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Abstract 41 

Background: Very low coverage (0.1 to 1x) whole genome sequencing (WGS) has 42 

become a promising and affordable approach to discover genomic variants of human 43 

populations for Genome-Wide Association Study (GWAS). To support genetic 44 

screening using Preimplantation Genetic Testing (PGT) in a large population, the 45 

sequencing coverage goes below 0.1x to an ultra-low level. However, its feasibility and 46 

effectiveness for GWAS remains undetermined. 47 

Methods: We devised a pipeline to process ultra-low coverage WGS data and 48 

benchmarked the accuracy of genotype imputation at the combination of different 49 

coverages below 0.1x and sample sizes from 2,000 to 16,000, using 17,844 embryo 50 

PGT with approximately 0.04x average coverage and the standard Chinese sample 51 

HG005 with known genotypes. We then applied the imputed genotypes of 1,744 52 

transferred embryos who have gestational ages and complete follow-up records to 53 

GWAS.  54 

Results: The accuracy of genotype imputation under ultra-low coverage can be 55 

improved by increasing the sample size and applying a set of filters. From 1,744 born 56 

embryos, we identified 11 genomic risk loci associated with gestational ages and 166 57 

genes mapped to these loci according to positional, expression quantitative trait locus 58 

and chromatin interaction strategies. Among these mapped genes, CRHBP, ICAM1 and 59 

OXTR were more frequently reported as preterm birth related. By joint analysis of gene 60 

expression data from previous studies, we constructed interrelationships of mainly 61 
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CRHBP, ICAM1, PLAGL1, DNMT1, CNTLN, DKK1 and EGR2 with preterm birth, 62 

infant disease and breast cancer. 63 

Conclusions: This study not only demonstrates that ultra-low coverage WGS could 64 

achieve relatively high accuracy of adequate genotype imputation and is capable of 65 

GWAS, but also provides insights into uncovering genetic associations of gestational 66 

age trait existed in the fetal embryo samples from Chinese or Eastern Asian populations.  67 

 68 

Keywords: Ultra-low coverage Whole Genome Sequencing, Imputation, Single 69 

Nucleotide Polymorphisms, Genome-Wide Association Study, Gestational Age, 70 

Preterm Birth 71 
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Background 96 

Detection and characterization of genetic variants associated with traits and diseases 97 

are fundamental to the study of human genetics. Genome-Wide Association Study 98 

(GWAS) is an approach widely used in genetic research that aims to decode the 99 

associations of specific genetic variations with particular diseases or traits in sample 100 

populations. In the past decade, GWAS has facilitated discovery of over one hundred 101 

thousand variants associated with complex traits in human (1). Whole-genome 102 

sequencing (WGS) has emerged as a dominant technology in GWAS because it enables 103 

one to generate a comprehensive view of the genomic variation landscape for not only 104 

a specific trait but also for common diseases. Thus, WGS-based approaches hold a 105 

significant advantage over genome-wide genotyping arrays or exome sequencing in the 106 

analysis of complete genetic variations. However, with a fixed budget, the high cost of 107 

sequencing many DNA samples is a limitation for GWAS (2-4). Recently, to reduce the 108 

cost of sequencing, a number of low (0.5-1x) or extremely low-coverage (0.1-0.5x) 109 

WGS has been carried out as an alternative method of genotyping (2, 5, 6). It is, 110 

however, unclear whether ultra-low coverage WGS (ulcWGS) below 0.1x data can 111 

capture enriched genetic variations across the entire allele frequency (AF) spectrum. 112 

When considering a balance between number of samples sequenced and sequencing 113 

read coverage, effective genotype imputation could provide more authentic DNA 114 

variants that would be helpful for genetic research. 115 

Genotype imputation can be used to infer missing genotypes and to increase the 116 

accuracy of detecting genetic variants, such as single nucleotide polymorphisms (SNPs). 117 
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In general, performance of genotype imputation is largely affected by sample size, 118 

sequencing coverage, analysis methods, and other parameters (7). A main challenge to 119 

use very low coverage WGS is how to achieve an adequately accurate imputation for 120 

downstream analyses. Previous attempts have shown the efficiency of low coverage 121 

WGS, for example, a high r2 of imputation accuracy observed by using 10 low coverage 122 

WGS (~0.5x) as compared to known genotypes (6). Pasaniuc et al. reported that the 123 

GWAS signals obtained from using 909 whole-exome sequencing (~0.24x) are 124 

comparable to using genotyping array (2). Gilly et al. found that more true association 125 

signals were identified by WGS (~1.0x) than the traditional array-based study (5). 126 

Using ulcWGS (0.06x-0.1x) with 141,431 samples from a Chinese genomic study, the 127 

accuracy of imputed genotypes reached 0.71 (8). Even though the distribution of 128 

genetic background from large number of samples is expected to compensate for the 129 

low sequencing coverages, it has never been determined how many samples are needed 130 

to achieve a relatively high accuracy. More importantly, lack of comparative data with 131 

coverages less than 0.05x results in the limited application of ulcWGS to GWAS. 132 

Gestational age is an important complex trait associated with biological processes 133 

and human disease. Biologically, gestational duration plays a vital role in both mental 134 

and physical health of children at an age of five-year-old (9). Gestational age shorter 135 

than 37 weeks is categorized as Preterm Birth (PTB). Previous studies found the 136 

contribution of both the maternal and fetal genomes to variation of gestational ages (10-137 

12). However, they focused on European and African samples by involving few 138 

samples from Chinese or Eastern Asian ancestries. Overall, biological mechanisms 139 
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underlying variation of gestational durations remain unclear, primarily because 140 

insufficient maternal or fetal genotypes with widespread gestational ages have been 141 

collected (13). Recently, Preimplantation Genetic Testing (PGT) with trophectoderm 142 

biopsy for embryo aneuploidy screening has become a common practice in in vitro 143 

fertilization (14, 15), and poses as an expectant source of genotypes for GWAS. 144 

However, if the average sequencing coverage of PGT is even lower than the lowest 145 

levels that have been reported in GWAS so far, it is necessary to examine whether such 146 

PGT datasets are appropriately applied to GWAS. 147 

In this study, we devised a pipeline for analyzing and applying the ulcWGS of 148 

17,844 embryo samples for GWAS. Our result shows that a large sample size is 149 

effective to increase the accuracy of genotype imputation even at an ultra-low coverage. 150 

