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Abstract 18 

Movement and contacts are central to the transmission of infectious diseases and, within the 19 

hospital setting, healthcare worker (HCW) mobility and their contact with patients play an important 20 

role in the spread of nosocomial disease. Yet data relating to HCW behaviours associated with 21 

mobility and contacts in the healthcare environment are often limited. This paper proposes a 22 

framework for integrating several electronic data sources routinely-collected by modern hospitals, 23 

to enable the measurement of HCW behaviours relevant to the transmission of infections. Using 24 

data from a London teaching hospital during the COVID-19 pandemic, we demonstrate how, at an 25 

aggregate level, electronic medical records (EMRs) and door access logs can be used to establish 26 

changes in HCW mobility and patient contacts. In addition, to show the utility of these data sources 27 

in supporting infection prevention and control (IPC), we investigate changes in the indirect 28 

connectivity of patients (resulting from shared contacts with HCWs) and spatial connectivity of floors 29 

(owing to the movements of HCWs). Average daily rates of patient contacts are computed and found 30 

to be higher throughout the pandemic compared to that pre-pandemic, while the average daily rates 31 

of HCW mobility remained stable until the second wave, where they surpassed pre-pandemic levels. 32 

The response of HCW behaviour to the pandemic was not equal between floors, whereby the 33 

highest increases in patient contacts and mobility were on floors handling the majority of COVID-19 34 

patients. The first wave of COVID-19 patients resulted in changes to the flow of HCWs between 35 

floors, but the interconnectivity between COVID-19 and non COVID-19 wards was evident 36 

throughout the pandemic. Daily rates of indirect contact between patients provided evidence for 37 

reactive staff cohorting, whereby indirect contact rates between COVID-19 positive and negative 38 

patients were lowest during peaks in COVID-19 hospital admissions. We propose that IPC 39 

practitioners use these routinely collected data on HCW behaviour to support infection control 40 

activities and to help better protect hospital staff and patients from nosocomial outbreaks of 41 

communicable diseases.   42 
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Introduction 43 

Human mobility and contact are significant drivers for the transmission of communicable diseases, 44 

such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that resulted in the COVID-19 45 

pandemic (Buckee et al., 2021). While passively collected mobile phone and app-derived GPS 46 

trajectory data provide an indication of populations’ mobility and social mixing patterns (Ross et al., 47 

2021), only broad regional generalisations can be drawn. Transmission of SARS-CoV-2 occurs 48 

through close proximity between infectious and susceptible individuals due to either direct contact 49 

or respiratory aerosols in the shared space (Rahman et al., 2020). Therefore, insights into behaviours 50 

at a fine scale, such as within indoor environments, are also required to deepen our understanding 51 

of behaviours associated with the transmission of infections, and improve our ability to identify and 52 

prevent transmission events. This is particularly relevant for healthcare settings, where infection 53 

outbreaks present a significant risk to vulnerable patients through increased morbidity and 54 

mortality. 55 

The concern in relation to infection transmission within hospital environments extends more widely 56 

than COVID-19, and includes other healthcare-associated infections (HAIs). The impact of HAIs on 57 

healthcare systems is considerable, resulting in staff illness, complications in patient outcomes and 58 

increasing healthcare costs. In England between 2016-2017, HAIs were estimated to have caused 59 

>28,000 deaths, contributed to 21% of hospital bed days, resulted in >79,000 days of absence in 60 

frontline HCWs and cost the NHS an estimated £2.7 billion (Guest et al., 2020). The surveillance 61 

prevention and control of HAIs is a challenge as granular data are often limited and the transmission 62 

pathways are highly variable; dependent on the epidemiology of the pathogen, be it bacterium, virus 63 

or fungus (Khan et al., 2015, 2017).  64 

Nosocomial infections in patients are well defined, as are frameworks for their prevention and 65 

control (Loveday et al., 2014). To manage HAIs in patients, practitioners responsible for infection 66 

prevention and control (IPC) frequently use passive data sources that are routinely collected, such as 67 
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medical records. These data sources provide information on the patient’s location within the 68 

hospital and their contacts with staff, which can be used to support surveillance, mapping patient 69 

trajectories and contact tracing (Murray et al., 2017; Price et al., 2021; Rewley et al., 2020). 70 

Historically these data sources have been handled manually, using time intensive frameworks that 71 

prevent their use in real-time. Hospitals that have moved to digital systems have seen an increase in 72 

the effectiveness and efficiency of patient focused IPC, through improved availability of data 73 

resources and reduced burdens of manual data collection and processing (Chen et al., 2019; Russo et 74 

al., 2018). However, while these data streams are well established for patient focused activities, 75 

those for the management of HAIs in HCWs are relatively underdeveloped. This is surprising given 76 

that, like patients, HCWs are at risk of both acquiring and facilitating the transmission of HAIs 77 

(Huttunen & Syrjänen, 2014).  78 

The rapid spread of SARS-CoV-2 has emphasized the need to protect front-line HCWs. Early in the 79 

pandemic the prevalence of COVID-19 infection for HCWs was high, with one London hospital 80 

reporting infection in 44% of HCWs (Houlihan et al., 2020) and a global estimation of 11% of HCWs 81 

infected with the virus (Gómez-Ochoa et al., 2021). What’s more, the risk of infection for HCWs 82 

varied between roles and spatially, with a higher risk of infection for those working in non-83 

emergency wards and for nurses (Gómez-Ochoa et al., 2021). Nosocomial outbreaks of SARS-CoV-2 84 

result from a small number of highly infectious individuals, and transmission chains may include 85 

HCWs among the likely ‘super-spreaders’ (Lumley et al., 2021). Behavioural processes, such as 86 

contact and mobility patterns, generate heterogeneity in the transmission of communicable diseases 87 

