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 53 

Abstract 54 

Obstructive sleep apnea (OSA) is a common sleep-related breathing disorder. In animal models, 55 

OSA has been shown to alter the gut microbiota; however, little is known about such effects in 56 

humans. Here, we used respiratory polygraphy data from 3,570 individuals aged 50–64 from the 57 

Swedish CardioPulmonary bioImage Study (SCAPIS) and deep shotgun metagenomics to 58 

identify OSA-associated gut microbiota features. We found that OSA-related hypoxia parameters 59 

were associated with 128 bacterial species, including positive associations with Blautia obeum 60 

and Collinsela aerofacines. The latter was also associated with increased systolic blood pressure. 61 

Further, the cumulative time in hypoxia was associated with nine gut microbiota metabolic 62 

pathways, including propionate production from lactate, a biomarker of hypoxia. In conclusion, 63 

in this first large-scale study on gut microbiota alterations in OSA, we found that OSA-related 64 

hypoxia is associated with specific microbiota features. Our findings can direct future research 65 

on microbiota-mediated health effects of OSA. 66 

 67 
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Introduction  68 

Obstructive sleep apnea (OSA) is characterized by upper airway collapse episodes during sleep 69 

resulting in complete cessation (apneas) or reduction (hypopneas) of air flow and consequent 70 

intermittent hypoxia1. It is estimated that OSA affects 5–36% of the adult population, depending 71 

on the country studied and the diagnostic criteria used. The increasing prevalence of OSA has 72 

been attributed to the increased longevity worldwide and the rising prevalence of obesity2, a 73 

well-described cause of OSA3. Although OSA has been prospectively associated with 74 

cardiovascular disease independent of BMI4,5, the mechanisms are not yet fully elucidated6. 75 

The most commonly used clinical parameter of OSA severity is the apnea-hypopnea-76 

index (AHI), which quantifies the number of apnea and hypopnea events per hour of sleep. 77 

However, AHI does not differentiate short apnea events with mild oxygen desaturation from 78 

prolonged events with severe hypoxia7. To quantify the time in hypoxia during sleep, the 79 

assessment for OSA often measures the percentage of the sleep time with oxygen saturation 80 

<90% (T90). The T90 parameter is a more reliable metric of nocturnal hypoxia intensity but 81 

not always associated with AHI8. Lastly, the oxygen desaturation index (ODI), which quantifies 82 

the number of oxygen desaturation events per hour of sleep9, is considered the most suitable 83 

parameter when the sole purpose is to measure intermittent hypoxia10. In sum, the three 84 

parameters are complementary to each other as they capture different dimensions of OSA. 85 

The microbiota is a complex microbial community that interacts continuously with the 86 

host11. Studies of animal models of OSA have found that intermittent hypoxia and intermittent 87 

airway obstruction can produce substantial changes in the gut microbiota composition12–15. In 88 

turn, alterations of the gut microbiota induced by OSA may partly mediate the effects of OSA on 89 

adverse health outcomes, including the development of hypertension15–17. Smaller studies in 90 

humans have linked OSA to the microbiota composition in the upper airways (n = 92)18 and in 91 
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the gut (n = 113)19. However, these studies did not adjust for important confounders, such as diet 92 

and medications, and were limited in their taxonomic resolution of the microbiota.  93 

To overcome the above limitations, there is a need for adequately powered investigations 94 

of the associations between OSA and the human gut microbiota, combining extensive 95 

information on confounding factors with species-level microbiota data. Here, we used a validated 96 

method suitable for population-wide screening for OSA (ApneaLink Air®, ResMed, CA, 97 

USA)20,21 to investigate how key prognostic and severity features of OSA were cross-sectionally 98 

associated with the human gut microbiota, analyzed with shotgun metagenomic sequencing in up 99 

to 3,570 participants from the large population-based Swedish CardioPulmonary BioImage 100 

Study (SCAPIS). We found that all three OSA parameters were associated with lower gut 101 

microbiota richness and evenness, as measured with the Shannon index. In addition, T90 was 102 

independently associated with 59 specific bacterial species and ODI was independently 103 

associated with 97 species. We further found that the T90-associated microbiota were enriched 104 

for nine microbial metabolic pathways. One of the T90-associated species, Collinsella 105 

aerofaciens, was also associated with systolic blood pressure independent of BMI, the OSA 106 

parameters, and related risk factors. These findings may guide future research on the role of the 107 

gut microbiota as a potential mediator of OSA-associated morbidities.   108 

Results  109 

Descriptive statistics  110 

After excluding the participants who reported use of continuous positive air pressure (CPAP) as 111 

treatment for OSA (n = 59), the study sample consisted of 3,175 (54% female) SCAPIS 112 

participants with valid AHI data (Fig. S1) and 3,570 (52% female) with valid T90 and ODI data. 113 

The mean age was 57.7 years. The Spearman’s correlation coefficient between the OSA 114 
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parameters was 0.56 for AHI and T90; 0.92 for AHI and ODI; and 0.63 for T90 and ODI. 115 

