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Abstract: 

Background: The COVID-19 pandemic has caused societal disruption globally and 
South America has been hit harder than other lower-income regions. This study modeled 
effects of 6 weather variables on district-level SARS-CoV-2 reproduction numbers (Rt) in 
three contiguous countries of Tropical Andean South America (Colombia, Ecuador, and 
Peru), adjusting for environmental, policy, healthcare infrastructural and other factors. 

Methods: Daily time-series data on SARS-CoV-2 infections were sourced from 
health authorities of the three countries at the smallest available administrative level. Rt 
values were calculated and merged by date and unit ID with variables from a Unified 
COVID-19 dataset and other publicly available sources for May – December 2020. 
Generalized additive mixed effects models were fitted. 

Findings: Relative humidity and solar radiation were inversely associated with 
SARS-CoV-2 Rt. Days with radiation above 1,000 KJ/m2 saw a 1.3%, and those with 
humidity above 50%, a 1.0% reduction in Rt. Transmission was highest in densely 
populated districts, and lowest in districts with poor healthcare access and on days with 
least population mobility. Temperature, region, aggregate government policy response and 
population age structure had little impact. The fully adjusted model explained 3.9% of Rt 
variance. 

Interpretation: Dry atmospheric conditions of low humidity increase, and higher 
solar radiation decrease district-level SARS-CoV-2 reproduction numbers, effects that are 
comparable in magnitude to population factors like lockdown compliance. Weather 
monitoring could be incorporated into disease surveillance and early warning systems in 
conjunction with more established risk indicators and surveillance measures. 

Funding: NASA’s Group on Earth Observations Work Programme (16-GEO16-
0047). 

Keywords: Coronavirus; COVID-19; SARS-CoV-2; Climate; Hydrometeorology; 
Pandemic disease; Latin America; Peru; Ecuador; Colombia.  
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Introduction: 1 

Since its discovery in Wuhan, China in December 2019, the SARS-CoV-2 virus has 2 

swept the globe, overwhelming national healthcare services in successive waves and 3 

variants, and causing widespread socio-economic insecurity and societal unrest in virtually 4 

every country of the world.1,2 As of the time of writing, over 533 million infections and 6.3 5 

million deaths globally, have been attributed to the virus3, though the true toll is 6 

undoubtedly far higher than official statistics, and may have surpassed 3.8 billion infections 7 

(40% of the global population) and 15 million deaths.4 South America has been hit harder 8 

by the Coronavirus disease (COVID-19) pandemic than other predominantly lower income 9 

regions with some of the highest excess mortality and case fatality rates (CFR), its 58 10 

million confirmed cases (>256 million estimated total) leading to over 1.3 million 11 

confirmed deaths (>1.7 million total), putting further strain on a region where many 12 

countries struggle with political instability, humanitarian crises, and income inequality.3–6 13 

From the early days of the pandemic, questions were raised about the possible influences 14 

of climate and meteorology on the transmission of the virus given the known sensitivity of 15 

other respiratory viruses to these factors.7,8 One early study noted that COVID-19 16 

community transmission at the beginning of the pandemic was especially high along a 17 

temperate mid-latitude belt of the northern hemisphere.9 However, it was already clear by 18 

that early stage that the influence of such factors was small relative to that of population 19 

density and age structure, and timing of and compliance with non-pharmaceutical 20 

interventions (NPIs) such as lockdowns, travel restrictions and hygiene measures, and 21 

initial research rightly prioritized these more proximal drivers.10–12 22 
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With the pandemic in its third year, and with the likely prospect that SARS-CoV-2 23 

will continue to circulate as an endemic, seasonal and vaccine-preventable virus for the 24 

foreseeable future13, attention has turned again to the role of meteorological factors in 25 

COVID-19 transmission.8,14 The demand for real-time data with which to track the global 26 

health crisis has prompted a proliferation of online repositories and interfaces, which 27 

curate and disseminate epidemiological data with global scope and increasing spatial and 28 

temporal resolutions.6,15,16 Disease data can be matched by date and location to high 29 

resolution estimates of spatiotemporal variation in environmental and hydrological 30 

conditions derived from remote sensing and climate models for further analysis.17 31 

Numerous studies have applied this approach to subnational unit-level case reports in an 32 

attempt to model associations between hydrometeorological variables and SARS-CoV-2 33 

outcomes18,19, however there is considerable variation in how confounding factors and 34 

error in case reporting are captured20,21, and a disproportionate emphasis on High Income 35 

Countries, mostly in the temperate mid-latitudes.22 36 

The aim of this study was to model the effects of weather on the district-level SARS-37 

CoV-2 reproduction number (Rt) for three contiguous countries of Tropical Andean South 38 