(Arthur et al,. 2017; Buckee et al., 2021) and, similar to the management of HAIs in patients, 88 

passively collected data on the within-hospital behaviours of HCWs can contribute to a more 89 

informed and rapid response to outbreaks.  90 

HCW behaviours have been investigated using surveys (English et al., 2018), observations (Weigl et 91 

al., 2009; Westbrook et al., 2011) and tracking technologies (Butler et al., 2018; Hertzberg et al., 92 
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2017; Oussaid et al., 2016; Vanhems et al., 2013), but these data collection methods are often 93 

prohibitively time intensive, expensive, or only provide a snapshot view that is not hospital wide. 94 

Electronic medical records (EMRs) have also been previously used to investigate HCW space use and 95 

patient contacts (Curtis et al., 2013; Illingworth et al., 2022), but they are either optimised for 96 

reconstructing patient trajectories or suffer from high spatial uncertainty. Additional databases, such 97 

as door access logs could complement EMRs by supplementing spatiotemporal information on HCW 98 

mobility. These data sources are analogous in nature to the passively-collected spatial data from 99 

mobile phone records, which were used during the COVID-19 pandemic to demonstrate the 100 

effectiveness of movement restrictions in reducing contact rates, and subsequently lowering levels 101 

of community transmission (Nouvellet et al., 2021). Using the routinely collected hospital data as an 102 

indicator for HCW behaviour provides opportunities to enhance evidence based IPC in a similar way; 103 

supporting contact tracing efforts, validating transmission pathways and helping to monitor the 104 

effectiveness of interventions in the hospital.  105 

As with other communicable diseases, IPC interventions to prevent nosocomial outbreaks of COVID-106 

19 include hand washing, the use of personal protective equipment (PPE), limiting the traffic of 107 

people in the hospital, and cohorting staff and patients (Ahmad & Osei, 2021). The routinely 108 

collected data cannot identify or monitor all HCW behaviours that are epidemiologically relevant, 109 

but can indicate their level of space use within the hospital, their frequency of movement, the 110 

number of patients they contact and the frequency of patient contact. As behavioural markers these 111 

metrics provide quantitative measures for IPC interventions aimed specifically at reducing the spatial 112 

connectivity of spaces (e.g. by restricting staff access/flow to areas) and social connectivity of 113 

individuals in the hospital (e.g. through patient and/or staff cohorting). The data can therefore be 114 

used to assess the extent to which interventions targeted towards HCW mobility and patient 115 

contacts have been successful in achieving their aim, or in determining opportunities for 116 

improvement.  117 
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This paper outlines a framework for the use of routinely-collected hospital data in the measurement 118 

of HCW behaviour. We describe (1) the integration of diverse digital data sources for the 119 

quantification of HCW mobility and patient contact within the hospital setting, and (2) demonstrate 120 

the use of these data sources in supporting IPC activities through a series of analyses. Specifically, we 121 

use data from a London Hospital during the COVID-19 pandemic to measure at an aggregate level 122 

how (i) the temporal and spatial patterns of HCW mobility and patient contacts, (ii) spatial 123 

connectivity (flow between floors) and (iii) indirect contacts between patients (through shared HCW 124 

contacts) changed during the COVID-19 pandemic.   125 
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Methodology 126 

Study site and context 127 

University College London Hospital NHS Trust (UCLH) is a large acute and tertiary referral academic 128 

hospital located in central London. The Main UCLH building is comprised of a central Tower that has 129 

19 floors (floors -2 to 16) and is linked to two other buildings; the Podium and the Elizabeth Garett 130 

Anderson (EGA) Wing.  131 

In this analysis, we only considered data for the Tower building at UCLH. Here we describe floors 132 

within the Tower by the ward/department that predominantly occupies it; the basement (floor-2), 133 

imaging (floor -1), emergency department (ED on floor 0), acute medicine unit (AMU on floor 1), day 134 

surgery (floor 2), critical care (floor 3), plant (floor 4), nuclear medicine (floor 5), short stay surgery 135 

(floors 6), hyper-acute stroke unit (HASU on floor 7), respiratory & infectious diseases (floor 8), 136 

general surgery (floor 9), care of the elderly (CoE on floor 10), paediatrics (floor 11), adolescents 137 

(floor 12), oncology (floor 13), head and neck (floor 14), private wards (floor 15) and haematology 138 

(floor 16).  139 

During the pandemic the UCLH Tower became a key site for COVID-19 care in London, and the peaks 140 

in the number of COVID-19 patients in the Tower (Figure 1C), closely followed that reported for all 141 

London hospitals (as downloaded from gov.uk; r = 0.97). To investigate changes in the daily number 142 

of events in different stages of the pandemic, we manually identified four distinct time periods 143 

based on the number of COVID-19 patients in the Tower. The first time period identified was January 144 

1st– February 28th 2020, which was considered pre-pandemic or the ‘baseline’, as this was prior to 145 

the substantial rise in COVID-19 admissions in the hospital, so ‘normal’ patterns of movement and 146 

patient contacts would be expected. The second time period was March 1st– June 30th 2020, when 147 

the ‘first wave’ of COVID-19 hospital admissions was experienced, during which the WHO declared a 148 

pandemic (March 11th 2020) and the first national lockdown in England was announced (23rd March 149 

2020). The third time period was July 1st– August 31st 2020, which represented the ‘summer lull’, 150 
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where the number of COVID-19 patients in London hospitals remained at a low level and community 151 

interventions were eased. The fourth time period was November 1st 2020 - March 31st 2021, when 152 

the ‘second wave’ of COVID-19 hospital admissions occurred, the second national lockdown was 153 

announced (5th November 2020) and the mass-vaccination programme began (December 8th 2020).  154 

Data sources  155 

The data sources used in this study were selected on the basis of providing spatial and temporal 156 

indicators of staff movement and patient contacts within the hospital. For clarity, Table 1 provides 157 

definitions of terms relating to behavioural processes that are investigated in this study.  158 

Table 1 Definitions and data sources for behavioural processes relating to healthcare worker activity 159 
in the healthcare environment. 160 

Behavioural process Definition Data source 

Mobility The frequency of movement 

exhibited by 

individuals/populations between 

discrete locations. 