Furthermore, using the imputed genotypes of 1,744 embryos that were successfully 151 

transferred and born with a widespread of gestational ages, we demonstrate the power 152 

of using ulcWGS in GWAS and provides insights into understanding genetic 153 

association of gestational age in embryos acquired from Chinese and East Asians. 154 

Refreshing the lowest coverage used in GWAS, our finding also provides a foundation 155 

for exploring the utilization of an even lower coverage for dissecting genotype-156 

phenotype associations. 157 

 158 

Methods 159 

Samples and sequencing coverage 160 

The whole PGT dataset of 17,844 embryos was from the Clinical Research Center for 161 

Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of 162 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 16, 2022. ; https://doi.org/10.1101/2022.06.15.22276464doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.15.22276464
http://creativecommons.org/licenses/by/4.0/


7 
 

China International Trust Investment Corporation - Xiangya. The protocol of embryo 163 

culture and biopsy was published in a related study (16). Three WGA kits were applied 164 

to the biopsied TE cells by following the manufactures’ guides, including REPLI-g 165 

Mini Kit (called MDA), WGA4 GenomePlex Single Cell Whole Genome 166 

Amplification Kit (called dop-PCR) and Rubicon Genomics PicoPlex Single Cell 167 

Whole Genome Amplification Kit (called PicoPlex). A 1-2 µg of the WGA product was 168 

subjected to library construction and sequencing on the four platforms, including BGI-169 

Seq 500, Illumina MiSeq, Ion Proton, Ion Torrent (Additional file 1: Table S2).  170 

 171 

Study design  172 

We developed a three-step pipeline to carry out genotype imputation using ulcWGS 173 

data and to perform GWAS of the detected SNPs (Fig. 1). Firstly, the raw reads of the 174 

17,844 embryo samples were aligned to the hs37d5 reference genome. Sequencing 175 

coverage of these embryo samples displays a distribution with an average coverage 176 

0.04x (Additional file 3: Figure S1). To our best knowledge, it is below the coverage of 177 

any dataset used previously for genotype imputation. After removing potential PCR 178 

duplicates, the aligned reads were used to call population SNPs. Secondly, we 179 

conducted genotype imputation on each individual sample at the called population 180 

SNPs and assessed the genotyping accuracy based on the standard Chinese sample 181 

HG005 with known genotypes from GIAB (Genome in a Bottle, NIST)(17). Last, we 182 

applied the imputed genotypes from 1,744 born embryos with complete follow-up 183 
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records to GWAS and explored biological associations between the genetic variants 184 

detected in the born embryos and their gestational ages. 185 

 186 

Sequencing read processing and alignment 187 

In the first step of Fig. 1, the raw reads of the PGT samples were delivered in two  188 

types, fastq or BAM. For BAM data, we used bedtools (18) to extract the raw reads into 189 

single-end fastq files. The raw reads of each sample were then aligned to the hs37d5 190 

reference genome using BWA (19). BWA-mem was applied to samples sequenced by 191 

the Ion Torrent with longer reads and “bwa aln” was used for the rest of the samples 192 

with shorter reads. Samtools rmdup (20) was used to remove the potential PCR 193 

duplicates.  194 

 195 

Population SNP calling 196 

In the population SNP calling stage, we modified the method of Liu et al. (8). The first 197 

stage is to use log-likelihood estimation for AF estimation, and the second stage is to 198 

use log-likelihood ratio test for determining allelic types. More details are described in 199 

Additional file 2: Supplementary Methods. 200 

SNP calls of the raw population were filtered following the rules, 1) calls that 201 

overlapped with the 35-kmer problematic alignment regions in hs37d5 were removed 202 

(21); 2) calls that overlapped with regions with ENCODE mappability uniqueness 203 

score unequal to 1 were removed (22), tool “bigWigToBedGraph” used afterward to 204 

convert the bigwig into bed format) (23). 205 

 206 
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Genotype imputation 207 

We used STITCH (24) version 1.5.7 for genotype imputation. The ancestral haplotypes 208 

number k was set as 20, the assumed number of generations nGen was set to 2000, and 209 

the reads were binned into windows with gridWindowSize 10000. The diploid mode in 210 

STITCH was used. Although using a reference panel is optional in STITCH, we used 211 

the IMPUTE2 1000 genome haplotypes phase 1 reference panel as it improves the 212 

accuracy of imputation when the sample size is small. With sample size larger than 213 

10,000, the improvement was not significant. All parameters were optimized by 214 

maximizing the 𝑟!  of the estimated AFs between imputation and population SNP 215 

calling in a randomly chosen 5 Mbp genomic region (chr3:180-185Mbp). When 216 

applying STITCH to the whole genome, we divided the genome into 5 Mbp windows 217 

with a 500 Kbp overlap between two windows. 218 

For benchmarking, seqtk was used to subsample the HG005 Illumina WGS raw 219 

reads to 0.01x-0.1x (Paired-end 250bp, 300-fold). We aligned the reads to hs37d5 by 220 

using the same pipeline as used in the embryo samples. Because a computer takes a few 221 

years to impute whole genome with tens of thousands of samples, we worked on only 222 

chromosome 1, the longest one in human. The genotype imputation was benchmarked 223 

according to 80 combinations of the 10-scale coverages of HG005 with 8 sizes of our 224 

samples from 2,000 to 16,000, respectively.  225 

All bi-allelic SNPs with MAF ≥ 0.01 found in chromosome 1 with the population 226 

SNP calling from the 17,844 samples are included for genotype imputation. We used 227 

the 167,814 SNPs both in our SNP callset and HG005 known genotypes for 228 
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benchmarking. The imputed genotypes were compared to the truth released by GIAB 229 

for estimating the imputation accuracy. Then, genotype imputation was applied to all 230 

17,844 embryo datasets at the 31,622,332 bi-allelic sites with MAF ≥ 0.01 found in 231 

population SNP calling. The entire imputation process spent 19 days and used 15 232 

machines with 16 cores (two 8-core Intel Xeon Silver 4108 CPU). Two filters “INFO 233 

score ≥ 0.4 and HWE p-value >1e-6” were applied to select the imputed genotypes. 234 

 235 

Genome-wide association study (GWAS) 236 

To conduct GWAS, we used score statistics (25) that is implemented in ANGSD (26). 237 