America (Colombia, Ecuador, and Peru), with an expanded suite of hydrometeorological 39 

parameters and after further adjusting for environmental, policy, healthcare infrastructural 40 

and other factors during the first wave of the epidemic, when a single circulating variant 41 

predominated and there was no population level immunity that contributed to 42 

transmission dynamics.. 43 
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Methods: 44 

Scope of Analysis: 45 

The three Tropical Andean South American countries of Colombia, Ecuador and 46 

Peru were chosen for this analysis, since together they constitute a large contiguous 47 

territory, roughly evenly split between the northern and southern hemispheres and 48 

broadly divisible into coastal, highland, and interior regions. Furthermore, all three 49 

countries have comparable health information system capacity and make publicly available 50 

daily reports of new COVID-19 cases at highly geographically disaggregated levels. The 51 

analysis was restricted to the mainland areas of the three countries, excluding outlying 52 

island territories, and to the period from May to December 2020, during which 53 

transmission of the virus was fully established and NPIs in place19, but before the 54 

emergence of major variants of concern and the introduction of vaccines. 55 

Epidemiological Data: 56 

Daily time series data on confirmed SARS-CoV-2 infections were sourced from 57 

national health authority websites at the smallest available administrative level 58 

(Colombian municipalities, Ecuadorian cantons and Peruvian districts, hereafter 59 

generically referred to as “districts”).23–25 These data were used to calculate district-level 60 

daily Rt using EpiNow2, an R package for estimating time-varying epidemiological 61 

parameters of SARS-CoV-2 from subnational case notification data accounting for right 62 

truncation, underreporting and uncertain reporting delays and incubation periods.26 Daily, 63 

district-level Rt estimates were treated as the outcome variable for the analysis and are 64 
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interpreted as the mean number of new infections caused by a single infected person on a 65 

given day in a given district. If a district records zero cases for an extended period, its daily 66 

Rt will converge on a default value of 1, which is difficult to interpret in the absence of 67 

actual disease. However, because the calculation of Rt accounts for the disease incubation 68 

period, the metric lags the cases used to calculate it, so changes in Rt may precede increases 69 

and decreases in case counts by several weeks. It is therefore possible for a district to have 70 

a daily Rt of greater than 1 while reporting zero cases, due to the delay in increases in 71 

transmission being reflected in case reporting. Due to the high resolution and inclusion of 72 

many remote and sparsely populated districts in the dataset, there was a large proportion 73 

of unit-days with zero reported cases of COVID-19 (75.5%). We therefore excluded all unit-74 

days in which both: a). no cases were reported and b). Rt had a calculated value of between 75 

0.95 and 1.05, with the purpose of restricting the analysis to observations with 76 

interpretable outcome values. 77 

Hydrometeorological Data: 78 

Hydrometeorological data were sourced from the Unified COVID-19 dataset 79 

compiled by Badr and colleagues16, in which variables were in turn extracted from the 80 

second generation North American Land Data Assimilation System (NLDAS-2) and the fifth 81 

generation European Centre for Medium-Range Weather Forecasts (ECMWF) atmospheric 82 

reanalysis of the global climate (ERA5) at administrative unit centroids.27–29 Both datasets 83 

perform well in validation studies28,30 and are comparable to those used in retrospective 84 

infectious disease modeling31, with the advantage that their much shorter latency periods 85 

(4-6 days) make them better suited for prospective forecasting of disease dynamics.16 All 86 
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available hourly, population-weighted ERA5 and NLDAS values since January 1, 2020 were 87 

extracted, aggregated to daily mean or total values, and matched by date and district to the 88 

Rt values. The following variables were included as the main exposures of interest based on 89 

their documented or hypothesized associations with SARS-CoV-2: near surface air 90 

temperature (℃)32,33; relative humidity (%)34; solar radiation (KJ/m2)35; total precipitation 91 

volume (mm)36; average 10-m above ground wind speed (m/s).37 In addition, average 92 

volumetric soil moisture (m3/m3) was included as a negative control exposure38, since it is 93 

a variable presumed to affect infectious disease transmission through its influence on 94 

pathogen survival on surfaces and fomites31, which is thought to be at most only a 95 

secondary mode of SARS-CoV-2 transmission.39 Specific humidity (kg/kg) estimates were 96 

excluded from the main analysis due to being highly correlated with temperature in this 97 

dataset (ρ = 0.88), and only included in a secondary analysis reported in the 98 

supplementary appendix. 99 

Covariate Data: 100 

The following variables (summarized in Table 1) were included as covariates to 101 

adjust for their potential confounding effects on the main associations of interest: 102 

