processes	hsa-miR-26a-5p	1
GO:0031570	DNA integrity checkpoint	0.014	MDM2,CNOT4,CDC5L,CNOT2	cell cycle	hsa-miR-363-3p	1
GO:0044783	G1 DNA damage checkpoint	0.015	MDM2,CNOT4,CNOT2	cell cycle	hsa-miR-363-3p	1
REAC:R-HSA-198323	AKT phosphorylates targets in the cytosol	0.017	AKT3,MDM2	cellular signaling	hsa-miR-26a-5p, hsa-miR- 29c-3p	2
REAC:R-HSA-6804759	Regulation of TP53 Activity through Association with Co-factors	0.017	PPP1R13B,AKT3	cellular signaling	hsa-miR-29c-3p	1
GO:0006283	transcription-coupled nucleotide-excision repair	0.021	RPS27A,DDB1,POLR2E	cell cycle	hsa-miR-26a-5p	1
GO:0090305	nucleic acid phosphodiester bond hydrolysis	0.021	RPS27A,DDB1,PDE12,CPSF2	cell cycle	hsa-miR-26a-5p	1
GO:0019058	viral life cycle	0.023	RPS27A,DDB1,PDE12,PHB,NUCKS1	viral processes	hsa-miR-26a-5p	1
REAC:R-HSA-8849470	PTK6 Regulates Cell Cycle	0.024	CCNE1	cell cycle	hsa-miR-144-5p	1
GO:0046677	response to antibiotic	0.026	MDM2,RPL23	response to external stimuli	hsa-miR-363-3p	1

REAC:R-HSA-166166	MyD88-independent TLR4 cascade	0.026	IRAK1,IRF7	toll like receptor signaling	hsa-miR-146a-5p	1
REAC:R-HSA-168138	Toll Like Receptor 9 (TLR9) Cascade	0.026	IRAK1,IRF7	toll like receptor signaling	hsa-miR-146a-5p	1
REAC:R-HSA-168164	Toll Like Receptor 3 (TLR3) Cascade	0.026	IRAK1,IRF7	toll like receptor signaling	hsa-miR-146a-5p	1
REAC:R-HSA-168181	Toll Like Receptor 7/8 (TLR7/8) Cascade	0.026	IRAK1,IRF7	toll like receptor signaling pathway	hsa-miR-146a-5p	1
REAC:R-HSA-9006925	Intracellular signaling by second messengers	0.026	IRAK1,MTA2,PRKCE	cellular signaling	hsa-miR-146a-5p, hsa-miR- 146a-5p, hsa-miR-26a-5p, hsa-miR-26a-5p	4
REAC:R-HSA-9006925	Intracellular signaling by second messengers	0.026	IRAK1,MTA2,PRKCE	cellular signaling	hsa-miR-146a-5p, hsa-miR- 146a-5p, hsa-miR-26a-5p, hsa-miR-26a-5p	4
REAC:R-HSA-937061	TRIF(TICAM1)-mediated TLR4 signaling	0.026	IRAK1,IRF7	toll like receptor signaling pathway	hsa-miR-146a-5p	1
GO:0000956	nuclear-transcribed mRNA catabolic process	0.027	CNOT4,CNOT2,RPL23,RPL24	cell cycle	hsa-miR-363-3p	1
GO:0002221	pattern recognition receptor signaling pathway	0.029	IRAK1,IRF7,PRKCE	cellular signaling	hsa-miR-146a-5p	1
GO:0002224	toll-like receptor signaling pathway	0.029	IRAK1,IRF7,PRKCE	toll like receptor signaling pathway	hsa-miR-146a-5p	1
GO:0002755	MyD88-dependent toll-like receptor signaling pathway	0.029	IRAK1,IRF7	toll like receptor signaling pathway	hsa-miR-146a-5p	1
GO:0002756	MyD88-independent toll-like receptor signaling pathway	0.029	IRF7,PRKCE	toll like receptor signaling pathway	hsa-miR-146a-5p	1
GO:0034142	toll-like receptor 4 signaling pathway	0.029	IRAK1,PRKCE	toll like receptor signaling pathway	hsa-miR-146a-5p	1
REAC:R-HSA-166016	Toll Like Receptor 4 (TLR4) Cascade	0.03	IRAK1,IRF7	toll like receptor signaling pathway	hsa-miR-146a-5p	1
GO:0051702	biological process involved in interaction with symbiont	0.031	DDB1,PHB,NUCKS1	cellular signaling	hsa-miR-26a-5p	1
REAC:R-HSA-110357	Displacement of DNA glycosylase by APEX1	0.033	MBD4	cell cycle	hsa-miR-146a-5p	1
REAC:R-HSA-168898	Toll-like Receptor Cascades	0.033	IRAK1,IRF7	toll like receptor signaling pathway	hsa-miR-146a-5p	1
REAC:R-HSA-3134963	DEx/H-box helicases activate type I IFN and inflammatory cytokines production	0.033	IRF7	cytokine	hsa-miR-146a-5p	1
REAC:R-HSA-3304351	Signaling by TGF-beta Receptor Complex in Cancer	0.033	SMAD2	cytokine	hsa-miR-146a-5p	1
REAC:R-HSA-2559585	Oncogene Induced Senescence	0.033	RPS27A,TNRC6B,MDM2	senescence	hsa-miR-26a-5p	1
GO:0019080	viral gene expression	0.033	RPS27A,CDK9,POLR2E,NUCKS1	viral processes	hsa-miR-26a-5p	1
GO:0070911	global genome nucleotide-excision repair	0.033	RPS27A,DDB1	cell cycle	hsa-miR-26a-5p	1
REAC:R-HSA-114452	Activation of BH3-only proteins	0.034	PPP1R13B,AKT3	apoptosis and senescence	hsa-miR-29c-3p	1
REAC:R-HSA-2173796	SMAD2/SMAD3:SMAD4 heterotrimer regulates transcription	0.034	CCNT2,WWTR1	transcription and splicing	hsa-miR-29c-3p	1