Population characteristics are described in Table 1, as well as in Tables S1 and S2. 116 

 117 

OSA is associated with lower gut microbiota richness and evenness 118 

To investigate whether OSA was associated with the richness and evenness of the gut 119 

microbiota, we performed partial Spearman’s correlation analyses of the three OSA parameters 120 

a) AHI, b) T90, and c) ODI with alpha diversity measured as the Shannon index22. We used a 121 

hypothetical causal diagram (Fig. S2) and the d-separation criterion23 to identify the minimal set 122 

of confounders for adjustment in our main model. Thus, covariates in the main model consisted 123 

of age, sex, smoking, alcohol intake, and BMI, as well as the DNA extraction plate to account for 124 

variation between batches. We found that AHI, T90, and ODI were inversely associated with the 125 

Shannon index (AHI:  = -0.058, p-value = 0.002; T90:  = -0.043, p-value = 0.013, ODI:  = -126 

0.065, p-value = 1.75×10-4, Table S3). To better account for the influence of diet and other 127 

confounders, we also constructed an extended model with additional adjustments for calculated 128 

fiber intake and total energy intake from a food frequency questionnaire, self-reported leisure 129 

time physical activity, education level, country of birth, and season of assessment. In this 130 

extended model, the associations were somewhat attenuated (AHI:  = -0.047, p-value = 0.013; 131 

T90:  = -0.038, p-value = 0.034, ODI:  = -0.055, p-value = 0.002). Taken together, these 132 

results indicate a decreased gut microbiota richness and evenness in OSA.  133 

 134 

Gut microbiota composition differs by OSA severity independently of BMI 135 

To determine whether the OSA severity was associated with the overall gut microbiota 136 

composition, we analyzed the beta diversity measured as Bray-Curtis dissimilarity in relation to 137 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 14, 2022. ; https://doi.org/10.1101/2022.06.10.22276241doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.10.22276241
http://creativecommons.org/licenses/by/4.0/


 

 7 

groups of AHI, T90, and ODI. Starting with AHI, we grouped the participants (n=3,175) with 138 

valid AHI data according to previously established and clinically used cut-off values24 (no OSA: 139 

AHI < 5, n = 1,851; mild: AHI 5–14.9, n = 899; moderate: AHI 15–29.9, n = 295; severe: AHI ≥ 140 

30, n = 130). To graphically represent the relationship between the groups, we conducted a 141 

principal coordinate analysis on the Bray-Curtis dissimilarity matrix (Fig. 1a). We observed a 142 

separation of the groups along the first axis in order of severity. This separation was supported 143 

by the results of a permutational analysis of variance (PERMANOVA) adjusted for the main 144 

model covariates (R2 = 0.5% and p-value = 0.0001). In pairwise comparisons (Table S4), we 145 

found some evidence supporting a difference for all pairwise comparisons (nominal p-value < 146 

0.05), except between the groups mild and severe (p-value = 0.26), probably due to higher 147 

dispersion and lower power in this comparison. Taken together, these results suggest that the 148 

groups of OSA severity based on AHI have different gut microbiota compositions. 149 

To assess whether the gut microbiota composition also differed among participants 150 

depending on their hypoxia parameters, we divided the participants with available T90 and ODI 151 

data (n=3,570) into four groups. Because there were no well-established cut-offs, we aim to 152 

create groups of similar sizes. Due to the high proportion of participants with T90 = 0, grouping 153 

by quartiles was not possible for this variable. Therefore, we performed the following division 154 

for T90: one group of participants with T90 = 0 (n=1,088), and the remaining participants 155 

divided into three groups of similar size in order of ascending T90 values: t1 = 912 individuals 156 

(T90: 1–3%), t2 = 759 (T90: 4–14%), and t3 = 811 (T90: 15–100%). For ODI, we divided the 157 

participants by quartiles: q1 = 913 individuals (ODI: 0–1.8), q2 = 885 (ODI: 1.9–4.3), q3 = 891 158 

(ODI: 4.4–9.4), and q4 = 881 (ODI: 9.5–93). Either based on T90 or ODI, the groups separated 159 

along the first axis in order of severity in the principal coordinate analysis (Fig. 1b and 1c). We 160 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 14, 2022. ; https://doi.org/10.1101/2022.06.10.22276241doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.10.22276241
http://creativecommons.org/licenses/by/4.0/


 

 8 

confirmed the separations using PERMANOVA (T90 groups: R2 = 0.2% and p-value = 0.013. 161 

ODI groups: R2 = 0.3% and a p-value = 0.002). In the pairwise comparisons of T90 groups 162 

(Table S4), we found that the group with T90 = 0 differed from the t2 and t3 groups (p-values = 163 

0.001 and 0.006, respectively). In the pairwise comparisons of ODI groups (Table S4), we found 164 

that the q1 group differed from the q3 and q4 groups (p-values = 0.014 and 0.001, respectively). 165 