Natural regions: To account for potential residual confounding due to geographical 103 

and topographical differences across the three countries that may affect disease 104 

transmission40, their territories were grouped into three broad, cross-cutting ecological 105 

zones, based on the “natural region” categories used by the Peruvian national statistical 106 

authority - coastal, highland (the Andes), and interior (the Amazon and Orinoco basins).41–107 

43 These were deemed to be less arbitrary from the point of view of transmission and 108 
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meteorological dynamics than alternative groupings based on political divisions such as 109 

higher-level administrative units. The three regions are shown in figure 3d. 110 

Population density: Densely populated urban areas are often struck earlier and 111 

harder by epidemics due to their roles as transport hubs and increased contact rates 112 

between susceptible and infectious individuals.44 Since sparsely populated areas may also 113 

differ systematically in the climate conditions that they experience, population density was 114 

included as a potentially confounding covariate in this analysis and calculated as the 115 

district-level zonal mean value extracted from the WorldPop raster of global population 116 

distribution.45 117 

Population age structure: Because the symptomaticity and severity of SARS-CoV-2 118 

infection increases with age46, areas with a larger proportion of their population in the 119 

more susceptible elderly age groups may have higher rates of case reporting and 120 

infectiousness. Population age structure varies geographically to a considerable degree, 121 

therefore the proportion of a district’s population that is over the age of 65 years was 122 

calculated from the WorldPop rasters of population per 5-year age group and included in 123 

the model. 124 

Access to healthcare facilities: The time it takes to travel to a health facility to seek 125 

care also varies geographically as a function of population density, transport infrastructure 126 

and local topography.47 Connectivity has been shown to influence variation in SARS-CoV-2 127 

outbreaks in sub-Saharan Africa48 and travel time to care-seeking might affect contact rates 128 

between infected and susceptible individuals or the probability that infected persons are 129 

treated and registered in health information systems. The district-level mean travel times 130 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 16, 2022. ; https://doi.org/10.1101/2022.06.13.22276339doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.13.22276339
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 
 

to the nearest healthcare facility using motorized transport in 2020 were extracted using 131 

zonal statistics from the geographical estimates published by Weiss and colleagues.47 132 

Government policy response data: The timing and stringency with which national 133 

governments introduced public health interventions such as travel restrictions, school 134 

closures and bans on gatherings and public events are major factors influencing 135 

geographical variation in the trajectory of the pandemic.19,44,49 The Oxford Covid-19 136 

Government Response Tracker (OxCGRT) project collates information on numerous 137 

government policy responses into a publicly available database, assigns them scores 138 

reflecting their strictness and aggregates these into policy metrics including the stringency 139 

index50, which was included as a national-level, time-varying covariate in this analysis. 140 

Population mobility: Compliance with NPI mandates and recommendations differ 141 

between subnational populations leading to variation in transmission risk.51,52 As a proxy 142 

indicator for compliance with social distancing, lockdown measures and travel restrictions, 143 

population mobility metrics were sourced from Google’s Community Mobility Reports.53 144 

These indicators track trends in Android smartphone users’ movements over time relative 145 

to a pre-pandemic baseline, by subnational region and for six categories of location.53 The 146 

“residential” metric was used and merged with the database by date at the 1st 147 

administrative unit level (hereafter generically referred to as “provinces”), since coverage 148 

was more complete at that level than for districts. This variable can be interpreted as the 149 

percent change in time spent in residential areas compared to before the pandemic, with a 150 

higher value therefore corresponding to greater population compliance with social 151 

distancing or lockdowns. The Google mobility dataset includes intentional gaps for unit-152 
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dates that don’t meet a quality and privacy threshold, which are to be considered “true 153 

unknowns”, so these intermittent missing values were substituted using linear 154 

interpolation by date within each province.53 155 

Statistical Analysis 156 

Variables were merged based on district/province ID and date and highly skewed 157 

variables were normalized using Ordered Quantile (ORQ) transformation. A generalized 158 

additive mixed effects model (GAMM) was fitted to the Rt outcome assuming a Gaussian 159 

distribution, log link, and REML smoothing parameter estimation method. Cubic spline 160 

terms with 3 degrees of freedom were specified for all continuous exposure variables to 161 

account for non-linearity. Natural regions were modeled as a factor variable with the 162 

coastal region as the reference category. District-level random effects were specified to 163 

account for within-unit non-independence of the observations. The modeled, adjusted 164 

associations were visualized in partial dependence plots of Rt predictions across the range 165 

of values of each continuous exposure. Variable importance was assessed and ranked by 166 

computing the mean absolute accumulated local effects (ALE) of each predictor. To assess 167 

and compare relative effects, highly ALE-ranked variables were dichotomized at specific 168 

thresholds and otherwise identical GAMMs refitted to calculate the percent difference in Rt 169 

on unit-days above compared to below those thresholds.54 To quantify the variance 170 

explained by the hydrometeorological relative to the other variables, the R2 of the final 171 

model was compared to that of an otherwise identical model that included only the non-172 

hydrometeorological predictors. Data processing, visualization, and analysis were carried 173 

out using R 4.0.355, Stata 1656, and ArcMap 10.8.57  174 
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Results: 175 