REAC:R-HSA-3700989	Transcriptional Regulation by TP53	0.034	PPP1R13B,AKT3,CCNT2,MDM2	transcription and splicing	hsa-miR-26a-5p, hsa-miR- 29c-3p	2
REAC:R-HSA-5633007	Regulation of TP53 Activity	0.034	PPP1R13B,AKT3,MDM2	apoptosis and senescence	hsa-miR-29c-3p	1
REAC:R-HSA-5674400	Constitutive Signaling by AKT1 E17K in Cancer	0.034	AKT3,MDM2	signaling activity	hsa-miR-29c-3p	1
REAC:R-HSA-6804757	Regulation of TP53 Degradation	0.034	AKT3,MDM2	apoptosis and senescence	hsa-miR-29c-3p	1
REAC:R-HSA-6806003	Regulation of TP53 Expression and Degradation	0.034	AKT3,MDM2	apoptosis and senescence	hsa-miR-29c-3p	1
REAC:R-HSA-1538133	G0 and Early G1	0.034	CCNE1	cell cycle	hsa-miR-144-5p	1
REAC:R-HSA-1638091	Heparan sulfate/heparin (HS-GAG) metabolism	0.034	HS3ST1	hormone and metabolites	hsa-miR-144-5p	1
REAC:R-HSA-2022928	HS-GAG biosynthesis	0.034	HS3ST1	hormone and metabolites	hsa-miR-144-5p	1
REAC:R-HSA-2559586	DNA Damage/Telomere Stress Induced Senescence	0.034	CCNE1	apoptosis and senescence	hsa-miR-144-5p	1
REAC:R-HSA-390471	Association of TriC/CCT with target proteins during biosynthesis	0.034	CCNE1	protein synthesis	hsa-miR-144-5p	1
REAC:R-HSA-6791312	TP53 Regulates Transcription of Cell Cycle Genes	0.034	CCNE1	cell cycle	hsa-miR-144-5p	1
REAC:R-HSA-6804116	TP53 Regulates Transcription of Genes Involved in G1 Cell Cycle Arrest	0.034	CCNE1	cell cycle	hsa-miR-144-5p	1
REAC:R-HSA-69017	CDK-mediated phosphorylation and removal of Cdc6	0.034	CCNE1	cell cycle	hsa-miR-144-5p	1
REAC:R-HSA-69205	G1/S-Specific Transcription	0.034	CCNE1	cell cycle	hsa-miR-144-5p	1
REAC:R-HSA-69563	p53-Dependent G1 DNA Damage Response	0.034	CCNE1	cell cycle	hsa-miR-144-5p, hsa-miR- 144-5p, hsa-miR-26a-5p, hsa-miR-26a-5p	4
REAC:R-HSA-69563	p53-Dependent G1 DNA Damage Response	0.034	CCNE1	cell cycle	hsa-miR-144-5p, hsa-miR- 144-5p, hsa-miR-26a-5p, hsa-miR-26a-5p	4
REAC:R-HSA-69580	p53-Dependent G1/S DNA damage checkpoint	0.034	CCNE1	cell cycle	hsa-miR-144-5p, hsa-miR- 144-5p, hsa-miR-26a-5p, hsa-miR-26a-5p	4
REAC:R-HSA-69580	p53-Dependent G1/S DNA damage checkpoint	0.034	CCNE1	cell cycle	hsa-miR-144-5p, hsa-miR- 144-5p, hsa-miR-26a-5p, hsa-miR-26a-5p	4
REAC:R-HSA-69615	G1/S DNA Damage Checkpoints	0.034	CCNE1	cell cycle	hsa-miR-144-5p, hsa-miR- 144-5p, hsa-miR-26a-5p, hsa-miR-26a-5p	4
REAC:R-HSA-69615	G1/S DNA Damage Checkpoints	0.034	CCNEI	cell cycle	hsa-miR-144-5p, hsa-miR- 144-5p, hsa-miR-26a-5p, hsa-miR-26a-5p	4
REAC:R-HSA-8848021	Signaling by PTK6	0.034	CCNE1	tyrosine kinase signaling	hsa-miR-144-5p, hsa-miR- 144-5p, hsa-miR-26a-5p, hsa-miR-26a-5p	4