We also found a difference between the q2 and q4 groups (p-value = 0.005). 166 

We additionally investigated differences in the overall gut microbiota between the groups 167 

after adjusting for the extended model covariates. For all grouping strategies; i.e., AHI-, T90- or 168 

ODI-based, we confirmed the differences in gut microbiota composition across groups (AHI 169 

groups: R2 = 0.5%, p-value = 0.0001; T90 groups: R2 = 0.2%, p-value = 0.028; ODI groups: R2 = 170 

0.2%, p-value = 0.007).   171 

Altogether, these results point to progressive differences in the overall gut microbiota 172 

composition – as assessed with Bray-Curtis dissimilarity – across groups of OSA ordered by 173 

severity. The difference between groups was clearer when using the pre-established AHI cut-offs 174 

rather than the similarly sized groups based on T90 and ODI. We could still detect differences in 175 

the gut microbiota composition between groups of T90 or ODI even after accounting for several 176 

confounders.  177 

 178 

OSA-related hypoxia is associated with the relative abundance of specific gut microbiota 179 

species independently of BMI, dietary fiber intake, and common medications 180 

To study how the OSA parameters AHI, T90, and ODI were associated with the relative 181 

abundance of gut microbiota species, we performed a series of partial Spearman’s correlations 182 

with each OSA parameter and each species. Given that BMI may influence or be influenced by 183 
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the abundance of gut microbiota species25 and that obesity is an important cause of OSA3, BMI 184 

could either be considered a confounder or a source of reverse causation in the association of 185 

OSA with microbiota. Therefore, we divided the main model into two: one model not including, 186 

and one model including BMI. The model not including BMI was then used as a screening step 187 

to select the species that would be taken into the subsequent models. We defined significance 188 

using p-values adjusted for multiple comparisons, referred to here as q-values, with a false 189 

discovery rate set at 5%.   190 

Without adjustment for BMI, we found that AHI was associated with the relative 191 

abundances of 566 species, T90 with 631 species, and ODI with 692 species (Fig. 2a and Table 192 

S5). Next, the species that were associated with at least one of the OSA parameters in this step 193 

were analyzed with the main model including BMI. In these analyses, AHI was associated with 194 

101 species, T90 with 141, and ODI with 241 (Table S6). When assessing the overlap of these 195 

associations, we found that the three OSA parameters were jointly associated with the relative 196 

abundances of 53 species. The AHI and ODI parameters were jointly associated with another 42 197 

species, ODI and T90 were jointly associated with another 46 species, and AHI and T90 were 198 

jointly associated with one other species (Fig. 2b).  199 

To account for other potential confounders, the species associated with at least one of the 200 

OSA parameters in the main model not including BMI were then analyzed with the extended 201 

model. In these analyses, AHI was no longer associated with any species (Fig. 2c and Table S7). 202 

Nevertheless, T90 was associated with 59 species, of which 17 were positive, and ODI with 97 203 

species, of which 17 were positive. The parameters T90 and ODI were jointly positively 204 

associated with six species, including the species Blautia obeum (internal identifier: 205 

HG3A.0001), Ruminococcus gnavus, Coprococcus comes, and the recently isolated 206 
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Mediterraneibacter glycyrrhizinilyticus26. The T90 and ODI parameters were jointly negatively 207 

associated with 22 unidentified species, of which 16 belonged to the order Eubacteriales. Based 208 

on the correlation coefficients, the strongest positive associations with ODI were 209 

Fusicatenibacter saccharivorans ( = 0.069, q-value = 0.008), and an unidentified species of the 210 

family Lachnospiraceae (HG3A.0018,  = 0.069, q-value = 0.008). Among the 17 positive 211 

associations with ODI, 10 species belonged to the family Lachnospiraceae. The strongest 212 

negative association of ODI was with an unidentified Eubacteriales sp. (HG3A.0069,  = -0.074, 213 

q-value = 0.006). The strongest positive association of T90 was with Dorea formicigenerans ( 214 

= 0.086, q-value = 0.001), followed by B. obeum (HG3A.0001,  = 0.079, q-value = 0.003). The 215 

strongest negative association was with Eubacteriales sp. (HG3A.0703,  = -0.073, q-value = 216 

0.009).  217 

One possible explanation for the null findings for AHI was that fewer participants had 218 

valid AHI data compared with the number of participants with valid T90 and ODI data. To 219 

ascertain that the null findings were not due to lower power, we conducted a secondary analysis 220 

where we used multiple imputations to impute missing AHI values for the 340 participants who 221 

had valid T90 or ODI values, but not valid AHI values. Even in this secondary analysis, we did 222 

not observe any associations between AHI and species after adjustment for the extended model 223 

covariates (Table S8).   224 

Next, we performed a series of sensitivity analyses with the 128 species associated with 225 