Data from the 3,212 mainland districts of the three countries were included for the 176 

245-day period from May 1st to December 31st, 2020, resulting in a dataset with a total of 177 

786,940 unit-day observations. 564,738 (71.8%) observations were excluded due to having 178 

both zero cases and an estimated Rt value of between 0.95 and 1.05. A further 6,952 (3.6% 179 

of the remaining observations had missing mobility index data, leaving 184,870 complete 180 

observations to which the model was fitted. Figure 1 shows choropleth maps of the 181 

geographical distribution of cumulative COVID-19 cases and average SARS-CoV-2 Rt (after 182 

applying exclusion criteria) summarized from daily values over the period of analysis. 183 

Neither showed a marked geographical pattern, though cumulative case burden (figure 184 

1a.) exhibited notably lower values in the Peruvian highland districts, while many of the 185 

highest average Rt values (figure 1b.) were seen in the Ecuadorian and Colombian 186 

highlands. In Peru, the districts reporting more than 10,000 cases over the analysis period 187 

were in the Greater Lima Region as well as the other coastal cities of Trujillo and Chiclayo, 188 

while in Ecuador, aside from cantons of the three major cities of Guayaquil, Quito and 189 

Cuenca, the much less populous canton of Cañar also exceeded this threshold. Colombia 190 

experienced more numerous pockets of high cumulative cases in the major metropolitan 191 

municipalities of its highlands – Bogotá, Medellín, Cali – and Caribbean coast – 192 

Barranquilla, Cartagena – as well as several relatively smaller cities including Valledupar, 193 

Manizales, and Soledad. 194 

Figure 2 shows equivalent choropleth maps for averages of the six 195 

hydrometeorological variables. The lowest average temperature values (figure 2a.) 196 

occurred along the Andes, particularly in the southern Peruvian stretch, while the highest 197 
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occurred in the low-lying interior regions of the Amazon and Orinoco basins, as well as 198 

coastal Ecuador and Colombia. relative humidity (figure 2b.) and soil moisture (figure 2c.) 199 

exhibited similar spatial distributions with the highest average values in the interior areas 200 

of the three countries and along the Colombian coast, except for the arid Guajira peninsula, 201 

which had very low soil moisture content of <0.2 m3/m3. Other areas of very low humidity 202 

and soil moisture included Peru’s coastal Sechura Desert and Colombia’s central Tatacoa 203 

Desert, as well as small pockets along the Ecuadorian coast. Average wind speeds (figure 204 

2d.) exceeded 1 m/s along most of the Pacific and Caribbean coasts, and the high elevation 205 

Andean districts, while the mid-elevation windward and leeward Andean districts tended 206 

to have wind speeds of less than 0.5 m/s as did parts of north central Colombia. 207 

Precipitation distribution (figure 2e.) largely mirrored that of soil moisture and relative 208 

humidity with the Guajira, Sechura and Tatocoa Deserts experiencing low average daily 209 

rainfall of <1.5mm, and the Pacific coast and interior of Colombia exhibiting the wettest 210 

conditions. A belt of high solar radiation (figure 2f.) extended along Peru’s coast, which 211 

widened in the southeast to incorporate highland areas of the Andean Plateau. The only 212 

other area of comparable radiation levels was on Colombia’s Guajira peninsula. 213 

Figure 3 shows equivalent maps for the non-hydrometeorological covariates, 214 

including the extents of the three natural regions (figure 3d.). The population (figure 3f.) 215 

of the three countries is concentrated along the coasts and highlands, with the exceptions 216 

of Colombia’s sparsely populated Darién Gap and the high elevation districts of Peru’s 217 

southeast Andes. The population of the countries’ interiors is not only sparse, but also most 218 

highly skewed towards the younger age groups (figure 3e.), while the highlands and Peru’s 219 

coastal plains have some of the districts with the highest percentage of the population over 220 
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65 years. Access to healthcare, as measured by average travel time to the nearest health 221 

facility by motor transport (figure 3a.), tends to vary inversely with population density, 222 

with the lowest levels of accessibility seen in the interior regions and along Colombia’s 223 