Security door access logs 

Direct patient contact Face to face interactions between 

healthcare workers and patients.  

Electronic medical records 

Indirect contact The secondary contact between 

individuals resulting from their 

direct contact with others. 

Electronic medical records 

Social connectivity The relationship between 

individuals, as determined by 

their direct and/or indirect 

contacts. 

Electronic medical records 

Spatial connectivity The relationship between discrete 

locations, as determined by the 

spatial activity of individuals. 

Security door access logs & 

electronic medical records 

 161 

Electronic medical records (EMRs): Patient contact events in EMRs were extracted from Epic, a 162 

privately owned hospital system used by UCLH for managing medical records. While Epic contains a 163 

large volume of data on patient diagnosis and treatment, we only use specific fields that provide 164 
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information on the spatial and temporal attributes of within-hospital contacts between staff and 165 

patients. Data fields included the datetime of events, a description of the location (bed ID and floor), 166 

an indicator of the event type, anonymous identifiers for the patient, pseudonymous identifiers for 167 

the HCW and the COVID-19 status of the patient at the time of the event (0/1).  168 

Card access logs: Door events were extracted from the database for security door access logs, 169 

known in this context as CCure. Data fields included the datetime of events, a description of the 170 

location (door ID and floor), direction of passage (in/out), status (accepted/rejected) and a 171 

pseudonymous staff identifier.  172 

 Data Processing 173 

Data cleaning: All data processing was conducted in R (R Core Team, 2020). Data for events outside 174 

the UCLH Tower were discarded. Data for the month of October 2020, a weekend in July and 175 

another in November were also discarded, as records either could not be extracted or had an 176 

unusually low number of events (indicating an issue with extraction). Contact events in EMRs that 177 

did not require face to face contacts (e.g. ‘Telephone’ or ‘Letter’) were excluded. Door events with a 178 

rejected status were removed along with duplicate events in the same direction that were within 60 179 

seconds of each other. Two types of lift (or elevator) events were present in the door access logs; 180 

‘Lift Calls’ where a card is used to request a lift, and ‘Lift commands’ where a card is used before 181 

selecting which floor to go to. All ‘Lift Call’ events were removed as they overinflate the number of 182 

movement events for individuals using lifts (because some individuals may make multiple and 183 

repeated lift calls while waiting for a lift). 184 

Aggregate measures: Staffing levels, |𝐻|, were determined by summing the number of distinct 185 

HCWs, ℎ, in the set of HCW IDs identifiable in the routinely collected data, 𝐻. Staffing levels were 186 

calculated for each day, 𝑡, stage of the pandemic, 𝑆𝑡𝑎𝑔𝑒, and for each floor, 𝑓, and the entire 187 

building. For each stage of the pandemic the mean daily staffing levels, 𝐻, were calculated for the 188 

entire building and each floor. Similarly, patient levels, |𝑃|, were calculated by summing the number 189 
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of distinct patients, 𝑝, in the set of patient IDs identifiable in the data, 𝑃, for each day, and the mean 190 

daily patient levels, 𝑃, calculated for the entire building, and for each floor, during each stage of the 191 

pandemic. The same metrics were also calculated using the subset of patients known to be positive 192 

for COVID-19, 𝑃𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒. 193 

Door events, 𝑚, were used as an indicator of HCW behaviour in terms of their mobility, where 𝑀 is 194 

the full set of door events. The number of door events, |𝑀|, was used as an absolute measure of 195 

HCW mobility and was calculated for the entire building and each floor on each day. There was a 196 

strong correlation between daily HCW mobility and daily staffing levels (r = 0.94) and therefore, to 197 

control for changes in staffing levels, the rate of mobility, 𝑀𝑟, was calculated as a function of staffing 198 

levels, where: 199 

𝑀𝑟𝑡,𝑓 =
|𝑀𝑡,𝑓|

|𝐻𝑡,𝑓|
 200 

To compare mobility levels between stages of the pandemic, the mean daily mobility, 𝑀, and the 201 

mean daily rate of mobility, 𝑀𝑟, were calculated for the entire building and for each floor during the 202 

different stages of the pandemic.  203 

Patient contact events, 𝑐, were used as an indicator of HCW behaviour in terms of patient 204 

engagement where 𝐶 is the full set of patient contacts. The number of patient contacts, |𝐶|, was 205 

used as an absolute measure and was calculated for the entire building and each floor on each day. 206 

There was a correlation between daily patient contacts and daily patient levels (r = 0.65), and 207 

therefore we also calculated the daily rate of patient contacts, 𝐶𝑟, as a function of patient levels, 208 

where: 209 

𝐶𝑟𝑡,𝑓 =
|𝐶𝑡,𝑓|

|𝑃𝑡,𝑓|
 210 
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To compare levels of patient engagement between stages of the pandemic, the mean daily number 211 

of patient contacts, 𝐶, and the mean daily rate of patient contacts, 𝐶̅𝑟, were calculated for the entire 212 

building and for each floor during the different stages of the pandemic.  213 

To investigate the weekly and hourly patterns of mobility and patient engagement, a count for the 214 

number of door events and patient contacts was made for each hour, ℎ𝑟, of each weekday, 𝑤, and 215 

separately for the different stages of the pandemic. These counts were then weighted by dividing 216 

them by the number of days each weekday appeared in the dataset.  217 

Changes in time and space: To investigate how the measures of daily HCW behaviour, staffing levels 218 

and patient levels differed from that pre-pandemic (baseline), on each floor and within the entire 219 

building, the normalised difference to baseline, 𝑁, was calculated for each day e.g. normalised 220 

difference to baseline for HCW mobility across the entire building, 𝑁𝑡
𝑀, where: 221 