T90 and/or ODI in the extended model to investigate how medication use or presence of lung 226 

disease affected our findings (Table S9). Firstly, we added to the extended model the covariates 227 

of metformin use, and proton pump inhibitor (PPI) use, based on measurable metabolomic 228 

plasma levels of these medications, as well as self-reported medication use for hypertension 229 
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and/or hyperlipidemia. All 128 species remained associated with T90 and/or ODI after the 230 

additional adjustment (q-value < 0.05). After excluding the 367 participants who had used any 231 

antibiotic during the six months before sampling, all associations were retained, except for the 232 

association between ODI and Eubacteriales sp. (HG3A.0691). The result also did not change 233 

after excluding the 29 participants with self-reported diagnosis of chronic obstructive pulmonary 234 

disease (COPD), chronic bronchitis, or pulmonary emphysema. Altogether, this series of 235 

analyses highlighted the robustness of the associations between the hypoxia parameters T90 and 236 

ODI and the identified species. In summary, we found that the OSA-related hypoxia parameters 237 

were robustly associated with 127 gut microbiota species. 238 

 239 

The T90 and ODI associations with gut microbiota species were not modified by 240 

hemoglobin levels 241 

Exposure to hypoxia increases erythropoiesis and results in increased hemoglobin levels27. In 242 

turn, hemoglobin level affects the oxygen delivery to tissues28. To assess the effect modification 243 

by hemoglobin levels on the T90 and ODI associations with the gut microbiota species, we 244 

conducted Spearman’s correlation analyses adjusted for the extended model covariates stratified 245 

by the sex-specific median hemoglobin value. These analyses included the 128 species that we 246 

identified as being associated with the T90 and/or ODI parameters (Table S10). In the 247 

association between ODI and Eubacteriales sp. (HG3A.1026), we detected a difference in the 248 

correlation estimates between participants with high or low hemoglobin status (low = 0.008, p-249 

valuelow = 0.75 and and high = -0.12, p-valuehigh =1.8×10-6, heterogeneity q-value = 0.02). 250 

Differences were also observed for other species, as in the association between ODI and 251 

Clostridia sp. (HG3A.0140, low = -0.12, p-valuelow = 4.0×10-6 and high = -0.02, p-valuehigh = 252 
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0.36), but when we formally tested for these differences, we could not confirm them 253 

(heterogeneity q-value > 0.05). Therefore, we could not ascertain whether hemoglobin levels 254 

acted as an effect modifier on the associations between OSA-related hypoxia parameters and the 255 

gut microbiota species abundance.  256 

 257 

T90-associated gut microbiota showed enriched putative metabolic pathways  258 

To characterize the putative metabolic profile of the species associated with OSA, we performed 259 

enrichment analyses to identify overrepresented metabolic pathways among the AHI, T90, or 260 

ODI associations with gut microbiota species (extended model). Metabolic pathways were 261 

defined using the gut metabolic modules (GMM)29. We found no metabolic pathways enriched in 262 

the AHI or ODI associations (Table S9). The positive associations between T90 and the gut 263 

microbiota species were enriched for nine metabolic pathways (Fig. 3a), including threonine 264 

degradation I and II (q-value = 9.3×10-4 and 0.02, respectively), and propionate production II (q-265 

value = 0.02). The latter is comprised of the enzyme propionate CoA-transferase, which 266 

produces propionate from lactate30. The pathway threonine degradation I consists of a series of 267 

enzymatic steps that metabolize L-threonine into propionate. One of the these steps is carried out 268 

by the activated pyruvate-formate lyase, which is only activated under anaerobic conditions31. 269 

The T90-species associations were also enriched for lysine degradation II (q-value = 0.004), 270 

serine degradation (q-value = 0.009), and the pathways of carbohydrate degradation: 271 

galacturonate degradation I (q-value < 0.001, and ribose degradation (q-value = 0.047).  272 

Our results on the enrichment of microbial metabolic pathways suggest that the duration 273 

of hypoxia during sleep, as reflected by the T90 parameter, may favor gut microbiota species 274 

with specific metabolic repertoires. Noteworthy, we found that T90 was associated with the 275 
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production of propionate from lactate, a biomarker of hypoxia. On the other hand, we could not 276 

find evidence that AHI or ODI were associated with metabolic features of the gut microbiota.  277 

 278 

Species positively associated with T90 and/or ODI have different metabolomic fingerprints 279 

than those negatively associated  280 

To characterize the metabolomic fingerprint of the 128 gut microbiota species associated with 281 

T90 and/or ODI in the extended model, we mined data from the online GUTSY Atlas 282 

(https://gutsyatlas.serve.scilifelab.se/), which has investigated the associations between the 283 

human gut microbiota and the plasma metabolome in a cohort that also included participants 284 

from the current study32. From the GUTSY Atlas, we retrieved data on the enrichment analyses 285 

for metabolite groups in the associations between the species and the plasma metabolites. The 286 

analyses were conducted stratified by the direction of the associations. 287 

 In the heatmaps of enriched metabolite groups for every species, we observed a different 288 

pattern of enrichment for the 100 species that had a negative association with T90 and/or ODI 289 

values compared with the 28 species that had a positive association with these parameters. For 290 

instance, while several positively-associated species were positively associated with secondary 291 

bile acids (Fig. 4b), the negatively-associated species were negatively associated with these 292 

metabolites (Fig. 4a). A similar pattern was also observed for dihydrosphingomyelins and 293 

phosphatidylcholine metabolites. In addition, for 19 species that were negatively associated with 294 