Pacific coast, the coasts and Andean highlands having the majority of districts with an 224 

average travel time of under an hour. Over the period from May to December 2020, Peru 225 

had the most, and Ecuador the least stringent policy response to the pandemic on average 226 

(figure 3b.). Average time spent in residential locations (figure 3c.) was highest (meaning 227 

mobility was lowest) in Peru’s coastal and southern highland areas, in Ecuador’s central 228 

highlands and in the Capital District of Bogotá, Colombia and lowest in provinces along the 229 

countries’ land borders and Colombia’s Pacific coast. 230 

Figure 4 visualizes the adjusted associations from the GAMM. Precipitation and 231 

wind speed were ORQ-transformed due to their skewed distributions. All six variables 232 

were highly statistically significantly associated with the outcome at the α<0.0001 level. 233 

Temperature’s effect (Figure 4a.) on district-level Rt was negligible in size, taking on a 234 

slight sinusoidal shape across the range of the variable’s distribution. Precipitation (Figure 235 

4b.) showed a broadly lop-sided U-shaped association with Rt with the lowest predicted 236 

value in the mid-range and the highest at the upper extreme. The effect of soil moisture 237 

(Figure 4c.) was direct below a moisture value of approximately 0.25 m3/m3, forming a 238 

plateau above that threshold. Solar radiation’s association (Figure 4d.) took the form of a 239 

descending arc with the inverse relationship most marked above a threshold of 240 

approximately 700 KJ/m2, and the lowest predicted Rt for any of the hydrometeorological 241 

variables (Rt <0.97) occurring at the upper radiation extreme of close to 1,500 KJ/m2. 242 

relative humidity (Figure 4e.) had the largest magnitude effect size of any 243 
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hydrometeorological variable, with increasing humidity mostly predicting decreasing Rt 244 

(except for a plateau from around 70 – 80% relative humidity) and a difference in 245 

predicted Rt of approximately 0.05 between the extremes of the distribution. The 246 

association of wind speed with Rt (Figure 4f.) was small in magnitude and inverse in 247 

approximately the upper tercile of the ORQ-transformed distribution. 248 

Figure 5 shows the equivalent associations for the five continuous, non-249 

hydrometeorological covariates and the coefficient estimates for the two comparison 250 

natural region categories relative to the “Coastal” reference category. Population density 251 

and health facility accessibility were ORQ-transformed. Rt increased with longer travel 252 

times to health facilities (Figure 5a.) from a value of 0.98 at the shortest time to just above 253 

1 in the upper half of the ORQ-transformed accessibility distribution. The government 254 

response index (Figure 5b.) had a negligible effect on SARS-CoV-2 Rt and did not predict a 255 

value below 1 at any value. Population mobility (Figure 5c.) had a large, steep inverse 256 

association with population mobility below a percent change of 10% - meaning that Rt 257 

increased when time spent in residences decreased little or increased relative to the pre-258 

pandemic baseline - and a steady direct relationship above that threshold. The adjusted 259 

effects of the categorical natural region variable (Figure 5d.) were small and non-260 

significant. Population density (Figure 5e.) had a direct association with the outcome with 261 

the most densely populated districts having an adjusted predicted Rt of >1.05, along with 262 

population mobility, one of the largest effect sizes observed in this analysis. Though 263 

statistically significant at the α<0.001 level, the effect of population age structure (Figure 264 

5f.) was negligible consisting of a shallow, direct association within a short range of values 265 

between roughly 6% and 11% of the population aged over 65 years. 266 
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The final model explained 3.9% of the variance in the daily district SARS-CoV-2 Rt, 267 

compared to 2.6% by an equivalent model that excluded the hydrometeorological 268 

variables. ALEs for all variables were correspondingly small (supplementary table S1), 269 

with population density ranking highest in terms of contribution to Rt (ALE = 0.007) 270 

followed by solar radiation (ALE = 0.004), the highest ranking of the hydrometeorological 271 

variables. In models in which the highest ALE-ranked variables were dichotomized (table 272 

S1), differences in average predicted Rt for unit-dates on either side of variable-specific 273 

thresholds were also modest. Average adjusted Rt was 1% lower on days in which relative 274 

humidity was higher than 50%, compared to less humid days, but 1% higher when soil 275 

moisture was above 0.1 m3/m3. Days in which solar radiation exceeded 1,000 KJ/m2 had 276 

1.3% lower Rt, while the equivalent differences for districts in which average travel time to 277 

health facilities was more than half an hour and with population density of more than 100 278 

pop/1km2 were, respectively, a 0.2% and a 0.4% increase, and on days in which mobility 279 

was reduced by 10% or more relative to pre-pandemic levels, Rt fell by an average of 0.3%  280 