REAC:R-HSA-8848021	Signaling by PTK6	0.034	CCNE1	tyrosine kinase signaling	hsa-miR-144-5p, hsa-miR- 144-5p, hsa-miR-26a-5p, hsa-miR-26a-5p	4
REAC:R-HSA-9006927	Signaling by Non-Receptor Tyrosine Kinases	0.034	CCNE1	tyrosine kinase signaling	hsa-miR-144-5p, hsa-miR- 144-5p, hsa-miR-26a-5p, hsa-miR-26a-5p	4
REAC:R-HSA-9006927	Signaling by Non-Receptor Tyrosine Kinases	0.034	CCNE1	tyrosine kinase signaling	hsa-miR-144-5p, hsa-miR- 144-5p, hsa-miR-26a-5p, hsa-miR-26a-5p	4
GO:0016311	dephosphorylation	0.036	GSK3B,YWHAE,PTPN13,PPP2R5D,MTMR12	cellular signaling	hsa-miR-26a-5p	1
REAC:R-HSA-69202	Cyclin E associated events during G1/S transition	0.036	CCNE1	cell cycle	hsa-miR-144-5p	1
REAC:R-HSA-69656	Cyclin A:Cdk2-associated events at S phase entry	0.036	CCNEI	cell cycle	hsa-miR-144-5p	1
REAC:R-HSA-69052	Switching of origins to a post-replicative state	0.037	CCNE1	cell cycle	hsa-miR-144-5p	1
REAC:R-HSA-390466	Chaperonin-mediated protein folding	0.037	CCNE1	protein synthesis	hsa-miR-144-5p	1
REAC:R-HSA-112382	Formation of RNA Pol II elongation complex	0.037	RTF1,CDK9,POLR2E	transcription and splicing	hsa-miR-26a-5p	1
REAC:R-HSA-198323	AKT phosphorylates targets in the cytosol	0.037	GSK3B,MDM2	cellular signaling	hsa-miR-26a-5p, hsa-miR- 29c-3p	2
REAC:R-HSA-4839735	Signaling by AXIN mutants	0.037	GSK3B,PPP2R5D	Wnt/beta-catenin signaling pathway	hsa-miR-26a-5p	1
REAC:R-HSA-4839743	Signaling by CTNNB1 phospho-site mutants	0.037	GSK3B,PPP2R5D	Wnt/beta-catenin signaling pathway	hsa-miR-26a-5p	1
REAC:R-HSA-4839744	Signaling by APC mutants	0.037	GSK3B,PPP2R5D	Wnt/beta-catenin signaling pathway	hsa-miR-26a-5p	1
REAC:R-HSA-4839748	Signaling by AMER1 mutants	0.037	GSK3B,PPP2R5D	Wnt/beta-catenin signaling pathway	hsa-miR-26a-5p	1
REAC:R-HSA-5339716	Signaling by GSK3beta mutants	0.037	GSK3B,PPP2R5D	Wnt/beta-catenin signaling pathway	hsa-miR-26a-5p	1
REAC:R-HSA-5358747	S33 mutants of beta-catenin aren't	0.037	GSK3B,PPP2R5D	Wnt/beta-catenin signaling	hsa-miR-26a-5p	1
REAC:R-HSA-5358749	S37 mutants of beta-catenin aren't phosphorylated	0.037	GSK3B,PPP2R5D	Wnt/beta-catenin signaling	hsa-miR-26a-5p	1
REAC:R-HSA-5358751	S45 mutants of beta-catenin aren't phosphorylated	0.037	GSK3B,PPP2R5D	Wnt/beta-catenin signaling	hsa-miR-26a-5p	1
REAC:R-HSA-5358752	T41 mutants of beta-catenin aren't	0.037	GSK3B,PPP2R5D	Wnt/beta-catenin signaling	hsa-miR-26a-5p	1
REAC:R-HSA-5467337	APC truncation mutants have impaired AXIN binding	0.037	GSK3B,PPP2R5D	Wnt/beta-catenin signaling	hsa-miR-26a-5p	1
REAC:R-HSA-5467340	AXIN missense mutants destabilize the destruction complex	0.037	GSK3B,PPP2R5D	Wnt/beta-catenin signaling pathway	hsa-miR-26a-5p	1
REAC:R-HSA-5467348	Truncations of AMER1 destabilize the destruction complex	0.037	GSK3B,PPP2R5D	Wnt/beta-catenin signaling	hsa-miR-26a-5p	1
REAC:R-HSA-6781823	Formation of TC-NER Pre-Incision Complex	0.037	RPS27A,DDB1,POLR2E	cell cycle	hsa-miR-26a-5p	1
REAC:R-HSA-73762	RNA Polymerase I Transcription Initiation	0.037	UBTF,MTA3,POLR2E	transcription and splicing	hsa-miR-26a-5p	1