T90/ODI, we found enrichment for vitamin A metabolites; whereas four species in positive 295 

association with T90/ODI had a negative association with vitamin A metabolites.  296 

 Lastly, we found evidence that the species that were negatively associated with the 297 

hypoxia parameters T90 or ODI were also negatively associated with tobacco metabolites. 298 
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Although these species were identified in analyses adjusted for smoking status, it is possible that 299 

these species may also have a reduced abundance in smokers, hence the negative association 300 

with tobacco metabolites.  301 

Overall, our results indicated that the associations between the species and the plasma 302 

metabolites had opposite directions depending if the species abundance was expected to increase 303 

or decrease with hypoxia. The main differences in the metabolomic fingerprints involved the 304 

pattern of association with vitamin A metabolites, dihydrosphingomyelins, secondary bile acids, 305 

phosphatidylcholine, and tobacco metabolites.  306 

 307 

Microbiota species associated with OSA-related hypoxia and were also associated with 308 

blood pressure 309 

Previous studies have found that OSA is associated with increased risk for insulin resistance33 310 

and incident blood hypertension4. Furthermore, fecal microbiota transplantation studies in mice 311 

have suggested that alterations in the gut microbiota induced by OSA might contribute to the 312 

detrimental health effects of OSA15,16. Therefore, we investigated whether the 128 T90/ODI-313 

associated species and the nine T90-enriched metabolic pathways were also associated with 314 

blood pressure measurements (n = 2,335) and glycated hemoglobin (Hb1Ac, n = 2,786). We 315 

excluded from the association analyses with blood pressure measurements the participants who 316 

self-reported medication for hypertension. Likewise, we excluded from the analyses with HbA1c 317 

the participants who self-reported medication for diabetes. Based on a directed acyclic graph 318 

(Fig. S3), the associations were adjusted for age, sex, alcohol intake, smoking, fiber intake, total 319 

energy intake, leisure time physical activity, country of birth, ODI, AHI, T90, and DNA 320 

extraction plate. Among the species negatively associated with T90 or ODI, 19 were negatively 321 
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associated with systolic blood pressure (Fig. 3b), including Intestinimonas massiliensis ( = -322 

0.07, q-value = 0.02), and nine were negatively associated with diastolic blood pressure (Table 323 

S12). Among the positive associations, the species Collinsella aerofaciens, and the microbial 324 

pathway threonine degradation I were positively associated with systolic and diastolic blood 325 

pressure. None of the species or microbiota functions investigated were associated with Hb1Ac.  326 

In the analyses additionally adjusted for BMI, C. aerofaciens continued to associate with 327 

systolic blood pressure ( = 0.073, q-value = 0.034) and Eubacteriales sp. (HG3A.0196) 328 

continued to negatively associate with systolic ( = -0.077, q-value = 0.032) and diastolic blood 329 

pressure ( = -0.081, q-value = 0.015). Altogether, we could observe that specific species and 330 

metabolic pathways previously identified in association with T90 or ODI were also associated 331 

with blood pressure measurements in the same direction. Two species continued to be associated 332 

with blood pressure measurements even after adjustment for BMI.   333 

Discussion  334 

Here we presented the most comprehensive population-based study to date investigating the 335 

relationship of OSA with the human gut microbiota. We found evidence that OSA, especially 336 

OSA-related hypoxia, was associated with the composition and functional potential of the human 337 

gut microbiota. The OSA hypoxia parameters, namely T90 and ODI, were associated with the 338 

abundance of specific species after extensive adjustment for potential confounders such as 339 

treatment for diabetes, hypertension, hyperlipidemia, and gastritis and gastroesophageal reflux. 340 

We further noted enrichment for specific microbial metabolic pathways shared by bacteria 341 

positively associated with the duration of hypoxia during sleep.  342 

Out of the 128 species associated with T90 and/or ODI, 28 were associated with both 343 

parameters. Among the six positive associations, four were annotated to the species level, 344 
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namely B. obeum, C. comes, R. gnavus, and M. glycyrrhizinilyticus. A higher relative abundance 345 

of B. obeum, previously named Ruminococcus obeum, has been observed in individuals with 346 

insulin resistance34. Nevertheless, we did not find an association between B. obeum and HbA1c 347 

levels, a marker of glycemic control, in the present study. C. comes is one of the gut microbiota 348 

species found to decrease in abundance post bariatric surgery35, a procedure known to improve 349 

many conditions related to obesity, including OSA36. R. gnavus, a mucin-degrading microbe, has 350 

been positively associated with incident type 2 diabetes in a large Finnish population cohort37. 351 

These four species all belong to the family Lachnospiraceae. An increased abundance of the 352 