Variants satisfying four conditions were selected as inputs, including 1) known in 238 

dbSNP150, 2) MAF ≥ 0.01, 3) INFO score ≥ 0.4, and 4) HWE p-value > 1e-6. To 239 

remove biases, we specified 16 covariates for ANGSD, 8 most significant principal 240 

components calculated from the inputs of PCA (Additional file 2: Supplementary 241 

Methods), and 8 clinical records including maternal age, maternal BMI, fetal sex, either 242 

parent with single-gene disease, either parent with chromosome abnormality, multiple 243 

pregnancy, preeclampsia and gestational diabetes of mellitus. Except the default 244 

parameters, we set minHigh to 15 (requiring at least 15 high credible genotypes from 245 

the input) instead of 10 to achieve better accuracy with a large sample size. ANGSD 246 

did not create an output beta-coefficient, so we followed the ideas of Skotte et al. (25) 247 

by incorporating the genotype probabilities and all 16 covariates into a linear regression 248 

model, with the gestational age as a response variable. The effect size was calculated 249 

by the coefficient of genotypes.  250 
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Independent SNPs and genomic risk loci 251 

The significant SNPs from our GWAS were mapped to genomic risk loci using FUMA 252 

pipeline (27) and the LD information of 1000G EAS variants (28). We first defined 253 

“independent significant SNP”, a SNP that meets genome-wide significance level 254 

(p	value ≤ 4.515e − 8) and is independent of other significant SNPs (with LD r! <255 

0.6). FUMA also generated a set of lead SNPs with low LD and with other (r! < 0.1) 256 

from the independent significant SNPs. The genomic risk loci were identified by 257 

starting from these lead SNPs and through iteratively merging related genomic regions 258 

to them according to FUMA’s rules. 259 

Also, the FUMA pipeline sorted out a set of candidate SNPs from our inputs 260 

that meets one of two conditions, 1) the independent significant SNPs and 2) SNPs that 261 

are linked to the independent significant SNPs (with LD r! ≥ 0.6). For condition 2, 262 

the SNPs can be from our imputed genotypes if p value below 0.05 or from the reference 263 

panel of 1000G EAS. ANNOVAR was used to annotate the candidate SNPs (29). 264 

 265 

Functional annotation of the mapped genes  266 

DAVID online tool (30) was used to analyze the enrichment of Gene Ontology (GO) 267 

biological processes and KEGG pathways for the coding genes mapped to the risk 268 

loci. 269 

 270 

Gene mapping 271 

We used three gene-mapping strategies provided by FUMA (27), including positional, 272 

expression quantitative trait locus (eQTL) and chromatin interaction. For positional 273 
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mapping, ANNOVAR annotations were used. The candidate SNPs were mapped to the 274 

nearest genes within a maximum 10 Kbp distance. For eQTL mapping, expression data 275 

of all tissue types in GTEv6, GTEv7, and GTEv8 (31) were used. We required False 276 

Discovery Rate (FDR) < 0.05 and p value <0.001 for a valid eQTL mapping. All 277 

chromatin interaction data in FUMA were used (32-35). The promoter was set to 278 

upstream 2000 bp to downstream 500 bp of transcriptional starting sites. We required 279 

FDR < 1e-6 for a valid chromatin interaction mapping. 280 

 281 

Analysis of genome-wide mRNA expression data 282 

We first extracted the genome-wide microarray and RNA-seq data of human mRNA 283 

expression from GEO/NCBI database. The mRNA data includes three subsets in 284 

maternal PTB, infant PTB and breast cancer (Additional file 1: Table S8). Based on the 285 

normalized expression data provided by the database, we analyzed differentially 286 

expressed genes (DEGs) between different conditions, including 1) PTB vs. normal 287 

term, 2) BPD or sepsis vs. infant without BPD or sepsis, and 3) breast cancer vs. control 288 

samples. For microarray platform-based data, we used the limma package in R 289 

programming language and conducted empirical Bayes moderated t-test. DEGs were 290 

detected with a fold change above 1.5 and p value below 0.05. For RNA-seq data with 291 

raw counts, we utilized the Edge-R method to identify DEGs. The DEGs are listed in 292 

Additional file 1: Table S9. 293 

 294 
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Results 295 

Benchmarking genotype imputation using the ultra-low coverage 296 

sequencing data of 17,844 embryos and HG005 297 

We estimated the accuracy of the imputed genotypes from the SNPs of chromosome 1 298 

both called in our 17,844 samples and the known genotypes in HG005. The genotype 299 

imputation was benchmarked according to 80 combinations of the 10-scale coverages 300 

of HG005 with 8 sizes of our samples. A monotonic increase in accuracy with 301 

sequencing coverage was observed (Fig. 2a), consistent with previous studies (2, 24). 302 

The accuracy for sample size of 2,000 stayed at around 0.48 under all sequencing 303 

coverages. But for a larger sample size of 16,000, its accuracy increased from 0.48 at 304 

0.01x to 0.66 at 0.1x. This result suggests that at ultra-low coverages, increase in sample 305 

size could obtain higher accuracy (Additional file 1: Table S1). In general, a lower 306 

coverage with a larger sample size results in better performance than a higher coverage 307 

with a smaller sample size. For example, the genotype accuracy at 0.05x with 14,000 308 

samples versus 0.1x with 4,000 embryos was 0.61 versus 0.55. A larger sample number 309 

is therefore more efficient in optimizing genotype imputation than increasing sequence 310 

coverage. It is also noticed that at the two lowest coverages in our experiments, the 311 

contribution of increasing sample size was not significant and the accuracy plateaued 312 

at 0.52 (0.01x) and 0.55 (0.02x). Using the same datasets, we evaluated allele accuracy 313 

that relaxed zygosity correctness from genotype accuracy. The corresponding 314 

accuracies were much better (increased to 0.7 and higher) while maintaining the same 315 

trend with increasing sample size and coverage (Fig. 2b). Therefore, when the 316 
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genotypes are incorrectly imputed for some SNPs, the non-reference allele could be 317 

correctly detected. 318 

We next examined several important quality metrics that are widely used to filter 319 

falsely imputed genotypes. The INFO score of IMPUTE2 style (36) denotes the 320 

certainty of an imputed genotype and has been accepted as a quality metric of 321 

imputation. For a combination of 0.04x coverage with 16,000 samples, we 322 

benchmarked ten different INFO score thresholds from 0.1 to 1.0 and detected 323 

corresponding SNPs. As increase in the INFO scores, we observed a consistent increase 324 

in genotype accuracy from ~0.60 to 0.99, but a rapid decrease in number of SNPs that 325 

meet these thresholds (Fig. 3a). Thus, INFO score could act as an effective metric to 326 

evaluate the accuracies at ultra-low coverage, but its thresholds should be meticulously 327 

chosen in order to retain sufficient SNPs. Effect of MAF scores on genotype accuracy 328 

of HG005 were then tested as a potential metric. We divided the genotyping results at 329 

different sequencing coverages (sample size fixed to 16,000) into bins of MAF ranges 330 