REAC:R-HSA-75955	RNA Polymerase II Transcription Elongation	0.037	RTF1,CDK9,POLR2E	transcription and splicing	hsa-miR-26a-5p	1
REAC:R-HSA-8848021	Signaling by PTK6	0.037	CCNE1,RPS27A,SFPQ	tyrosine kinase signaling	hsa-miR-144-5p, hsa-miR- 144-5p, hsa-miR-26a-5p, hsa-miR-26a-5p	4
REAC:R-HSA-8848021	Signaling by PTK6	0.037	CCNE1,RPS27A,SFPQ	tyrosine kinase signaling	hsa-miR-144-5p, hsa-miR- 144-5p, hsa-miR-26a-5p, hsa-miR-26a-5p	4
REAC:R-HSA-9006927	Signaling by Non-Receptor Tyrosine Kinases	0.037	CCNE1,RPS27A,SFPQ	tyrosine kinase signaling	hsa-miR-144-5p, hsa-miR- 144-5p, hsa-miR-26a-5p, hsa-miR-26a-5p	4
REAC:R-HSA-9006927	Signaling by Non-Receptor Tyrosine Kinases	0.037	CCNE1,RPS27A,SFPQ	tyrosine kinase signaling	hsa-miR-144-5p, hsa-miR- 144-5p, hsa-miR-26a-5p, hsa-miR-26a-5p	4
REAC:R-HSA-391251	Protein folding	0.037	CCNE1	protein synthesis	hsa-miR-144-5p	1
REAC:R-HSA-2468052	Establishment of Sister Chromatid Cohesion	0.038	STAG1,PDS5A	cell cycle	hsa-miR-128-3p	1
REAC:R-HSA-2470946	Cohesin Loading onto Chromatin	0.038	STAG1,PDS5A	cell cycle	hsa-miR-128-3p	1
REAC:R-HSA-2555396	Mitotic Metaphase and Anaphase	0.038	STAG1,LMNB1,KPNB1,PDS5A,TNPO1	cell cycle	hsa-miR-128-3p	1
REAC:R-HSA-447115	Interleukin-12 family signaling	0.038	LMNB1,HNRNPF,CANX	cytokine	hsa-miR-128-3p	1
REAC:R-HSA-68882	Mitotic Anaphase	0.038	STAG1,LMNB1,KPNB1,PDS5A,TNPO1	cell cycle	hsa-miR-128-3p	1
REAC:R-HSA-68884	Mitotic Telophase/Cytokinesis	0.038	STAG1,PDS5A	cell cycle	hsa-miR-128-3p	1
GO:0044788	modulation by host of viral process	0.039	PHB,NUCKSI	viral processes	hsa-miR-26a-5p	1
GO:0072331	signal transduction by p53 class mediator	0.04	MDM2,CNOT4,CNOT2,RPL23	cell cycle	hsa-miR-363-3p	1
GO:0097168	mesenchymal stem cell proliferation	0.041	CCNE1	cell cycle	hsa-miR-144-5p	1
REAC:R-HSA-1630316	Glycosaminoglycan metabolism	0.041	HS3ST1	hormone and metabolites	hsa-miR-144-5p	1
REAC:R-HSA-69206	G1/S Transition	0.041	CCNE1	cell cycle	hsa-miR-144-5p	1
REAC:R-HSA-69306	DNA Replication	0.041	CCNE1	cell cycle	hsa-miR-144-5p	1
REAC:R-HSA-196299	Beta-catenin phosphorylation cascade	0.041	GSK3B,PPP2R5D	Wnt/beta-catenin signaling	hsa-miR-26a-5p	1
REAC:R-HSA-6782135	Dual incision in TC-NER	0.041	RPS27A,DDB1,POLR2E	cell cycle	hsa-miR-26a-5p	1
REAC:R-HSA-6782210	Gap-filling DNA repair synthesis and ligation in TC-NER	0.041	RPS27A,DDB1,POLR2E	cell cycle	hsa-miR-26a-5p	1
REAC:R-HSA-6807070	PTEN Regulation	0.041	RPS27A,TNRC6B,RCOR1,MTA3	cell cycle	hsa-miR-26a-5p	1
REAC:R-HSA-69563	p53-Dependent G1 DNA Damage Response	0.041	CCNE1,RPS27A,MDM2	cell cycle	hsa-miR-144-5p, hsa-miR- 144-5p, hsa-miR-26a-5p, hsa-miR-26a-5p	4