Lachnospiraceae family has been observed in mice subjected to intermittent hypoxia12. Also 353 

belonging to the same family are D. formicigenerans and Anaerobutyricum hallii, which were 354 

positively associated with T90; and Roseburia inulinivorans, F. saccharivorans, Ruminococcus 355 

torques and Blautia massiliensis, which were positively associated with ODI. However, a 356 

mechanistic explanation connecting the Lachnospiraceae family to host hypoxia is lacking and 357 

warrants further investigation. 358 

In this study, ODI was positively associated with C. aerofaciens, which was in turn 359 

positively associated with systolic blood pressure independent of BMI and OSA. C. aerofaciens 360 

is an obligate anaerobe abundant in the human gut38, with higher abundance in overweight and 361 

obese individuals39. Higher abundance of C. aerofaciens has also been observed in individuals 362 

with type 1 pulmonary hypertension40, a condition associated with lower oxygen saturation41. 363 

Longitudinal and experimental studies are necessary to understand whether the gut microbiota 364 

species identified in this study may have a role connecting OSA to blood pressure.  365 

The OSA hypoxia parameters T90 and ODI were associated with the abundance of 366 

specific species after adjustment for the extended model covariates, while AHI was not. Our 367 
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results suggest that OSA-related hypoxia might be of greater importance when it comes to 368 

associations with the gut microbiota than the apnea and hypopnea events themselves. Increasing 369 

attention has been given to OSA-related hypoxia, as recent studies have shown that OSA-related 370 

hypoxia, unlike AHI, predicted increased cardiovascular mortality5.  371 

Evidence in the literature suggests that intermittent host hypoxia directly affects the gut 372 

microbiota. In the study by Moreno-Indias et al., intermittent hypoxia applied during the mice’s 373 

rest phase resulted in enrichment for gut obligate anaerobes12. Similarly, a reduction of 374 

anaerobes was observed in the gut microbiota of rats after hyperbaric treatment42. In the Moreno-375 

Indias et al. study, the authors demonstrated that intermittent hypoxia produced oscillations in 376 

the oxygen concentration inside the intestinal lumen close to the epithelium, thus providing a 377 

physiological rationale for how the oxygenation level of the host could impact the gut microbiota 378 

environment12.  379 

 The identified associations could be due to effects of OSA on sleep fragmentation as both 380 

acute and chronic sleep fragmentation have been demonstrated to affect the gut microbiota 381 

composition in rodents43. Nevertheless, sleep fragmentation alone is unlikely to explain why 382 

OSA hypoxia parameters associated with the abundance of specific species while AHI did not. 383 

Daytime sleepiness may be a result of sleep fragmentation; however, the Epworth sleepiness 384 

scale score, a measurement of daytime sleepiness, was not different between the groups of OSA 385 

severity based on T90 (Table S1). To better disentangle the effects of sleep fragmentation due to 386 

OSA from the effects of nocturnal hypoxia, future studies would benefit from concomitant 387 

electroencephalogram monitoring, polysomnography assessment and actigraphy.  388 

 One possible indirect mechanism through which OSA might affect the microbiota is 389 

through alterations in the host metabolism, such as accumulation of lactate44. Experiments in 390 
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mice using labeled lactate showed that circulating lactate can cross the gut barrier and enter the 391 

intestinal lumen45. Higher plasma concentration of lactic acid has benn described in OSA 392 

patients46. Additionally, T90 was positively associated with venous concentration of lactate in 393 

treatment-naïve OSA patients44. High circulating levels of lactate is also present in athletes 394 

postexercise; although, in this case, lactate is produced in the absence of hypoxia47. A study 395 

comparing the gut microbiota in athletes before and after exercise found an increase in microbial 396 

genes involved in the conversion of lactated into propionate after exercise45. The authors of the 397 

latter study hypothesized that the host lactate entering the intestinal lumen could favor bacterial 398 

species that use lactate as a carbon source. This hypothesis corresponds with our findings; the 399 

pathway of propionate production from lactate was enriched in positive T90 associations with 400 

gut microbiota species. In summary, supported by the existing literature, our study suggests an 401 

association between the hypoxia caused by OSA, plasma lactate, and the gut microbiota 402 

metabolic profile. 403 

The strengths of our study include the large sample size, temporal proximity between 404 

OSA assessment and fecal microbiota sampling, the extensive adjustment for confounders, and 405 

the use of an objective assessment for OSA instead of self-reported diagnosis or a convenience 406 

sample of OSA patients. Our investigation on a random sample from the population provides a 407 

more generalizable picture of the association between OSA and the gut microbiota than studies 408 

comparing controls to patients with a clinical diagnosis of OSA. The combination of a large 409 

sample size with shotgun metagenomic sequencing allowed us to conduct a comprehensive 410 

investigation at the species level and also of the microbial metabolic profile.  411 

Nevertheless, there are limitations that need to be considered when interpreting our 412 

results. Because of the cross-sectional design, we were not able to assess causality. Despite the 413 
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extensive adjustment, we cannot rule out residual confounding. Moreover, even if the animal 414 

studies indicate a causal effect of OSA on the gut microbiota, an effect in opposite direction is 415 

also plausible. For example, certain gut microbiota species may promote weight gain that may 416 

consequently lead to OSA48. In this case, BMI would open a pathway for reverse causation from 417 

the gut microbiota to the development of OSA. The gut microbiota was examined using fecal 418 

shotgun metagenomics followed by detection of species based on the co-abundance of genes. 419 