𝑁𝑡
𝑀 =

(| 𝑀𝑡|  −   𝑀𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒)

| 𝑀𝑡|
 222 

The normalised difference to baseline was also calculated for the averaged values for HCW 223 

behaviour during each stage of the pandemic. 𝑁 can be interpreted as proportional change, but is 224 

presented as percentage change in the results. 225 

Spatial connectivity: To assess the relationship between floors, a dyadic analysis was conducted for 226 

the different stages of the pandemic. For each spatial dyad (e.g. floors 1 & 2, floors 1 & 3 etc.) and 227 

using both door events and patient contacts, the number of HCWs that were active on both floors in 228 

any single day was extracted where: 229 

𝑑𝑦𝑎𝑑𝑡,𝑓,𝑖 = |𝐻𝑡,𝑓 ∩ 𝐻𝑡,𝑖| 230 

The index of the second floor in the dyad is denoted 𝑖. The resulting matrix was then treated as a 231 

weighted network with the diagonal set to zero. The Louvain clustering algorithm was used to 232 

identify floors that had stronger links. Louvain clustering is a hierarchical greedy modularity 233 
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maximization-based approach (Blondel et al., 2008) and was implemented using the R package 234 

‘igraph’ v1.2.7 (Csardi & Nepusz, 2006). Lift events were excluded from this analysis as it was not 235 

possible to identify the floor on which they occurred. 236 

Patient connectivity: Patient connectivity, 𝑆, was determined by identifying the number of COVID-19 237 

negative patients each patient was indirectly in contact with through shared contacts with the same 238 

HCWs on the same day. This was achieved by first identifying the set of HCWs that had contact with 239 

the jth patient on each day, where: 240 

𝐻𝑗,𝑡 = {ℎ ∶  𝐶𝑡(𝑝𝑗, ℎ) = 1} 241 

Next the set of patients not known to be positive for COVID-19, 𝑃𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒, and that had also been in 242 

contact with any of the HCWs in 𝐻𝑗,𝑡 were identified, where: 243 

𝑃𝑗,𝑡
𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

=  {𝑝 ∶ 𝑝 ∈ 𝑃𝑡
𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

, 𝑝 ≠  𝑝𝑗, ∃ℎ ∈  𝐻𝑗,𝑡|𝐶𝑡(𝑝, ℎ) = 1} 244 

𝑆 was then calculated for each patient as a proportion of all patients not known to be positive for 245 

COVID-19, and expressed as a percentage in the results where: 246 

𝑆𝑗,𝑡 =
|𝑃𝑗,𝑡

𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
|

|𝑃𝑡
𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

|
 247 

For each day and stage of the pandemic, we made separate calculations for the average patient 248 

connectivity of patients not known to be positive for COVID-19, 𝑆̅𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒, and COVID-19 positive 249 

patients, 𝑆̅𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒. 250 

  251 
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Results 252 

Data were analysed for 7,975 HCWs that had logged door events and/or patient contacts in the 253 

UCLH Tower building between January 2020 and March 2021. In total, 5,510,359 door events and 254 

6,574,590 patient contacts were recorded. During the entire observation period, 21,133 patients 255 

were detected in the routinely collected data, of which 8% were positive for COVID-19. Table 2 256 

provides a summary for the different stages of the pandemic.  257 

In the following sections we describe the temporal and spatial patterns in the behaviour of HCWs, 258 

and how these changed throughout the pandemic. We also describe epidemiologically relevant 259 

changes in the patterns of spatial connectivity and indirect contacts between patients. 260 

  261 
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Table 2: Summary for indicators of healthcare worker staffing levels, mobility and patient contacts in the Tower building of University College London Hospital during the 262 
COVID-19 pandemic. For each stage of the pandemic, the duration in days is reported along with the total number and average daily count of healthcare workers, patients, 263 
patients positive for COVID-19 (COVID-19+), door events, patient contacts, and contacts with COVID-19+. The mean daily rate of door events (per healthcare worker) and 264 
mean daily rate of patient contacts (per patient) are also reported. For counts involving COVID-19+, the percentage of all patients/contacts are provided in brackets.  265 

  266 

 
Baseline 
 Jan – Feb 

2020 

First wave 
March – June 

2020 

Summer lull 
July – Aug 

2020 

Second wave 
Nov 2020 – 
March 2021 

Overall 

Days 61 123 91 147 422 

No. of staff |𝑯| 4,763 5,526 5,089 6,107 7,975 

Avg. daily staffing levels 𝑯 1,373 1,235 1,213 1,302 - 

No. of patients |𝑷| 6,522 5,695 5,814 7,926 21,133 

No. of COVID patients |𝑷𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆| (% of all patients) 35 (1%) 565 (10%) 63 (1%) 1082 (14%) 1,688 (8%) 

Avg. daily patient levels 𝑷 587 330 403 434 - 

 No. of events |𝑴| 795,057 1,598,378 1,095,257 2,021,667 5,510,359 

Avg. daily no. of events 𝑴 13,034 12,995 12,036 13,753 - 

 Avg. daily rate of events 𝑴𝒓 10 11 10 11 - 

No. of contacts  |𝑪| 1,025,271 1,572,340 1,305,838 2,671,141 6,574,590 

Avg. daily no. of contacts 𝑪 16,808 12,783 14,350 18,171 - 

Avg. daily rate of contact 𝑪𝒓 29 41 36 42 - 

No. of contacts with COVID-19+ |𝑪𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆| (% of all contacts) 37,393 (4%) 527,986 (34%) 42,801 (3%) 996,440 (37%) 1,604,620 (24%) 

Avg. daily no. of  COVID-19+ contacts 𝑪
𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆

 613 4293 470 6779 - 

Avg. daily rate of  COVID-19+ contacts 𝑪𝒓
𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆

 51 69 50 73 - 
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Temporal dynamics 267 