Discussion: 

The impacts of the COVID-19 pandemic on families, societies and institutions have 281 

been incalculable. Furthermore, the notable spatiotemporal variability in these impacts are 282 

seemingly not fully attributable to population susceptibility and health system factors 283 

alone58, implicating a potential influence of climate and environment on the transmission 284 

and survivability of SARS-CoV-2.12 Early surveys of the evidence base highlighted a paucity 285 

of findings from the Global South and tropical regions, insufficient spatiotemporal scope 286 

and resolution in analyses, and a failure to account for confounding from non-287 

climatological factors.12,20,22,59 More recently, as attempts to track the pandemic have 288 
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coalesced into a wide variety of open datasets and online interfaces15,16,60, researchers have 289 

begun to address these knowledge gaps. Numerous recent studies have assessed effects on 290 

COVID-19 outcomes adjusting for multiple hydrometeorological variables35,61 and other 291 

covariates including population density44, age structure62, NPI compliance33,63 and 292 

government interventions64, while others have focused on single countries in equatorial 293 

regions65,66 or multiple countries and locations spanning wide latitudes and both 294 

hemispheres.19,67,68 This study is the first to bring together all these elements and at a high 295 

temporal resolution, multiple, cross-cutting spatial scales and for three neighboring 296 

countries that, despite including diverse populations and ecologies, share important 297 

commonalities in their pandemic experiences. 298 

The ancestor of the SARS-CoV-2 index virus likely evolved through transmission 299 

among bats living in cool, dark, crowded caves.69,70 The primary direct, person-to-person 300 

mode of transmission of the pathogen is via virus-laden aerosols exhaled by infectious 301 

individuals, while an indirect route via contact with contaminated fomites is thought to 302 

make a minor contribution.39,71 Small-scale atmospheric conditions such as the 303 

temperature, pressure and humidity of the air affect the rates at which aerosolized 304 

respiratory droplets are formed, suspended, and dispersed and thus influence disease 305 

transmission in complex ways.31,34 The negative association of relative humidity on SARS-306 

CoV-2 Rt identified here, among the largest absolute effect sizes of the hydrometeorological 307 

variables analyzed (though lower ranking by ALE), is consistent with one of the most 308 

widely documented of the disease’s environmental sensitivities as well as current 309 

understanding regarding the virus’ modes of transmission.34,72 Whether quantified by 310 

absolute or relative measures, humidity has been shown to be an influential COVID-19 311 
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driver across many contexts37,73, with very dry atmospheric conditions appearing to favor 312 

transmission as has been shown for other respiratory74 and non-respiratory54 viruses. 313 

When expelled into dry air, respiratory microdroplets quickly shrink due to evaporation of 314 

their liquid content, allowing them to suspend aloft for longer and increasing their viral 315 

particle concentration.72,75 relative humidity also has a separate U-shaped association with 316 

SARS-CoV-2 viability outside the human host, with its lowest viability occurring around 317 

60% air saturation and its highest at the extremes.34 Competing effects of decreasing 318 

transmissibility and increasing viability in the upper humidity extreme are consistent with 319 

the plateau effect seen in these results at relative humidity >70%. 320 

Though there is less consensus surrounding the effect of temperature, it is widely 321 

supposed to have an association similar to that of humidity, and indeed numerous studies 322 

have reported decreasing COVID-19 risk with increasing temperatures.61,62,73 While this 323 

might at first glance seem to be at odds with the negligible and non-linear effect found in 324 

this analysis, comparisons with results specifically from other tropical settings suggest a 325 

more nuanced picture. One such study within a single season in Singapore66 (January to 326 

April 2020) found a strong and significant direct association between temperature and 327 

COVID-19 case numbers, while another, also of a tropical, equatorial South American 328 

country (Brazil), found opposing effects of temperature in the March to May period (direct) 329 

compared to from June to August (inverse).65 Another study of >400 cities across a wider 330 

range of latitudes in both the northern and southern hemispheres found a more complex, 331 

sinusoidally shaped relationship of temperature to transmission.19 Since the domain of this 332 

analysis spanned only tropical latitudes either side of the equator, the null-like finding for 333 

temperature could plausibly be the result of competing effects between the two 334 
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hemispheres at different times over the year canceling each other out. However, marginal 335 

temperature effects predicted by multivariable models may be sensitive to the choice of 336 

humidity metric. The 400 city study adjusted for both relative humidity and absolute 337 

humidity19, while a study of US counties that adjusted temperature for specific humidity 338 

found still another complex and non-linear effect shape.18 Supplementary figure S1 339 

compares the results of this model with an otherwise identical one that substituted specific 340 

humidity for relative humidity, and reveals a somewhat larger magnitude and direct effect 341 

of temperature in the specific humidity model. Temperature and specific humidity are 342 

closely related variables and exhibited multicollinearity in this dataset (a variance inflation 343 

for specific humidity of >10 in models that include temperature). Moreover, certain 344 

combinations of their values (e.g., low temperature with high specific humidity) simply do 345 

not occur naturally, so attempts to visualize effects of variations in one parameter while 346 

holding the other constant at its mean value are in some senses abstractions.  347 