REAC:R-HSA-69563	p53-Dependent G1 DNA Damage Response	0.041	CCNE1,RPS27A,MDM2	cell cycle	hsa-miR-144-5p, hsa-miR- 144-5p, hsa-miR-26a-5p, hsa-miR-26a-5p	4
REAC:R-HSA-69580	p53-Dependent G1/S DNA damage checkpoint	0.041	CCNE1,RPS27A,MDM2	cell cycle	hsa-miR-144-5p, hsa-miR- 144-5p, hsa-miR-26a-5p, hsa-miR-26a-5p	4
REAC:R-HSA-69580	p53-Dependent G1/S DNA damage checkpoint	0.041	CCNE1,RPS27A,MDM2	cell cycle	hsa-miR-144-5p, hsa-miR- 144-5p, hsa-miR-26a-5p, hsa-miR-26a-5p	4
GO:0032606	type I interferon production	0.041	IRAK1,IRF7	cytokine	hsa-miR-146a-5p	1
REAC:R-HSA-5663202	Diseases of signal transduction by growth factor receptors and second messengers	0.041	GSK3B,RPS27A,PHB,MDM2,PPP2R5D,POLR2E	diseases	hsa-miR-26a-5p	1
REAC:R-HSA-69615	G1/S DNA Damage Checkpoints	0.041	CCNE1,RPS27A,MDM2	cell cycle	hsa-miR-144-5p, hsa-miR- 144-5p, hsa-miR-26a-5p, hsa-miR-26a-5p	4
REAC:R-HSA-69615	G1/S DNA Damage Checkpoints	0.041	CCNE1,RPS27A,MDM2	cell cycle	hsa-miR-144-5p, hsa-miR- 144-5p, hsa-miR-26a-5p, hsa-miR-26a-5p	4
REAC:R-HSA-5250913	Positive epigenetic regulation of rRNA expression	0.041	GSK3B,MTA3,POLR2E	epigenetic changes	hsa-miR-26a-5p	1
GO:0000377	RNA splicing, via transesterification reactions with bulged adenosine as nucleophile	0.041	HNRNPU,SFPQ,POLR2E,HNRNPA0,CPSF2	transcription and splicing	hsa-miR-26a-5p	1
GO:0006289	nucleotide-excision repair	0.041	RPS27A,DDB1,POLR2E	cell cycle	hsa-miR-26a-5p	1
REAC:R-HSA-6804760	Regulation of TP53 Activity through Methylation	0.041	RPS27A,MDM2	epigenetic changes	hsa-miR-26a-5p	1
GO:0000375	RNA splicing, via transesterification reactions	0.042	HNRNPU,SFPQ,POLR2E,HNRNPA0,CPSF2	transcription and splicing	hsa-miR-26a-5p	1
KEGG:04110	Cell cycle	0.043	GSK3B,CCNE1,YWHAE,MDM2	cell cycle	hsa-miR-26a-5p	1
KEGG:04120	Ubiquitin mediated proteolysis	0.043	UBA2,RPS27A,DDB1,MDM2	protein synthesis	hsa-miR-26a-5p	1
REAC:R-HSA-109606	Intrinsic Pathway for Apoptosis	0.044	PPP1R13B,AKT3	apoptosis and senescence	hsa-miR-29c-3p	1
REAC:R-HSA-202131	Metabolism of nitric oxide: NOS3 activation and regulation	0.044	WASL,DDAH1	cellular signaling	hsa-miR-128-3p	1
GO:0031109	microtubule polymerization or depolymerization	0.044	ZNF207,BLOC1S2,TUBGCP5	cellular architecture	hsa-miR-26a-5p	1
GO:0044843	cell cycle G1/S phase transition	0.044	MDM2,CNOT4,CNOT2,FBXW7	cell cycle	hsa-miR-363-3p	1
REAC:R-HSA-453279	Mitotic G1 phase and G1/S transition	0.044	CCNE1	cell cycle	hsa-miR-144-5p	1
REAC:R-HSA-2995383	Initiation of Nuclear Envelope (NE) Reformation	0.045	LMNB1,KPNB1	cell cycle	hsa-miR-128-3p	1
REAC:R-HSA-2559583	Cellular Senescence	0.045	CCNEI	senescence	hsa-miR-144-5p, hsa-miR- 26a-5p	2
REAC:R-HSA-69242	S Phase	0.045	CCNE1	cell cycle	hsa-miR-144-5p	1
KEGG:04064	NF-kappa B signaling pathway	0.046	IRAK1,CARD10	NF kappa beta signaling pathway	hsa-miR-146a-5p	1