During the baseline period, the daily number of door events and patient contacts showed clear 268 

temporal regularity, whereby the number of events was highest during weekdays (Figure 1A). These 269 

peaks were in line with the daily pattern of staff and patient numbers in the hospital, both of which 270 

also showed weekday highs (Figure 1B). The hourly number of door events were highest on 271 

weekdays between 7am-5pm, but this peak was less prominent at weekends (Figure 2A). Regardless 272 

of the day, the hourly number of patient contacts peaked once at 10am and again at 6pm (Figure 273 

2E). These temporal patterns demonstrate the utility of the routinely collected data in depicting the 274 

global activity levels of HCWs, which will underline the nature of staff working patterns within the 275 

hospital. 276 

During the first wave of COVID-19 patients (Figure 1C), the average daily number of staff with 277 

evidence of activity in the hospital fell by 10% compared to pre-pandemic levels. The average daily 278 

number of patients in the hospital dropped sharply, down by 44%. This coincided with a 24% 279 

decrease in the average daily number of patient contacts logged by HCWs, which was associated 280 

with a less prominent pattern in the weekly and hourly counts of contacts (Figure 2F). However, the 281 

per patient rate of daily contact was 41% higher than at baseline (i.e. on average patients in the first 282 

wave had more contact events with HCWs per day than that logged pre-pandemic). In contrast, the 283 

average daily number, rate and hourly pattern of door events remained relatively consistent 284 

(𝑁𝐹𝑖𝑟𝑠𝑡𝑤𝑎𝑣𝑒
𝑀  < 1%; 𝑁𝐹𝑖𝑟𝑠𝑡𝑤𝑎𝑣𝑒

𝑀𝑟  = 1%; Figure 2B), which is surprising given the reduced staff levels.  285 

In the summer lull, when there were fewer COVID-19 patients in the hospital, the average daily 286 

staffing levels and patient numbers remained below baseline levels (𝑁𝑆𝑢𝑚𝑚𝑒𝑟𝑙𝑢𝑙𝑙
𝐻  = -12%; 287 

𝑁𝑆𝑢𝑚𝑚𝑒𝑟𝑙𝑢𝑙𝑙
𝑃  = -31%). While the daily number and hourly pattern of patient contacts began to return 288 

towards that seen pre-pandemic, the average daily count of events remained lower than baseline 289 

levels (𝑁𝑆𝑢𝑚𝑚𝑒𝑟𝑙𝑢𝑙𝑙
𝐶  = -15%), and the rate of contact was maintained above that seen at baseline 290 

(𝑁𝑆𝑢𝑚𝑚𝑒𝑟𝑙𝑢𝑙𝑙
𝐶𝑟  = 24%). The average daily number of door events was 8% lower than baseline levels, 291 
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and this was due to lower weekday peaks, while the rate of mobility remained similar to the pre-292 

pandemic rate (𝑁𝑆𝑢𝑚𝑚𝑒𝑟𝑙𝑢𝑙𝑙
𝑀𝑟  < 1%).  293 

During the second wave, both the average daily number of patients and staff in the hospital 294 

remained lower than that at baseline (𝑁𝑆𝑒𝑐𝑜𝑛𝑑𝑤𝑎𝑣𝑒
𝑃  = -26%; 𝑁𝑆𝑒𝑐𝑜𝑛𝑑𝑤𝑎𝑣𝑒

𝐻  = -5%). However, it is worth 295 

noting how daily staffing levels, after an initial drop during the Christmas break, followed the rise 296 

and fall of COVID-19 patients in the hospital, emphasising a different strategy by the hospital to that 297 

in the first wave where staff numbers were reduced. The second wave of COVID-19 patients also 298 

coincided with an increase in the daily number and rate of patient contacts and door events, all of 299 

which exceeded baseline levels (𝑁𝑆𝑒𝑐𝑜𝑛𝑑𝑤𝑎𝑣𝑒
𝐶  = 8%; 𝑁𝑆𝑒𝑐𝑜𝑛𝑑𝑤𝑎𝑣𝑒

𝐶𝑟  = 45%; 𝑁𝑆𝑒𝑐𝑜𝑛𝑑𝑤𝑎𝑣𝑒
𝑀  = 6%; 300 

𝑁𝑆𝑒𝑐𝑜𝑛𝑑𝑤𝑎𝑣𝑒
𝑀𝑟  = 1%). 301 
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Figure 1: Daily counts for indicators of healthcare worker behaviour, staffing levels and patient numbers in the Tower building of University College London hospital during 303 
the COVID-19 pandemic. Plot A shows the activity of healthcare workers in the hospital as characterised by the daily count of door events (green) and patient contacts 304 
(blue) logged in routinely collected electronic data sources. Plot B shows daily counts for the number of healthcare workers (black) and patients (grey) identified in the 305 
data. Plot C shows the number of COVID-19 patients in the hospital, which was used to determine the different stages of the pandemic; Baseline (pre-pandemic), first 306 
wave, summer lull and second wave. Data for October 2020 was not available.  307 

Door events Patient interactions HCWs Patients COVID-19 patients
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Figure 2: Heat maps for the number of door events and patient contacts at different hours of the day and week for healthcare workers at the Tower building of University 308 
College London Hospital during the COVID-19 pandemic. Plots A-D are for the number of door events and plots E-H are for patient contacts. Yellow cells represent a higher 309 
density of events and blue cells represent a lower density; to allow comparison between each stage of the pandemic, the colour gradient is relative to the maximum weight 310 
across all time periods. 311 
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Spatial-temporal dynamics 312 

The pattern in the rate of mobility (as measured by the daily number of door events corrected for 313 

the number of HCWs) and rate of patient contacts (as measured by the daily number of logged 314 

patient contact events corrected for the number of patients) for HCWs on each floor of the Tower, 315 

differed in response to the pandemic (Table 3). Here we focus on the behaviour of HCWs on the six 316 

floors identified as key COVID-19 wards and that handled the majority (>= 15%) of COVID-19 patients 317 