Although valid and well-described49, this approach leads to the detection of some incompletely 420 

annotated species, which have not yet been isolated and characterized. Alternatively to fecal 421 

samples, mucosal biopsies could have provided information on the gut microbiota that resides 422 

more closely to the host50, thus more likely to be affected by OSA. Our results may not extend to 423 

populations in other countries due to the close connection between geographical location and the 424 

gut microbiota51. The ApneaLink Air® two-channel device used to assess sleep apnea does not 425 

distinguish obstructive from central apneas. However, obstructive sleep apneas are more 426 

common in the general population52. An assessment for OSA based on a single night may result 427 

in a certain degree of exposure misclassification53, which could affect the precision, but would 428 

not bias our estimates. The T90 parameter is not able to differentiate hypoxia caused by OSA 429 

from nocturnal hypoxia of other etiologies. Finally, we excluded participants that used CPAP, a 430 

common treatment for OSA. Thus, future studies should investigate whether the herein observed 431 

OSA-gut microbiota associations are affected by OSA therapy, including but not limited to 432 

CPAP.  433 

Animal studies have found that comorbidities present in mouse models of OSA can be 434 

transferred to control mice through fecal microbial transplant15,17. Furthermore, observational 435 

studies have implicated the human gut microbiota in the development of metabolic and 436 
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cardiovascular disorders, such as hypertension54 and insulin resistance55. Given the results from 437 

animal and observational studies, it is possible that alterations in the human gut microbiota 438 

caused by OSA could at least in part contribute to the increased risk of cardiovascular disease 439 

seen in OSA patients. Therefore, the associations that we found between OSA and the gut 440 

microbiota can be informative for future research aiming to identify gut microbiota mechanisms 441 

that connect OSA to health outcomes.  442 

In conclusion, we present the largest study to date that has investigated the association 443 

between OSA and the human gut microbiota. We found that the objective parameters of OSA-444 

related hypoxia, namely T90 and ODI, were independently associated with 59 and 97 gut 445 

microbiota species, respectively. In addition, we found that the gut microbiota associated with 446 

T90 was enriched for nine metabolic pathways, including the pathway for production of 447 

propionate from lactate. Our findings provide novel insights into the relationship between OSA 448 

and the gut microbiota. Future experimental studies are necessary to validate whether the 449 

identified microbial species may represent potential therapeutic targets to prevent or treat 450 

comorbidities of OSA.  451 

Methods  452 

Study population  453 

From 2013 to 2018, a total of 30,154 women and men aged 50–64 were enrolled in the SCAPIS 454 

study. Participants were randomly invited from the general population across six regions in 455 

Sweden56. In the Uppsala region, 4,839 participants had data on fecal shotgun metagenomics and 456 

4,183 were assessed for OSA. Combined, 4,045 participants had both OSA data and 457 

metagenomic data. We excluded the 59 participants who reported use of CPAP. At least four 458 

hours of air flow and oxygen saturation recordings were required to compute a valid AHI value 459 
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and at least four hours of oxygen saturation recording was required to compute valid T90 and 460 

ODI values. Therefore, data on AHI were available for 3,175 participants and data on T90 and 461 

ODI were available for 3,570 participants (Fig. S1).   462 

SCAPIS study and the present study were approved by the Swedish Ethical Review 463 

Authority (DNR 2018-315 B and amendment 2020-06597, and DNR 2010-228-31M, 464 

respectively). All participants provided informed consent.  465 

 466 

OSA assessment  467 

Assessment for OSA was conducted using the ApneaLink Air® (ResMed, CA, USA)57. After 468 

instructions, participants took the ApneaLink Air® device home for recording of nasal air flow 469 

and oxygen saturation during one night’s sleep. Apnea was defined as a reduction of breathing 470 

flow ≥80% for at least 10 seconds. Hypopnea was defined as a period of at least 10 seconds with 471 

a decrease in the baseline air flow of 30–80% combined with a decrease ≥4% in oxygen 472 

saturation. From the OSA assessment, the variables AHI, T90, and ODI were chosen for the 473 

current study as they are clinically relevant measures and commonly used in previous research. 474 

The AHI was calculated as the mean number of apneas and hypopneas events per hour of total 475 

recording time. Using clinically used cuff-off values, AHI severity groups were defined as no 476 

OSA for AHI < 5, mild for AHI 5–14.9, moderate for AHI 15–29.9, and severe for AHI ≥ 3024. 477 

The T90 variable was computed by adding the time spent with an oxygen saturation < 90% and 478 

dividing by the total recording time. For the grouping based on T90, the first group was 479 

composed of participants with a T90 = 0. The remaining participants were grouped by tertiles. It 480 

was not possible to group the participants based on quartiles because > 25% of the participants 481 

had a T90 = 0. ODI was calculated as the mean number of desaturation events per hour during 482 
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the total recording time. A desaturation event was defined as a decrease from baseline ≥ 4% in 483 

oxygen saturation. For the grouping based on ODI, the participants were divided by quartiles of 484 