KEGG:04620	Toll-like receptor signaling pathway	0.046	IRAK1,IRF7	toll like receptor signaling	hsa-miR-146a-5p	1
KEGG:04933	AGE-RAGE signaling pathway in diabetic complications	0.046	SMAD2,PRKCE	signaling activity	hsa-miR-146a-5p	1
KEGG:05142	Chagas disease	0.046	IRAK1,SMAD2	diseases	hsa-miR-146a-5p	1
REAC:R-HSA-73854	RNA Polymerase I Promoter Clearance	0.047	UBTF,MTA3,POLR2E	cell cycle	hsa-miR-26a-5p	1
REAC:R-HSA-73864	RNA Polymerase I Transcription	0.047	UBTF,MTA3,POLR2E	cell cycle	hsa-miR-26a-5p	1
REAC:R-HSA-2559583	Cellular Senescence	0.047	CCNE1,RPS27A,TNRC6B,MDM2	senescence	hsa-miR-144-5p, hsa-miR- 26a-5p	2
REAC:R-HSA-1502540	Signaling by Activin	0.048	SMAD2	hormones	hsa-miR-146a-5p	1
REAC:R-HSA-209543	p75NTR recruits signalling complexes	0.048	IRAKI	cellular signaling	hsa-miR-146a-5p	1
REAC:R-HSA-209560	NF-kB is activated and signals survival	0.048	IRAKI	nF kappa beta signaling pathway	hsa-miR-146a-5p	1
REAC:R-HSA-9013973	TICAM1-dependent activation of IRF3/IRF7	0.048	IRF7	cellular signaling	hsa-miR-146a-5p	1
REAC:R-HSA-918233	TRAF3-dependent IRF activation pathway	0.048	IRF7	cellular signaling	hsa-miR-146a-5p	1
REAC:R-HSA-975144	IRAK1 recruits IKK complex upon TLR7/8 or 9 stimulation	0.048	IRAK1	toll like receptor signaling pathway	hsa-miR-146a-5p	1
GO:0034504	protein localization to nucleus	0.048	GSK3B,HNRNPU,YWHAE,MDM2	cellular architecture	hsa-miR-26a-5p	1
REAC:R-HSA-6781827	Transcription-Coupled Nucleotide Excision Repair (TC-NER)	0.048	RPS27A,DDB1,POLR2E	transcription and splicing	hsa-miR-26a-5p	1
REAC:R-HSA-2995410	Nuclear Envelope (NE) Reassembly	0.05	LMNB1,KPNB1,TNPO1	cell cycle	hsa-miR-128-3p	1
GO:0006296	nucleotide-excision repair, DNA incision, 5'-to lesion	0.05	RPS27A,DDB1	cell cycle	hsa-miR-26a-5p	1

Supplementary table 6: Role of selected brain specific transcription factors for which binding is affected by significant SNPs associated with Aβ42, BACE1 and sTREM2 levels in the CSF

Transcription factor	Clinical significance
AP-1_known1	upregulation of BDNF in cortical neurons of rats [1]; regulation of dendrite growth in the drosophilia [2]; involved in the regulation of APP in human glial cells [3]
CTCF_disc1, CTCF_known1	increased APP expression in hippocampus of rat model [4]; in mice downregulation of CTCF transcription factor increased in the number of microglia in the anterior cingulate cortex leading to gliosis and eventually neuronal death [5]
Ets_known1	regulates axon guidance and dendritic morphology during development [6]
Foxa_known4, Foxf1, Foxf2, Foxj2_2, Foxl1_1, Foxo_1, Foxo_2, Foxq1	Forkhead transcription factors family are involved in neuronal death, neuronal response to amyloid ß exposure leading to mitochondrial dysfunction, pro-inflammatory cytokines production, apoptosis [7, 8]
GATA_known1	regulates SCNA transcription in dopaminergic neurons leading to increased levels of α-synuclein [9]
Hbp1	neuronal differentiation in neurogenesis in mice models [10]
HDAC2_disc3	reduced expression of HDAC2-Sp3 in AD patients and AD mouse models, inhibition of HDAC2-Sp3 increased synaptic activity and plasticity in an AD mouse model [11]
Hoxa5_1	motor neuron differentiation in mice models [12]
Hsf_disc1	involved in proteostasis in neuronal cells through the regulation of HSP (heat shock protein) expression [13]; increases APP expression through binding of heat shock elements [14]
Mef2_known3	involved in microglial homeostasis; suppression of Mef2 associated with microglial phenotype associated with amyloid plaques in AD cortex [15]
Mxi1_disc1	involved in neuronal differentiation in xenopus [16]
NRSF_known1, NRSF_known2, NRSF_known3	NRSF (also known as repression element 1 silencing transcription factor) bind to neuron-restrictive silencer elements of the choline acetyltransferase gene in non-neuronal cells of animal models [17, 18]; protective effect on neuronal cells [19]; missense variation in REST associated with hippocampal volume loss [20];
PLZF	involved in cortical neurogenesis in mouse brains [21]; interacts with CEBPD to inhibit apoptosis in astrocytes of AD mice models [22]
Pou5f1_disc1, Pou5f1_known2	involved in cortical neurogenesis in mice [23]
RXRA_known4	variation in RXRa gene increases risk of AD through the regulation of genes involved in cholesterol metabolism [24]
Sin3Ak-20_disc7	regulated the expression of neuronal genes and neuronal differentiation [25]
Sox_2	stimulates the non-amyloidogenic processing of BAPP by stimulating ADAM10 activity [26]
SP1_disc3	regulates expression of APP, tau, PSEN2 promoter transcription and BACE1 [27-32]; in AD mouse model, inhibition of Sp1 increased memory deficits [33]