(Figure 3, see Figure S1 for non COVID-19 wards); the AMU (floor 1), critical care (floor 3), HASU 318 

(floor 7), respiratory diseases (floor 8), general surgery (floor 9) and CoE (floor 10).  319 

The daily rate of mobility for HCWs during the first wave was, on average, higher on all COVID-19 320 

floors compared to baseline levels. During the summer lull, the daily average rate of mobility on 321 

AMU and General surgery fell below baseline levels, while HCW mobility on all other COVID-19 floors 322 

increased, with the most notable increase on HASU (𝑁𝐹𝑙𝑜𝑜𝑟7
𝑀  = 101%). In response to the second 323 

wave of COVID-19 patients, the rate of mobility increased further above baseline levels on floors 324 

with HASU, Respiratory disease, General surgery and CoE, while HCW mobility was only marginally 325 

below baseline levels on AMU and Critical care.  326 

During the first wave and compared to pre-pandemic levels, the average daily rate of patient contact 327 

increased on AMU, Critical care, HASU and Respiratory disease. In contrast, the rate of patient 328 

contact was lower on average for General surgery and CoE, both of which had a period of days in 329 

May with zero contacts logged, which may indicate that the floors were closed during this period. In 330 

the summer lull and with the exception of HASU, the average daily rate of patient contact was higher 331 

than baseline levels for all COVID-19 floors. The rise in COVID-19 patients in the second wave 332 

coincided with a further increase in the rate of patient contact on all COVID-19 floors, with the most 333 

notable increase on HASU (𝑁𝐹𝑙𝑜𝑜𝑟7
𝑀  = 155%). 334 

  335 
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Table 3: Changes in the rate of healthcare worker mobility and patient contacts in the Tower building at University College London  Hospital during the COVID-19 pandemic. 336 
The rate of mobility (as measured by the average daily number of door events per healthcare worker), and the rate of patient contact (as measured by the average daily 337 
number of patient contacts per patient) during the pre-pandemic period (baseline) are presented for each floor of the Tower building. For each stage of the pandemic (First 338 
wave, Summer lull and Second wave) the normalized difference (N) to the average daily rates during the pre-pandemic stage are provided and expressed as percentage 339 
change . Rows in bold identify floors that handled the majority of COVID-19 patients (>=15%) during the pandemic. 340 

 Mobility Patient contacts 

Floor Baseline First wave Summer lull Second wave Baseline First wave Summer lull Second wave 

Floor -1; Imaging 2.4 7% -3% 10% 6.4 -29% 7% -11% 

Floor G; ED 9.4 18% 2% 8% 12.7 20% 30% -68% 

Floor 1; AMU 5.8 7% -15% -3% 19.6 45% 35% 58% 

Floor 2; Day surgery 3.1 17% -6% 1% 18.8 -4% 30% 44% 

Floor 3; Critical care 4.2 25% 15% -4% 98.6 28% 16% 20% 

Floor 5; Nuclear medicine 13.4 -5% -8% -14% 3.8 -46% -12% 4% 

Floor 6; Short stay surgery 4.9 7% 56% -4% 21.9 26% 42% 20% 

Floor 7; HASU 2.5 72% 101% 78% 34.6 73% -21% 155% 

Floor 8; Respiratory disease 7.1 14% 12% 64% 23.5 13% 7% 46% 

Floor 9; General surgery 3.4 21% -5% 50% 24.3 -7% 13% 26% 

Floor 10; CoE 3.1 59% 43% 66% 24.8 -2% 53% 44% 

Floor 11; Paediatrics 7.6 17% 13% 25% 14.2 33% 26% 28% 

Floor 12; Adolescents 4.5 52% 16% -1% 19.7 -30% 34% 44% 

Floor 13; Oncology 3.3 11% 22% 55% 22.1 24% 28% 28% 

Floor 14; Head and neck 4.7 0% 8% -8% 23.3 21% 31% 27% 

Floor 15; Private wards 9.3 -14% -27% -22% 9.4 -41% -31% 51% 

Floor 16; Haematology 7 -7% -1% -2% 30.5 12% 16% 11% 

341 
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Figure 3: Changes in the rate of HCW mobility and patient contact on COVID-19 wards in the Tower building at 342 
University College London Hospital. The rate of healthcare worker mobility was measured in terms of the daily 343 
number of door events per healthcare worker, and the rate of patient contact was measured in terms of the 344 
daily number of logged patient contacts per patient. COVID-19 wards were identified as those that had >=15% 345 
of all COVID-19 patients (grey polygon) during the observation period. For each of the two measures, the 346 
normalized difference (N) to the average daily rates during the pre-pandemic (red/yellow points, representing 347 
percentage change) was calculated, and a smooth was applied using a seven day rolling average (red/yellow 348 
line). The black dotted line represents 0% change compared to the average in the pre-pandemic period. Data 349 
for October 2020 was not available.350 

COVID-19 patients
Rate of mobility
Rate of patient contacts
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Spatial connectivity 351 

The connectivity between floors (based on the number of HCWs that had activity on any two floors 352 

in the same day) revealed that some were more connected than others, and that the resulting 353 

clustering of floors varied throughout the pandemic (Figure 4). During the baseline period, three 354 

clusters were identified; one large cluster containing Imaging through to Plant (floors -1 to 4), Short 355 

stay surgery, HASU and General surgery; a smaller cluster comprising the Basement, Nuclear 356 

medicine, Paediatrics and Adolescents; and a third consisting of Respiratory disease, CoE and 357 

Oncology through to Haematology (floors 13 to 16).  358 

During the first wave, the connectivity between floors changed such that four clusters were 359 

identifiable, and floors adjacent to each other were generally in the same cluster. The basement 360 

through to Nuclear medicine (floors -2 to 5) formed a cluster, while Short stay surgery through to 361 