This analysis also identified a sizeable, inverse association of solar radiation on 348 

COVID-19 transmission consistent with numerous other studies37,44,68, most notably by Ma 349 

and colleagues, who also found this to be most pronounced above a threshold of ~1,000 350 

KJ/m2.18 Such findings have been interpreted as reflecting the deactivating effect of 351 

sunlight on SARS-CoV-2 virions as has been observed in laboratory conditions either in 352 

aerosols76, on surfaces77,78 or in mucus.79 However, commentators have noted the difficulty 353 

of disentangling a direct effect of sunlight on the disease agent itself, from its confounding 354 

effect on host behaviors, such as rainy or cloudy weather driving people to congregate 355 

indoors, thereby increasing contact rates.54,68 The fact that this effect was observed with 356 

adjustment for precipitation lends credibility to the supposed direct effect. Similarly, a 357 
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substantial effect of precipitation was observed with adjustment for population mobility, 358 

the highest predicted Rt occurring at the high end of the precipitation distribution, the 359 

lowest in the mid-range and a secondary peak on rainless days. Given the absence of a 360 

waterborne route of transmission, it is tempting to attribute this to residual, unobserved 361 

confounding from host behaviors that are incompletely captured by the mobility variable, 362 

rather than a direct, causal impact of rainfall on virus dispersal. However, the role of 363 

aerosolized particles from wastewater cannot be ruled out.80 In Andean countries like 364 

these with wide inequities in sanitation coverage, many community-level environments are 365 

characterized by poor sewerage infrastructure81, where open wastewater canals serve the 366 

dual functions of drainage for rainwater runoff, and conveyance of effluent discharge from 367 

household latrines.82 Such basic systems are easily overwhelmed by heavy rain events83, 368 

which may promote the creation of airborne contaminated bioaerosols in which infectious 369 

pathogens can remain viable, as has recently been demonstrated for several 370 

enteropathogens including viruses.84  371 

 Soil moisture was included as a negative control exposure yet its observed effect on 372 

Rt, though small in absolute terms, was larger than that of government policy, population 373 

age structure and natural region. A possible explanation is that soil moisture serves as a 374 

proxy for the general moisture retention of all surfaces, and that virus particles expelled in 375 

aerosolized droplets may remain viable for longer if they settle on a surface that permits 376 

them to retain their surrounding moisture.85 A small, inverse effect of wind speed above a 377 

threshold high in the distribution was identified, consistent with that identified by Clouston 378 

and colleagues.86 While several other studies have also found inverse effects61,63, and still 379 

others have reported direct37,64,67, or negligible65 effects of wind speed, it seems highly 380 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 16, 2022. ; https://doi.org/10.1101/2022.06.13.22276339doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.13.22276339
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 
 

plausible that faster wind speeds suppress transmission of SARS-CoV-2 in outdoor 381 

environments by increasing air circulation and dispersing infective aerosols away from 382 

susceptible individuals, much as ventilation does in indoor environments.80,86 383 

The modeled effects of several non-hydrometeorological variables were consistent 384 

with the a priori hypotheses justifying their inclusion. Transmission was highest in densely 385 

populated districts, presumably due to higher contact rates, and lowest in districts with 386 

shorter travel time to health facilities, perhaps due to improved access to diagnosis and 387 

case management shortening the period between disease onset and isolation, or to 388 

unresolved confounding by latent urban status. On days in which time spent in residences 389 

was at least 10% more than was typical before the pandemic (a proxy for lockdown 390 

compliance), Rt was statistically significantly reduced, though by less than 1% and not to a 391 

level below 1, that if sustained would eventually bring transmission under control. The 392 

proportion of the population that was elderly had no substantial impact on Rt, likely 393 

because old age is less a risk factor for infectiousness or susceptibility to infection but 394 

rather for more severe COVID-19 outcomes once infected. It is striking that greater 395 

government response stringency had no effect on reducing Rt and even appeared to 396 

increase it slightly in the upper extreme. This may reflect that government response is 397 

often slow and largely reactive to surges in cases, or that it has little impact over and above 398 

that which is mediated by individual behavior change and compliance, factors captured by 399 

the mobility variable. 400 

Besides those inherent to unit-level, ecological studies, this analysis is subject to 401 

further limitations. The high level of geographical disaggregation meant that there was an 402 
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inflated number of unit-dates on which zero cases were reported or that had 403 

uninterpretable Rt values. This meant that the distribution of the outcome values was 404 

narrower and the effect sizes smaller than those reported in other comparable analyses, 405 

some by almost an order of magnitude.19,35 However, given that environmental conditions 406 

vary on a very small scale and that case data were available at such high resolution, this 407 

was deemed a justifiable tradeoff. The restriction of the analysis to the eight-month May to 408 