(0.01 MAF a bin) and calculated the genotype accuracy each bin. The genotype 331 

accuracy increased rapidly from MAF 0 to 0.05 and reached a turning point at 0.05. 332 

After this point, the accuracy became slow increasing (Fig. 3b). However, even for the 333 

most common SNPs (MAF 0.4~0.5), the accuracy was converged at ~70%. The 334 

accuracy of the two lowest coverages 0.01x and 0.02x fluctuated especially at low MAF 335 

cutoffs. Because such fluctuation was not observed during INFO testing, MAF might 336 

not be a reliable metric to change genotype accuracy at ultra-low coverage. In 337 

subsequent analyses, we followed the common practice to use SNPs with MAF ≥ 0.01 338 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 16, 2022. ; https://doi.org/10.1101/2022.06.15.22276464doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.15.22276464
http://creativecommons.org/licenses/by/4.0/


15 
 

for GWAS. Finally, we combined HWE p-values with INFO scores as a filter but 339 

without losing too many SNPs. HWE p-values could evaluate the probability of the 340 

imputed genotype at a certain SNP that is significantly different from the expectations 341 

by Hardy-Weinberg Equilibrium. We summarized the genotype accuracy of different 342 

combinations of INFO scores and HWE p-value cutoffs in Table 1. When INFO scores 343 

were set above 0.4, the accuracies of genotype and allele were 70.0% and 83.4%, 344 

respectively, with 48,176 SNPs left. The “INFO score ≥ 0.4 and HWE p-value >1e-6” 345 

resulted in an increased accuracy 71.5%, with 28773 SNPs left. Thus, our GWAS 346 

utilized this setting, “INFO score ≥ 0.4 and HWE p-value >1e-6” as filtering criteria. 347 

To summarize our benchmarking results for future study on ulcWGS, we built a 348 

regression model (Formula 1) to calculate the expected genotype accuracy using 349 

sequencing coverage and sample size as inputs. 350 

𝑎𝑐𝑐 = 2.227 ∗ 𝑐 + 8.937𝑒"# ∗ 𝑠 + 0.494		(𝑐 ≥ 0.01, 𝑠 ≥ 4000) (1) 

where acc is the expected genotype accuracy, c denotes the sequencing coverage, s 351 

denotes the sample size. The model has a r! of 0.874 (Additional file 3: Figure S2). 352 

 353 

GWAS of gestational ages using 1,744 born embryos 354 

With the solid foundation laid out in the previous section, we have obtained sufficient 355 

good quality SNPs for GWAS. Among the 17,844 sequenced embryos, 1,744 were 356 

transferred and gave birth to a baby. The gestational age of all 1,744 born embryos are 357 

well documented and thus were chosen for biological associated study. We revised the 358 

population SNP calling method used in Liu et al. (8). A total of 151,793,444 SNPs were 359 

detected and of 141,718,305 are bi-allelic. The MAF spectrum bi-allelic novel and 360 
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known variants in dbSNPv150 (37), 1000G (28) and gnomAD (38) is shown in 361 

Additional file 3: Figure S3a. The transitions/transversions ratio for “all bi-allelic SNPs” 362 

and “bi-allelic SNPs known in dbSNPv150” were 3.05 and 3.58, respectively. Pearson 363 

correlation coefficient of the non-reference AFs between the 301 Chinese samples in 364 

1000G (so-called 1000G CHN (28)) and the corresponding SNPs obtained in our 365 

dataset was 0.986 (Additional file 3: Figure S3b). This result supports a strong 366 

correlation between the two datasets, and high confidence of the known variants used 367 

in our analysis. We also performed genotype imputation at bi-allelic population SNPs 368 

with MAF ≥ 0.01. Pearson correlation coefficient was 0.985, showing a high 369 

consistency between the estimated AFs in population SNP calling and in imputation. 370 

Three different whole genome amplification (WGA) methods and four different 371 

sequencing platforms were used in the PGT dataset (Additional file 1: Table S2). It is 372 

not uncommon that large number of samples may use multiple sequencing platforms 373 

and WGA. Removing these unrelated covariates from GWAS as much as possible is 374 

essential especially when the sequencing coverage is ultra-low. Such covariates should 375 

be detected and disregarded in GWAS. We applied Principal Component Analysis (PCA) 376 

to the imputed genotypes of SNPs with MAF ≥ 0.05 among all 17,844 embryo samples 377 

(Additional file 2: Supplementary Methods, Additional file 3: Figure S4a). The first and 378 

second principal components distinguish the differences of sequencing platforms 379 

(Additional file 3: Figure S4b) and of WGA methods (Additional file 3: Figure S4c). 380 

Therefore, we used the top eight principal components and eight other clinical records 381 

as covariates in GWAS. PCA was also applied to the GWAS samples and the top 382 
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principal components were included in the subsequent analyses as covariates for 383 

removing the biases. 384 

We used the state-of-the-art one-stage GWAS strategy (39) to analyze the 385 

1,107,198 imputed SNPs in the 1,744 transferred and born embryo samples with 386 

complete follow-up records. The distribution of gestational ages shown in Additional 387 

file 3: Figure S5 include 162 preterm deliveries (gestational age < 37 weeks), 42 early 388 

preterm deliveries (gestational age <34 weeks), and 8 very early preterm deliveries 389 

(gestational age <28 weeks). The gestational ages were standardized by z-score and 390 

incorporated as a quantitative trait. 391 

A total 1,107, 198 SNPs with imputed genotypes were selected for GWAS that 392 

are in accord with, 1) MAF ≥ 0.01, 2) known in dbSNPv150, and 3) passed the filter 393 

“INFO score ≥ 0.4 and HWE p-value >1e-6”. The Q-Q plot shows a large deviation of 394 

the observed p values from the null hypothesis (Additional file 3: Figure S6). The 395 

linkage disequilibrium score regression (LDSC) software package (40) with 1000G 396 