CoE (floors 6 to 10) formed a second cluster, Paediatrics and adolescents (floors 11 and 12) made up 362 

a third cluster and the forth consisted of Oncology through to Haematology (floors 13 to 16). Floors 363 

identified as COVID-19 wards were present in two of the four clusters, which also included non 364 

COVID-19 wards. 365 

Adjacent floors were again more likely to be connected during the summer lull, but only three 366 

clusters were identified; Imaging through to CoE (floors -1 to 10) formed the largest cluster, while 367 

the basement, Paediatrics and Adolescents (floors -2, 11 and 12) were in a second cluster, and the 368 

third cluster consisted of Oncology through to Haematology (floors 13 to 16). During the second 369 

wave the connectivity of floors and the clusters they formed were unchanged from that in the 370 

summer lull, suggesting that the spatial activity of HCWs had stabilised. All COVID-19 floors were in 371 

the larger cluster, which also included non COVID-19 wards.  372 

  373 
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Figure 4: The spatial connectivity of floors in the Tower building at University College London Hospital during the COVID-19 pandemic. The alluvial diagram 374 

depicts the connectivity of floors, as determined from the Louvain clustering algorithm and using dyadic weights derived from the number of healthcare 375 

workers with logged door events and/or patient contacts on the focal floors during the same day . The numbering in the left most column identifies the 376 

floors, and the numbers in the remaining four columns represent the cluster group the floors belong to in each stage of the pandemic; pre-pandemic 377 

(baseline), first wave, summer lull and second wave. An asterisk identifies floors that had the majority (>=15%) of COVID-19 patients during the observation 378 

period. 379 
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Indirect contacts between patients  380 

The average daily patient connectivity (due to shared contacts with HCWs on the same day), showed 381 

daily fluctuations that were not consistent during the course of the pandemic (Figure 5). The average 382 

daily connectivity of COVID-19 negative patients with other COVID-19 negative patients (𝑆𝑡

𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
) 383 

remained stable throughout the pandemic (𝑆𝐹𝑖𝑟𝑠𝑡𝑤𝑎𝑣𝑒

𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 = 5%; 𝑆𝑆𝑢𝑚𝑚𝑒𝑟𝑙𝑢𝑙𝑙

𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 = 5%; 𝑆𝑆𝑒𝑐𝑜𝑛𝑑𝑤𝑎𝑣𝑒

𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 = 5%) 384 

however, during the first wave the pattern in 𝑆𝑡
𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

 followed the rise and fall of COVID-19 385 

patients in hospital before settling around 5% in the summer lull where it remained until the end of 386 

the observation period.  387 

In contrast, during the first wave, the hospital reduced the daily connectivity between COVID-19 388 

negative patients and COVID-19 positive patients (𝑆𝑡
𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒) to a low of <1%. However, 𝑆𝐹𝑖𝑟𝑠𝑡𝑤𝑎𝑣𝑒

𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 389 

was 2%, and there was a noteworthy spike in 𝑆𝑡
𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 to 16% on the 5th May 2020, which was due 390 

to one HCW who had 89 patient contacts; 33 of which were positive for COVID-19. During the 391 

summer lull, much greater levels of indirect contact between patient groups was seen (𝑆𝑆𝑢𝑚𝑚𝑒𝑟𝑙𝑢𝑙𝑙

𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 = 392 

4%), suggesting a relaxation in staff cohorting procedures. During the second wave, 𝑆𝑡
𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 393 

gradually dropped to a low of <1% and 𝑆𝑆𝑒𝑐𝑜𝑛𝑑𝑤𝑎𝑣𝑒

𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 returned to 2%, highlighting a reactive response 394 

to the rise of COVID-19 patients. 395 

  396 
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Figure 5: The average daily percentage of COVID-19 negative patients that had indirect contacts with other patients in the Tower building at University 397 

College London Hospital during the COVID-19 pandemic. The daily averages are plotted separately for the percentage of COVID-19 negative patients to have 398 

indirect contacts with COVID-19 positive (orange) and other COVID-19 negative (blue) patients. An indirect contact was determined through evidence of a 399 

shared contact with HCWs on the same day. Data for October 2020 was not available.  400 

COVID negative

COVID positive
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Discussion 401 

Mobility and contact rates are fundamental to the transmission of communicable diseases, and data 402 

on these behaviours are extremely valuable for epidemiological investigations. It has long been 403 

established that HCWs can be part of transmission clusters within healthcare settings (Huttunen & 404 

Syrjänen, 2014; Lumley et al., 2021) however, data on the behaviour of HCWs are often scarce. In 405 

this paper, we demonstrate how behavioural markers for HCW mobility and patient contacts within 406 

the hospital, can be derived from EMRs and door access logs at an aggregate level. Using data from a 407 

London teaching hospital and during the COVID-19 pandemic, we provide a framework to further 408 

support IPC practitioners in assessing patterns of staff behaviour, identifying behavioural change and 409 

in conducting evidence-based infection control.  410 

The temporal trends in workforce and HCW behaviour are in line with those reported in other 411 

studies (Champredon et al., 2018; Duval et al., 2018; Gallego et al., 2015; Vanhems et al., 2013), and 412 

illustrate the utility of the featured data sources in representing the working patterns of HCWs. Staff 413 

and patient levels determined daily patterns in HCW behaviour, and this was evident when the 414 

hospital reduced staff and patient numbers during the first wave of COVID-19 patients, which 415 

resulted in a notable drop in logged patient contacts. However, the rate of patient contact (number 416 

of contact events per patient) was maintained above baseline levels throughout the pandemic, while 417 

the rate of HCW mobility (number of door events per HCW) remained relatively stable, only 418 

surpassing baseline levels in the second wave. Causes for the observed changes in HCW behaviour 419 

are hard to ascertain, but are likely products of shifting working practices (e.g. through IPC 420 

activities), perceptions of risk (e.g. before/after vaccination and changes in the availability of PPE) 421 

and hospital pressures (e.g. needs of the patient population). Even without clear causal pathways, it 422 

is evident that these data can be used to monitor the behaviour and activity patterns of the HCW 423 

population, providing novel insights for IPC practitioners. 424 
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Patterns of HCW behaviour showed significant spatial variation in response to the pandemic. 425 