December period meant that it did not capture a full annual cycle of either weather 409 

conditions, or virus circulation, but was necessary to avoid having to account for vaccine 410 

and variant introduction. 411 

In conclusion, COVID-19 transmission is sensitive to spatiotemporally varying 412 

hydrometeorological conditions in these three countries of tropical Andean South America, 413 

even after adjusting for other potential confounders including both static and time-varying 414 

variables, and at multiple cross-cutting scales. Dry atmospheric conditions of low humidity 415 

increased, and higher solar radiation decreased district-level SARS-CoV-2 reproduction 416 

numbers. While several commentators have cautioned that the effects on transmission of 417 

climatological conditions are likely to be modest compared to factors such as NPI 418 

compliance,59,68 these findings in fact show their influence to be of a comparable magnitude 419 

in several cases and even greater than that of government response and population age 420 

structure. However, in absolute terms these effects, though significant, are modest and do 421 

not explain the excess disease burden experienced in some parts of this region during the 422 

first wave of the pandemic. As SARS-CoV-2 settles into indefinite endemic circulation, it 423 

may be feasible to incorporate weather monitoring into disease surveillance and early 424 

warning systems alongside other more costly activities such as wastewater or population 425 
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seroprevalence surveillance for anticipating case surges and allocating resources. 426 

Furthermore, population health interventions that encourage the public to exercise greater 427 

precautions on cloudy or dry days could also be considered. However, the high proportion 428 

of variance in COVID-19 transmission that remains unexplained even after accounting for 429 

population factors and NPIs (>96%) are striking, as are the negligible relative effect sizes of 430 

<2%, which are far surpassed by those of interventions such as vaccination (53 – 94%87) 431 

and mask wearing (19%88), all of which should serve as cause for caution when attempting 432 

to predict near-term changes in transmission risk. 433 
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Tables: 

Table 1: Definitions of variables used in the analysis 

Variable Units/ 
Categories 

Temporal 
resolution Spatial resolution Source 

COVID-19 
diagnoses Positive cases Daily total 

Colombia: 2nd 
Administrative 
Level 
(Municipalities) 

National Institute 
of Health of 
Colombia23 

Ecuador: 2nd 
Administrative 
level (Cantons) 

Ecuacovid24 

Peru: 3rd 
Administrative 
level (Districts) 

Ministry of Health 
of Peru25 

Effective 
reproduction 
number (Rt) 

Secondary cases 
per index case Daily District EpiNow226 

Government 
policy response 
stringency 

% Daily National OxCGRT50 

Healthcare 
accessibility 

Minutes’ travel 
time to nearest 
health facility by 
motor transport 

Static (2020) District-level 
average 

Malaria Atlas 
Project47 

Natural region Coastal, Highland, 
Interior Static District Various41–43 

Population age 
structure 

% population ≥65 
years 

Static (2020) District-level 
average WorldPop45 

Population 
density Population/1km2 

Population 
mobility: 
residential 

% Change relative 
to baseline Daily Province Google53 

Air temperature ℃ 

Daily average District-level 
average ERA529 

Precipitation mm 

Specific humidity g/kg 

Soil moisture m3/m3 

Solar radiation KJ/m2 

Wind speed m/s 
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Figure 1: District-level geographical distribution of cumulative reported COVID-19 cases 
and estimated SARS-CoV-2 reproduction number (Rt) in Colombia, Ecuador, and Peru (May 
1st – December 31st, 2020). 
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Figure 2: District-level geographical distribution of six hydrometeorological variables in 
Colombia, Ecuador, and Peru (mean of daily averages May 1st – December 31st, 2020). 
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Figure 3: District-level geographical distribution of 6 covariate variables in Colombia, 
Ecuador, and Peru (May 1st – December 31st, 2020). 
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Figure 4: Adjusted associations between 6 hydrometeorological variables and daily 
COVID-19 reproduction numbers Rt values predicted by generalized additive mixed effects 
model. 
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Figure 5: Adjusted associations between 6 covariate variables and daily COVID-19 
reproduction numbers Rt values predicted by generalized additive mixed effects model. 
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