EAS reference was used to estimate 𝜆$% = 0.992, mean 𝜒! = 1.012. The LD score 397 

regression intercept was 0.952, standard error = 0.021, indicating that the population 398 

stratification and other factors were well-controlled. We identified 40 significant SNPs 399 

satisfying Bonferroni-corrected significant levels of 4.515e-8. The Manhattan plot 400 

shows the distribution of the detected SNPs cross all chromosomes (Fig. 4a, Additional 401 

file 1: Table S3). 402 

We used FUMA (27) pipeline for GWAS downstream analysis. First, FUMA 403 

generated a set of candidate SNPs and the 11 independent SNPs (Additional file 1: 404 
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Table S4). By annotation, most of the SNPs are located and enriched in intergenic and 405 

intronic regions (Fig. 4b), which is similar to the previous study (41). Specifically, there 406 

are 11 SNPs located in exons (0.8% of total), and 4 of them are non-synonymous SNPs 407 

(Additional file 1: Table S5). Additionally, we observed the distribution of regulatory 408 

elements and chromatin states with the candidate SNPs (Additional file 3: Figure S7). 409 

According to RegulomeDB scores assigned to each candidate SNP, 1.09% SNPs were 410 

classified as likely to affect regulator binding (score 2a and 2b) and 0.21% as likely to 411 

affect regulator binding and linked to expression of a gene target (score 1d and 1f). 412 

These proportions of SNPs hold a relatively high likelihood to affect the regulatory 413 

elements along noncoding regions. Second, we identified 11 leading SNPs from their 414 

corresponding genomic risk loci by FUMA. Fig. 4e shows the DNA length, number of 415 

SNPs and mapped genes of these risk loci. The zoom in locus plot of the 11 risk loci 416 

are shown in Additional file 3: Figure S8. Of 4 risk loci were reported to be associated 417 

with refractive astigmatism, adolescent idiopathic scoliosis, glomerular filtration rate, 418 

among others, indicating a possible connection of these diseases or traits with PTB 419 

(Additional file 1: Table S6).  420 

By integrating strategies positional, eQTL and chromatin interaction mappings, 421 

we identified a total of 166 genes mapped to the 11 risk loci, including 48 and 19 genes 422 

from two and three strategies, respectively (Fig. 4c, Additional file 1: Table S7). There 423 

were 24 genes detected within or less than 10 Kbp from the candidate SNPs and 7 of 424 

them were shown in Fig. 4a based on the location of the genomic risk loci. Importantly, 425 

CNTLN was reported as a PTB related gene (42), and PIN1 involves inhibition of breast 426 
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cancer (43). A Circos plot shows the graphic distribution of the mapped genes via eQTL 427 

and chromatin interaction, and their links with the genomic risk loci (Fig. 4d). The 428 

breakdown of each chromosome is shown in Additional file 3: Figure S9. Even though 429 

not within any risk loci, CRHBP was linked through chromatin interaction mapping to 430 

two loci, chr5:75101342-75164623 and chr5:78251511-78271282. Enrichment 431 

analysis of DEGs in 30 tissue types in GTEx v8 (44) exhibits significant overexpression 432 

of the mapped genes in both ovary and uterus (Additional file 3: Figure S10a). The 433 

gene-set enrichment analysis also indicates their association with the immune system, 434 

breast cancer and transcriptional regulation (Additional file 3: Figure S10b). 435 

 436 

Association of the 166 mapped genes from GWAS with preterm birth, 437 

infant disease and breast cancer 438 

GWAS of gestational age related PTB has been implicated in biological functions that 439 

include immune response, inflammatory response, and coagulation factors (11, 45-47). 440 

We compared our 166 mapped genes with reported PTB markers by collection of 8 441 

published resources, here classed to 3 PTB sets, including dbPTB from Sheikh et al. 442 

(48) and Uzun et al (49), PTB-merged from 5 data resources (10), and PNAS-identified 443 

DEGs of PTB in 2019 (10). We found that CRHBP, EMR1, ICAM1, MBL2, OXTR, and 444 

THBS4 have been reported in at least 2 PTB sets. Specifically, ICAM1 was present in 445 

all 3 sets and 6 data resources, and both CRHBP and OXTR in 5 resources (Additional 446 

file 1: Table S7). In addition, there were 8 genes overlapped with 1 PTB set (Fig. 5a). 447 

This result pinpoints a relationship of the detected risk loci with PTB, and possible roles 448 

of the overlapped genes in PTB. There are totally 1,930 genes reported as PTB-related; 449 
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however, only 50 were frequently recognized by at least 5 data resources, hereafter 450 

referred to as PTB marker genes (Additional file 1: Table S7). The 50-PTB marker set 451 

was significantly enriched with inflammatory and immune response related processes 452 

or pathways (Fig. 5b). Similarly, those PTB genes that overlapped with 3 or 4 resources 453 

mainly participate in the same biological functions. The PTB-related genes listed at Fig. 454 

5a involve immune response (EMR1, ICAM1, PTPRZ1 and MBL2), inflammatory 455 

response (CRHBP, ICAM1, PTPRZ1 and MBL2), coagulation (MBL2), apoptosis 456 

(PLAGL1) and cell adhesion (ICAM1 and THBS4), emphasizing their associations with 457 

PTB. 458 

To determine the relationship between the mapped genes and PTB, we first 459 

analyzed the DEGs between maternal PTB and normal term birth based on six 460 

published datasets of genome-wide gene expression (Additional file 1: Tables S8 and 461 

S9). Significant overexpression of CRHBP and OXTR were identified in two datasets, 462 

while overexpressed (ICAM1, EGR2, and PLAGL1) and underexpressed (THBS4) 463 

genes were present in one dataset (Table 2). Another DKK1 expressed higher levels 464 

above 2.0-fold in two datasets, suggesting its importance in PTB. Then, we analyzed 465 

four infant PTB datasets of gene expression, and found differentially increased 466 

expression of ICAM1, CRHBP, DKK1, EGR2, and PLAGL1, consistent with maternal 467 

PTB. In contrast, significantly underexpression of THBS4, PIN1 and GCNT4 was 468 

commonly detected by maternal and infant subgroups (Table 2). It is also noticed that 469 