SP2_disc3	involved in neurogenesis [34]
SREBP_disc1	regulates cholesterol metabolism for the synthesis of the myelin membrane [35]
TAL1_disc1	involved in neurogenesis of GABAergic neurons [36]
TCF12_disc2,	involved in neurogenesis in mice models [37]
YY1_disc2, YY1_known6	involved in neurogenesis in mice models [38]

References

[1] Tuvikene J, Pruunsild P, Orav E, Esvald EE, Timmusk T. AP-1 Transcription Factors Mediate BDNF-Positive Feedback Loop in Cortical Neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 2016;36:1290-305.

[2] Hartwig CL, Worrell J, Levine RB, Ramaswami M, Sanyal S. Normal dendrite growth in Drosophila motor neurons requires the AP-1 transcription factor. Developmental neurobiology. 2008;68:1225-42.

[3] Trejo J, Massamiri T, Deng T, Dewji NN, Bayney RM, Brown JH. A direct role for protein kinase C and the transcription factor Jun/AP-1 in the regulation of the Alzheimer's beta-amyloid precursor protein gene. The Journal of biological chemistry. 1994;269:21682-90.

[4] Yang Y, Quitschke WW, Vostrov AA, Brewer GJ. CTCF is essential for up-regulating expression from the amyloid precursor protein promoter during differentiation of primary hippocampal neurons. Journal of neurochemistry. 1999;73:2286-98.

[5] Kwak J-H, Kim S, Yu N-K, Seo H, Choi JE, Kim J-i, et al. Loss of the neuronal genome organizer and transcription factor CTCF induces neuronal death and reactive gliosis in the anterior cingulate cortex. Genes, Brain and Behavior. 2020;n/a:e12701.

[6] Santiago C, Bashaw GJ. Transcription factors and effectors that regulate neuronal morphology. Development (Cambridge, England). 2014;141:4667-80.

[7] Maiese K. Forkhead Transcription Factors: Formulating a FOXO Target for Cognitive Loss. Current neurovascular research. 2017;14:415-20.

[8] Maiese K. Forkhead transcription factors: new considerations for alzheimer's disease and dementia. Journal of translational science. 2016;2:241-7.

[9] Scherzer CR, Grass JA, Liao Z, Pepivani I, Zheng B, Eklund AC, et al. GATA transcription factors directly regulate the Parkinson's disease-linked gene α-synuclein. Proceedings of the National Academy of Sciences. 2008;105:10907.

[10] Watanabe N, Kageyama R, Ohtsuka T. Hbp1 regulates the timing of neuronal differentiation during cortical development by controlling cell cycle progression. Development (Cambridge, England). 2015;142:2278-90.

[11] Yamakawa H, Cheng J, Penney J, Gao F, Rueda R, Wang J, et al. The Transcription Factor Sp3 Cooperates with HDAC2 to Regulate Synaptic Function and Plasticity in Neurons. Cell Reports. 2017;20:1319-34.

[12] Catela C, Shin MM, Lee DH, Liu JP, Dasen JS. Hox Proteins Coordinate Motor Neuron Differentiation and Connectivity Programs through Ret/Gfra Genes. Cell reports. 2016;14:1901-15.

[13] Qu Z, Titus ASCLS, Xuan Z, D'Mello SR. Neuroprotection by Heat Shock Factor-1 (HSF1) and Trimerization-Deficient Mutant Identifies Novel Alterations in Gene Expression. Scientific Reports. 2018;8:17255.

[14] Theuns J, Van Broeckhoven C. Transcriptional regulation of Alzheimer's disease genes: implications for susceptibility. Human Molecular Genetics. 2000;9:2383-94.

[15] Krasemann S, Madore C, Cialic R, Baufeld C, Calcagno N, El Fatimy R, et al. The TREM2-APOE Pathway Drives the Transcriptional Phenotype of Dysfunctional Microglia in Neurodegenerative Diseases. Immunity. 2017;47:566-81.e9.

[16] Klisch TJ, Souopgui J, Juergens K, Rust B, Pieler T, Henningfeld KA. Mxi1 is essential for neurogenesis in Xenopus and acts by bridging the pan-neural and proneural genes. Developmental biology. 2006;292:470-85.

[17] Shimojo M, Paquette AJ, Anderson DJ, Hersh LB. Protein kinase A regulates cholinergic gene expression in PC12 cells: REST4 silences the silencing activity of neuron-restrictive silencer factor/REST. Mol Cell Biol. 1999;19:6788-95.

[18] Hersh LB, Shimojo M. Regulation of cholinergic gene expression by the neuron restrictive silencer factor/repressor element-1 silencing transcription factor. Life Sci. 2003;72:2021-8.