Increases in the rate of mobility and rate of patient contact were most notable on COVID-19 floors 426 

during the first and second waves. However, the degree of change in these behavioural markers was 427 

not equal across floors and, despite few (or no) COVID-19 patients, non COVID-19 floors also 428 

experienced changes in HCW behaviour. Trends in HCW behaviour on different floors will depend on 429 

the functions of the wards occupying them, how these functions evolved during the course of the 430 

pandemic and on IPC interventions. Combining observations of how HCW behaviour varied spatially 431 

with data on the context in which they occurred, will be necessary to help explain spatial 432 

heterogeneity in the infection risk for HCWs, as was seen during the pandemic (Gómez-Ochoa et al., 433 

2021).  434 

One strategy to prevent nosocomial transmission is to cohort patients and staff, whereby patients 435 

positive for the disease of concern and/or the staff responsible for their care, are kept separate to 436 

the rest of the patient population (Ahmad & Osei, 2021). At UCLH this was achieved by establishing 437 

COVID-19 wards that handled the majority of COVID-19 patients. Using the routinely-collected data 438 

we were able to identify the main COVID-19 wards and monitor the daily indirect contacts between 439 

patients (as determined through shared contacts with HCWs on the same day). Successful staff 440 

cohorting would have resulted in no indirect contact between COVID-19 negative and positive 441 

patients. However, this was not consistently achieved and, while the indirect contacts between 442 

these groups of patients were substantially reduced during the first and second waves, the response 443 

was not maintained during the summer lull, and appears reactive to increases in the number of 444 

COVID-19 patients. Staff cohorting can be prevented by numerous practical limitations, and the 445 

pandemic presented many challenges including staff shortages. That said, the routinely collected 446 

data provides a tool for IPC practitioners to monitor the success of interventions such as cohorting, 447 

and offers a means to quickly identify, investigate and react to undesirable spikes in indirect patient 448 

contacts that could compromise patient and staff safety. 449 
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Another strategy available to IPC practitioners is to limit the traffic within the hospital (Ahmad & 450 

Osei, 2021). At UCLH a number of interventions were adopted to accomplish this, including reduced 451 

patient and staff numbers, and through the installation of ‘COVID doors’ that created barriers to 452 

disrupt the flow of people between spaces. Our analyses identified the reduced staff and patient 453 

numbers, but we were unable to assess the effect of COVID doors on the mobility of HCWs, as the 454 

dates of their installation and use were not known. Instead, we assessed the flow of HCWs between 455 

floors and found that, after some fluctuation in the early stages of the pandemic, the connectivity 456 

between floors stabilised, suggesting a new ‘normal’ to the working practices of HCWs. Throughout 457 

the pandemic, the flow of HCWs continued between COVID-19 and non COVID-19 wards, which may 458 

highlight an opportunity to improve IPC activities. However, a higher resolution analysis that takes 459 

into account the partitions within floors may reveal the true flow of staff between COVID-19 and 460 

non-COVID-19 areas.  461 

In this investigation we used a minimal number of data fields and metrics aggregated at the level of 462 

the HCW population. However, further insights into the variations of HCW behaviour could be 463 

uncovered if the data were paired with other data fields and aggregated by individual or HCW group. 464 

For example, combining this data with specific details on where and when IPC interventions were 465 

introduced, would allow investigations into the pre and post effects of interventions on HCW 466 

mobility and patient contacts. Combining these data sources with data on the disease status of staff 467 

could help identify HCW groups and/or individuals more at risk of acquiring HAIs, along with the 468 

behaviours or working conditions associated with higher risk. As healthcare systems move towards 469 

more digital systems, the accessibility and diversity of data available to practitioners grows, 470 

providing new opportunities for research and support for evidence based infection control. 471 

While the data sources featured here have potential to be used operationally by IPC practitioners, 472 

there are several challenges that hospitals may have to overcome for this to be realised. Firstly, it is 473 

worth noting that UCLH is a digital hospital, but many healthcare facilities in the UK and across the 474 
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world are not, and an absence of electronic records will reduce the scope and capacity of facilities to 475 

utilise these data. Hospitals, particularly those within the NHS, often outsource services such as 476 

systems for security door logs and EMRs, and in this study the various datasets from outsourced 477 

companies had to be consolidated, which required the creation of a master staff index to establish 478 

links between the databases. Mapping the data flows and creating a user friendly platform will be 479 

challenging and requires the collaboration of researchers, IT professionals and IPC staff. There are 480 

also challenges in relation to the generation of these data themselves, as we lack assurances on the 481 

exact nature of the processes underlying their generation. For instance, the use of staff cards to 482 

open security doors may be biased in time and space by HCWs following each other through doors 483 

(e.g. during ward rounds), or by doors being left open. Likewise, there has been little systematic 484 

analysis to date on the generation of EMR data, in relation to the accuracy of the spatial or temporal 485 

markers, or the HCWs involved in events. These remain important validation challenges that are 486 

being undertaken – but nevertheless, the principles underlying aggregate patterns produced using 487 

these data appear sound. 488 

Data on behaviours with epidemiological relevance are often scarce but, as hospitals embrace the 489 

digital age, data is becoming more readily available. Deriving behavioural markers from routinely 490 

collected data provides opportunities to enhance IPC activities aimed at better protecting HCWs and 491 

patients, in addition to improving pandemic preparedness. IPC practitioners should consider what 492 

new data sources are at their disposal and how they can be used operationally to empower decision 493 

making.  494 
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