DNMT1 shows increased expression in both fetal and maternal groups (Table 2). DNA 470 

methylation was suggested to involve generation of early PTB (10); however, the role 471 
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of DNMT1 as a DNA methyltransferase in PTB has not been determined yet. This 472 

analysis provides evidence that these mapped DEGs above including DNMT1 are 473 

associated with both maternal and infant PTB. Relatively, OXTR seems to be related to 474 

only maternal factor. A heatmap of mRNA expression shows clustering of 6 expression 475 

profile cross PTB and normal term conditions (Fig. 5c). Two clusters display distinct 476 

expression patterns of these PTB genes.  477 

It is well known that bronchopulmonary dysplasia (BPD) is the most common 478 

respiratory disorder among children born preterm (50, 51). The pathogenesis of BPD 479 

involves multiple prenatal and postnatal mechanisms affecting the development of 480 

immature lung. Also, neonatal sepsis is associated with severe morbidity and mortality 481 

during the neonatal stage. The incidence of late-onset sepsis increases with increase in 482 

survival rate of preterm and low weight babies (52). Thus, we examined the possible 483 

relationship of the 166 genes with infant BPD and sepsis by analyzing gene expression 484 

data derived from samples of preterm infants (Additional file 1: Table S8). We first 485 

identified differentially increased expression of CRHBP, ICAM1 and EGR2 under PTB 486 

of maternal & infant and BPD conditions, but differentially decreased expression of 487 

DKK1 (Table 2). Under sepsis condition, differentially overexpressed CNTLN, ICAM1, 488 

and PLAGL1 in PTB were consistently observed. By contrast, GCNT4 expression was 489 

always significantly decreased under maternal and infant subpopulations. The gene 490 

clustering shows diversity of gene expression across different samples with infant PTB; 491 

however, these up-regulated genes were grouped together (Fig. 5d), supporting the idea 492 

that BPD or sepsis induces the change in these PTB genes. 493 
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Breast cancer is one of the most frequently diagnosed malignancies observed 494 

during pregnancy. It often presents characteristics of high malignancy and are hormone 495 

receptor negative like Estrogen receptor (ER)-, HER2+ or triple negative breast cancer 496 

(TNBC). We collected gene expression data mainly presenting three subtypes of breast 497 

cancer, TNBC, HER2+ and ER or Progesterone receptor (PR) (Additional file 1: Table 498 

S8). By analysis of DEGs, we detected the expression of PTB related genes DKK1, 499 

ICAM1, DKK1, EGR2, PLAGL1, GCNT4 and THBS4 in all three subtypes. Increased 500 

ICAM1 and decreased PLAGL1 were consistently identified in these datasets (Table 2). 501 

In fact, ICAM1 has been reported as TNBC markers (53) and acts as prognostic 502 

molecule of breast cancer (54). Both ICAM1 and DKK1 could increase expression in 503 

TNBC cells (55). However, other PTB related genes do not display similar changes in 504 

expression under the cancer subtypes. For example, OXTR was detected by only one 505 

dataset of ER+/-, while CRHBP, EMR1, PIN1 and MBL2 were not found among any of 506 

the subtypes. Conversely, underexpression of PLAGL1 and GCNT4 were found in all 507 

three types of breast cancer. In addition, overexpression of DNMT1 was observed in 508 

TNBC and HER2+ subtypes, that validates its oncogenic roles in breast cancer and drug 509 

target of TNBC (56, 57).  510 

To identify further interactions between the selected PTB genes from Table 2 and 511 

the top 50 PTB markers, we calculated Pearson correlation coefficient by comparing 512 

their gene expression of maternal and infant PTB, BPD and sepsis subsets, respectively. 513 

We built the corresponding co-expression networks of the PTB genes (Additional file 514 

3: Figure S11). Clearly, the co-expressed genes involve immune and inflammatory 515 
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responses, coagulation, as well as apoptosis, angiogenesis, among others. We then 516 

constructed the networks cross different subpopulations. As shown in Fig. 6a, the PTB 517 

genes could involve both maternal and infant PTB processes, especially ICAM1, 518 

PLAGL1, EGR2 and CRHBP that link to TLR4, a known preterm marker associated 519 

with immune and inflammatory processes (58). Similarly, co-expression interactions of 520 

these genes with the top PTB markers were observed under maternal PTB and infant 521 

BPD (Fig. 6b). Both OXTR and PIN1 only display gene correlations under maternal 522 

PTB, whereas MBL2 only correlates under infant PTB. This analysis indicates that the 523 

predicted PTB-related genes including ICAM1, CRHBP, PLAGL1, EGR2, CNTLN, and 524 

DKK1, play an important role in preforming biological activities associated with PTB, 525 

infant disease, possibly breast cancer, due to the gestational age-induced. 526 

 527 

Discussion 528 

Low or very low coverage sequencing data have been increasingly used in discovery of 529 

genetic variation and GWAS. However, if the coverages are further decreased to 530 

extremely ultra-low levels, how many samples are required to obtain a relatively high 531 

accuracy of genotype, and whether these samples can be appropriately applied to 532 

GWAS. To address this challenge, we used 17,844 PGT datasets of embryo samples 533 

with an average of 0.04x coverage and achieved genotype imputation performance 534 

comparable to those using low coverage samples. We first demonstrate that increase in 535 

number of ulcWGS samples is more efficient than changing sequencing coverages and 536 

indicates the ability of such ultra-low coverage PGT samples to obtain adequate 537 

accuracy of phenotypes. Furthermore, we found that INFO score and HWE p-value are 538 
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effective to act as filters to improve the accuracy at ultra-low coverages while 539 

meanwhile keep enough SNPs for downstream analyses. To our best knowledge, the 540 

samples used in this study hold the lowest average WGS coverage for GWAS so far, 541 

and our study provides a framework for guiding other researchers who work on 542 

ulcWGS data. 543 

Gestational age is a multi-factor phenotype involved in maternal and fetal 544 

biological activities (59). To investigate effects of the fetal genome on gestational age, 545 

we used the imputed genotypes of 1,744 born embryo samples, a cohort of samples who 546 

successfully gave birth after in vitro fertilization. From the 166 genes mapped to the 11 547 

genomic risk loci, we identified a set of the PTB-related genes that were previously 548 

reported (12, 59). CRHBP, ICAM1, and OXTR are primary representative genes 549 

showing evidence of genetic association with gestational age among our samples. 550 