[19] Mozzi A, Guerini FR, Forni D, Costa AS, Nemni R, Baglio F, et al. REST, a master regulator of neurogenesis, evolved under strong positive selection in humans and in non human primates. Scientific Reports. 2017;7:9530.

[20] Nho K, Kim S, Risacher SL, Shen L, Corneveaux JJ, Swaminathan S, et al. Protective variant for hippocampal atrophy identified by whole exome sequencing. Annals of neurology. 2015;77:547-52.

[21] Lin H-C, Ching Y-H, Huang C-C, Pao P-C, Lee Y-H, Chang W-C, et al. Promyelocytic leukemia zinc finger is involved in the formation of deep layer cortical neurons. Journal of Biomedical Science. 2019;26:30.

[22] Wang SM, Lee YC, Ko CY, Lai MD, Lin DY, Pao PC, et al. Increase of zinc finger protein 179 in response to CCAAT/enhancer binding protein delta conferring an antiapoptotic effect in astrocytes of Alzheimer's disease. Mol Neurobiol. 2015;51:370-82.

[23] McEvilly RJ, de Diaz MO, Schonemann MD, Hooshmand F, Rosenfeld MG. Transcriptional regulation of cortical neuron migration by POU domain factors. Science (New York, NY). 2002;295:1528-32.

[24] Kölsch H, Lütjohann D, Jessen F, Popp J, Hentschel F, Kelemen P, et al. RXRA gene variations influence Alzheimer's disease risk and cholesterol metabolism. Journal of cellular and molecular medicine. 2009;13:589-98.

[25] Chaubal A, Pile LA. Same agent, different messages: insight into transcriptional regulation by SIN3 isoforms. Epigenetics & Chromatin. 2018;11:17.

[26] Sarlak G, Htoo HH, Hernandez JF, Iizasa H, Checler F, Konietzko U, et al. Sox2 functionally interacts with β APP, the β APP intracellular domain and ADAM10 at a transcriptional level in human cells. Neuroscience. 2016;312:153-64.

[27] Lukiw WJ, Rogaev EI, Wong L, Vaula G, McLachlan DR, St George Hyslop P. Protein-DNA interactions in the promoter region of the amyloid precursor protein (APP) gene in human neocortex. Brain research Molecular brain research. 1994;22:121-31.

[28] Querfurth HW, Jiang J, Xia W, Selkoe DJ. Enhancer function and novel DNA binding protein activity in the near upstream betaAPP gene promoter. Gene. 1999;232:125-41.

[29] Docagne F, Gabriel C, Lebeurrier N, Lesné S, Hommet Y, Plawinski L, et al. Sp1 and Smad transcription factors co-operate to mediate TGF-beta-dependent activation of amyloid-beta precursor protein gene transcription. The Biochemical journal. 2004;383:393-9.

[30] Christensen MA, Zhou W, Qing H, Lehman A, Philipsen S, Song W. Transcriptional regulation of BACE1, the beta-amyloid precursor protein beta-secretase, by Sp1. Molecular and cellular biology. 2004;24:865-74.

[31] Heicklen-Klein A, Ginzburg I. Tau promoter confers neuronal specificity and binds Sp1 and AP-2. Journal of neurochemistry. 2000;75:1408-18.

[32] Renbaum P, Beeri R, Gabai E, Amiel M, Gal M, Ehrengruber MU, et al. Egr-1 upregulates the Alzheimer's disease presenilin-2 gene in neuronal cells. Gene. 2003;318:113-24.

[33] Citron BA, Saykally JN, Cao C, Dennis JS, Runfeldt M, Arendash GW. Transcription factor Sp1 inhibition, memory, and cytokines in a mouse model of Alzheimer's disease. American journal of neurodegenerative disease. 2015;4:40-8.

[34] Liang H, Xiao G, Yin H, Hippenmeyer S, Horowitz JM, Ghashghaei HT. Neural development is dependent on the function of specificity protein 2 in cell cycle progression. Development (Cambridge, England). 2013;140:552-61.

[35] Camargo N, Smit AB, Verheijen MHG. SREBPs: SREBP function in glia-neuron interactions. The FEBS Journal. 2009;276:628-36.

[36] Achim K, Peltopuro P, Lahti L, Tsai HH, Zachariah A, Astrand M, et al. The role of Tal2 and Tal1 in the differentiation of midbrain GABAergic neuron precursors. Biology open. 2013;2:990-7.

[37] Uittenbogaard M, Chiaramello A. Expression of the bHLH transcription factor Tcf12 (ME1) gene is linked to the expansion of precursor cell populations during neurogenesis. Brain research Gene expression patterns. 2002;1:115-21.

[38] Zurkirchen L, Varum S, Giger S, Klug A, Häusel J, Bossart R, et al. Yin Yang 1 sustains biosynthetic demands during brain development in a stage-specific manner. Nature Communications. 2019;10:2192.