CRHBP is an important gene in maternal and fetal gestation that could regulate the 551 

pregnancy length by increasing/decreasing the concentration of CRH (60, 61). ICAM1 552 

involves disease induced PTB during pregnancy (62-64). Oxytocin signaling is 553 

mediated by Oxytocin receptor (OXTR), which is related to gestational age (65). We 554 

validated these predicted PTB genes by analysis of DEGs from maternal and infant 555 

PTB subpopulations. 556 

PTB is neonatal birth occurring before 37 weeks of gestation age and is a leading 557 

cause of infant morbidity and mortality. Understanding of genetic and molecular 558 

mechanisms of PTB and its association with gestation duration is currently insufficient. 559 

Recently, Zhang et al. reported replicable loci in six genes (EBF1, EEFSEC, AGTR2, 560 
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WNT4, ADCY5 and RAP2C) associated with gestational duration (12). This study 561 

identified 3 genes (EBF1, EEFSEC and AGTR2) strongly associated with PTB in a 562 

European ancestry cohort of 43,568 women. However, we did not detect such 6 genes 563 

from the reported PTB markers and only identified them as DEGs from few published 564 

datasets of PTB. This could be due to the heterogeneous sources of samples used in 565 

different PTB studies or be explained in part by the genetic complexity of incomplete 566 

gestation induced PTB complications. Here, we collected almost 2,000 PTB-related 567 

genes from previous PTB studies. The differences in study design, source and subtype 568 

of samples, and statistical methods would be important factors that could account for 569 

the diversity of PTB variants and genes among the various studies. Considering the 570 

possible association of PTB with other traits, we compared differential gene programs 571 

on multiple phenotypes between mother and infant reported in previous studies, and 572 

demonstrated a high risk of CRHBP, ICAM1, DNMT1, CNTLN, PLAGL1, DKK1 and 573 

EGR2 with PTB among our sample cohorts of Chinese or Eastern Asian ancestry. To 574 

support this finding, we reconstructed co-expressive networks linking the PTB-related 575 

genes in GWAS with the reported PTB markers. Indeed, the correlated PTB genes are 576 

mainly involved in immune & inflammation related processes and signaling pathways, 577 

as well as coagulation factors. Thus, these findings have biological implications for 578 

dissecting genetic associations of gestational factors with disease or traits in different 579 

human ancestries. 580 

Pregnancy is associated with an increased risk of developing breast cancer (66). 581 

Although several reports indirectly described relationship between breast cancer and 582 
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PTB (67), evidence is still lacking. To determine whether a correlation exists between 583 

PTB women and breast cancer pathogenesis, we compared differential expression of 584 

the PTB related genes in PTB samples and three subtypes of hormone receptor-related 585 

breast cancer samples. Although several DEGs were found in both PTB and cancer 586 

subtypes, their expression patterns are not consistent. It perhaps is because of different 587 

subtype of samples derived from heterogeneous populations, as well as different 588 

phenotypes involved in the analyses. Nevertheless, our data provides additional 589 

evidence that PTB might be related with breast cancer hormone-related subtypes. A 590 

graphic overview of our results is summarized in Fig. 6c. We proposed interplays of 591 

gestational age with PTB, fetal disease and breast cancer. The representative PTB genes 592 

CRHBP, ICAM1, THBS4, DNMT1, CNTLN, PLAGL1, DKK1 and EGR2 are likely 593 

associated with these phenotypes by targeting immune and inflammatory response, 594 

coagulation, and cell adhesion. 595 

Conclusions 596 

This study benchmarked the ability of ulcWGS to be used for genotype imputation. As 597 

the first study using a large cohort of human embryo samples with ulcWGS, we 598 

demonstrate its power and effectiveness in GWAS. We detected 40 significant SNPs 599 

and 11 genomic risk loci that contains independent significant SNPs and are associated 600 

with gestational age. From 166 genes mapped to the risk loci. We establish 601 

interrelationships between the mapped genes and maternal or infant diseases and 602 

provide insights into understanding the genetic associations of gestational ages. Our 603 

findings should expand current GWAS related to gestational duration and preterm trait 604 
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by including Chinese and East Asian samples and would therefore be helpful to future 605 

research. 606 

 607 
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Figures 906 

 907 

Fig. 1. An overview of the analysis and benchmarking pipeline for ultra-low 908 
coverage WGS.  909 
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 910 
 911 
Fig. 2. Imputation accuracy at different coverages and sample sizes. The accuracies 912 
of imputed genotype (a) or allele (b) were obtained by comparing with the known 913 
genotypes in HG005. After using filter “INFO score ≥ 0.4 and HWE p-value > 1e-6”" 914 
the accuracies of imputed genotype (c) or allele (d). 915 
 916 
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 917 

 918 
Fig. 3. Performance of different imputation result filters. The accuracies of our 919 
samples were calculated against the known genotypes in HG005. a, effect of INFO 920 
score filtering cutoffs on genotype and allele accuracies. The imputation was conducted 921 
by using 0.04x sequencing coverage of HG005 and with 16000 embryo samples. b, 922 
effect of MAF cutoffs on genotype accuracy at multiple sequencing coverages. The 923 
imputation was conducted through different sequencing coverages of HG005 with 924 
16000 embryo samples. 925 
 926 
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b
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 927 

 928 
Fig. 4. SNP-based genome-wide association on gestational age. a, Manhattan plot of 929 
the SNPs in GWAS. The red dash line represents the genome-wide significance level 930 
4.515e-8. The SNP “rs946934582” with p value of 2.764e-144 is beyond the scale, thus 931 
hereby listed alone. The genes shown are linking with the candidate SNPs and position 932 
of the corresponding genomic risk loci. b, functional annotation and enrichment test 933 
result of the candidate SNPs in FUMA. c, a Venn diagram of the 166 genes that could 934 
be mapped to the 11 genomic risk loci by positional, eQTL and chromatin interaction 935 
strategies. d, a Circos plot of the chromatin interactions and eQTL mapping in the 11 936 
genomic risk loci from eight chromosomes. The outer ring is chromosomes, the regions 937 
in blue denote genomic risk loci. The middle ring represents the mapped genes. The 938 
color of the gene symbols shows how they were mapped, eQTL in green, chromatin 939 
interaction in orange, and both eQTL and chromatin interaction in black. The inner ring 940 
shows the linking edges, eQTL in green, and chromatin interaction in orange. e, a 941 
summary of the 11 genomic risk loci. 942 
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 944 
Fig. 5. Comparison of the 166 genes mapped to 11 genomic risk loci with PTB and 945 
infant disease. a, the 166 mapped genes were compared with 3 sets of reported PTB 946 
genes including dbPTB from Sheikh et al. (48) and Uzun et al (49), PTB-merged from 947 
5 resources (10), and PNAS-identified DEGs in 2019 (10) (see Additional file 1: Table 948 
S8). b, a bar graph showing significantly enriched GO biological processes and KEGG 949 
pathways based on the 50 PTB marker genes (see Additional file 1: Table S7). c-d, 950 
heatmaps showing expression profiling and clusters of the PTB genes predicted from 951 
GWAS under maternal PTB (c) and PTB infant with BPD and sepsis (d). The gene 952 
expression data was extracted from the listed GSE accession numbers of NCBI/GEO. 953 

a b        

c                            d 

dbPTB

166 genes
from GWAS

PTB_merge

DEGs-PNAS

152

958

3

3

0

1

49

28

398

180

296

2

23
23

ICAM1

EMR1
THBS4

CRHBP
OXTR
MBL2

C14orf23
PLAGL1
EGR2

CNTLN
PTPRZ1
ZNF540

BHMT
OTP

0 2 4 6 8 10 12 14 16

TNF signaling pathway

response to lipopolysaccharide

aging

cell-cell signaling

Jak-STAT signaling pathway

Malaria

regulation of blood pressure

inflammatory response

Cytokine-cytokine receptor…

Rheumatoid arthritis

Inflammatory bowel disease

immune response

-log10 (p)

G
SE124361−PTB

G
SE68180−PTB

G
SE70461−Sepsis

G
SE149490−BPD

G
SE69686−Sepsis

G
SE104510−LSP−PTB

G
SE103192−VTB

G
SE138712−Sepsis

G
SE125873−BPD

G
SE108754−BPD

GCNT4

CNTLN

THBS4

PIN1

CRHBP

EGR2

ICAM1

PLAGL1

OXTR

MBL2

DKK1

−1.5

−1

−0.5

0

0.5

1

1.5
+

0

-

G
SE118442

G
SE9159

G
SE96083

G
SE5999

G
SE18809

G
SE73712

PLAGL1

THBS4

GCNT4

CNTLN

MBL2

PIN1

ICAM1

EGR2

OXTR

CRHBP

DKK1

−1.5

−1

−0.5

0

0.5

1

1.5+

0

-



41 
 

 954 

 955 
Fig. 6. Associated analysis of the PTB-related genes in maternal and infant 956 
subtypes. a, a gene co-expression network merging maternal and infant PTB subtypes. 957 
b, a gene co-expression network merging maternal PTB and BPD of preterm infant. In 958 
A and B, oval nodes represent PTB related genes predicted from GWAS using the 1,744 959 
born embryo samples, rectangle nodes refer to the 50 top PTB markers summarized 960 
from previously studies (Additional file 1: Table S7), involving immune or 961 
inflammation (blue), apoptosis (yellow), angiogenesis (green), coagulation (purple) and 962 
other biological processes (grey). Co-expressive edges (Pearson correlation p value < 963 
0.01) linking nodes represent maternal (red), infant (blue) and both maternal and infant 964 
(black). c, a graphic summary to illustrate gestational age’s association with PTB, infant 965 
disease and breast cancer. 966 
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Table 1. Genotype imputation performance with different filtering criteria 969 
 970 

Filtering criteria SNP number Genotype accuracy Allele accuracy 
None 167814 0.584 0.758 
Known SNP in 1000G reference panel 141161 0.578 0.751 
INFO score ≥ 0.1 156835 0.591 0.771 
INFO score ≥ 0.2 126331 0.618 0.794 
INFO score ≥ 0.3 84932 0.656 0.815 
INFO score ≥ 0.4 48176 0.7 0.834 
MAF ≥ 0.05 162788 0.597 0.777 
HWE p-value > 1e-9 84237 0.595 0.695 
HWE p-value > 1e-6 77419 0.596 0.692 
HWE p-value > 1e-3 65561 0.599 0.687 
HWE p-value > 1e-6 and INFO score ≥ 0.1 68505 0.610 0.713 
HWE p-value > 1e-6 and INFO score ≥ 0.2 55972 0.646 0.751 
HWE p-value > 1e-6 and INFO score ≥ 0.3 42202 0.681 0.786 
HWE p-value > 1e-6 and INFO score ≥ 0.4 28773 0.715 0.818 

Totally 16,000 samples with an average of 0.04x sequencing coverage were used for imputation. 971 
 972 
Table 2. Main mapped genes differentially expressed in PTB, infant disease and 973 
breast cancer 974 
 975 

Genes 

mapped 

to risk 

loci 

Overlapped No. 

with the reported 

PTB datasets 

No. of DEGs detected in gene expression data 

Maternal 

PTB 

Infant PTB Infant 

BPD 

Infant 

sepsis 

Breast cancer 

ER, PR 

Breast cancer 

TNBC 

Breast cancer 

HER2+ 

ICAM1 6 1(up) 2(up) 1(up) 1(up) 1(up),2(down) 2(up) 1(up) 

CRHBP 5 2(up) 1(up) 1(up)     

OXTR 5 2(up)    1(up) 1(down)  

THBS4 3 1(down) 1(down)  1(up) 1(up) 2(down) 1(up),1(down) 

EGR2 2 1(up) 1(up) 1(up)  1(up) 2(down) 2(down) 

CNTLN 1 1(up) 1(up),1(down)  1(up) 1(down)  1(down) 

MBL2 4  1(up)      

EMR1 2   1(up)     

PLAGL1 1 1(up) 2(up)  1(up) 2(down) 2(down) 2(down) 

DKK1  2(up) 1(up) 1(down)  2(down) 3(up),1(down) 1(up),1(down) 

GCNT4  1(down) 2(down) 1(down) 2(down) 1(up),2(down) 1(down) 1(down) 

DNMT1  1(up) 1(up)    1(up) 1(up) 

PIN1  1(down) 1(down)      

PTB related genes identified in our GWAS were compared with DEGs identified in published gene 976 
expression datasets (Additional file 1: Table S9). “up” and “down” indicate differentially overexpressed 977 
and underexpressed gene, respectively. 978 