ODI.  485 

 486 

Fecal metagenomic analysis 487 

SCAPIS participants were instructed to collect fecal samples into dry tubes at home with the 488 

provided kit and store the samples at the home freezer until the study site visit. Median interval 489 

between fecal sample collection and OSA assessment was 0 days (IQR: 0–1). The samples were 490 

then kept at -20°C at the test centers. After 0–7 days, the samples were shipped to the central 491 

biobank where they were kept at -80°C. Next, the samples were sent in dry ice to Clinical 492 

Microbiomics A/S (Copenhagen, Denmark) for DNA extraction, shotgun metagenomic 493 

sequencing, and taxonomic annotation. Analyses were performed in random order of samples’ 494 

boxes (16 samples per box) during 2019 and 2020. DNA was extracted from all samples using 495 

NucleoSpin® 96 Soil kits (740787; Macherey-Nagel; Germany) from the same batch (Lot: 496 

1903/001). Each extraction round contained a negative and positive control (ZymoBIOMICSTM 497 

Microbial Community Standard, D6300, Zymo Research). For cell lysis, a bead beating step was 498 

performed for 5 min at 2200 rpm with tubes placed horizontally on the vortex (Vortex-Genie 2). 499 

After DNA fragmentation and library preparation, sequencing was performed using an 500 

Illumina Novaseq 6000 system (Illumina, USA). On average, 26.3 million read pairs (SD = ±6.9 501 

millions) were generated per sample for Uppsala samples. Reads were removed if they contained 502 

clear adapter contamination, > 10% ambiguous bases, or > 50% bases with Phred quality score < 503 

5. Reads pairs were also removed if any of the reads mapped to the human reference genome 504 

GRCh38 using Bowtie 2 (v.02.3.2.)58. Reads that passed this quality control were assembled with 505 
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MEGAHIT (v. 1.1.1)59 and mapped using BWA-MEM (v. 0.7.16a)60 to a new gene catalog. This 506 

new gene catalog was created using samples from the SCAPIS study, which included samples 507 

from Uppsala and Malmö sites, samples from the Malmö Offspring Study (MOS)61, samples 508 

from Pasolli et al.62, and 3,486 publicly available genome assemblies from isolated microbial 509 

strains.  510 

Co-abundant genes that passed quality assessment were defined as metagenomic species 511 

as described in Nielsen et al49. Briefly, each metagenomic species has a gene set of 100 signature 512 

genes, which are genes selected for optimal and accurate abundance profiling. A metagenomic 513 

species was considered detected if read pairs mapped to at least three of the 100 signature genes 514 

of that metagenomic species. Then, the total gene counts were used to produce a table of 515 

metagenomic species counts, normalized according to read length. Metagenomic species counts 516 

were transformed into relative abundances.  517 

There were 1,985 species identified with a mean of 355 species detected per Uppsala 518 

sample. Considering the Uppsala participants only, species that were present in ≤1% of the 519 

participants were removed, resulting in 1,602 species for subsequent analyses. All the negative 520 

controls showed no detectable DNA. DNA extraction from positive controls resulted in a 521 

positive signal. For the positive controls, the coefficient of variation estimated by the Shannon 522 

diversity index was 3.05%. For 158 pairs of biological replicates, the coefficient of variation was 523 

1.49%. Clinical Microbiomics was unaware that the replicates were submitted for analysis.  524 

The taxonomic annotation of the metagenomic species was performed by mapping the 525 

catalog genes to NCBI RefSeq63 database (downloaded on May 2, 2021). If >75% of the 526 

metagenomic species genes mapped to a single microbial species, a species-level taxonomy was 527 

annotated to that metagenomic species. Different thresholds were used for taxonomic annotation 528 
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at genus, family, order, class, and phylum level (60, 50, 40, 30, and 25% respectively). However, 529 

a species or genus-level annotation was not assigned if > 10% of the genes mapped to another 530 

single species or genus. For functional annotation, the gene catalog was annotated to the 531 

EggNOG (v. 5.0) orthologous groups database (http://eggnogdb.embl.de/) using EggNOG-532 

mapper-software (v. 2.0.1)64, which provides annotations to the Kyoto Encyclopedia of Genes 533 

and Genomes (KEGG) orthology (KO) database (https://www.genome.jp/kegg/). Based on KO 534 

annotations, the metabolic potential of the metagenomic species was determined in terms of 535 

GMM29. As previously described, the GMMs are 103 metabolic pathways, defined as a series of 536 

enzymatic steps represented by KO identifiers29. A metagenomic species was considered to 537 

contain a GMM if it contained at least two-thirds of the KOs of a module. For modules with 538 

three or fewer steps, all steps were required. For modules with alternative paths, only one path 539 

had to fulfil the criterion. The relative abundance of a GMM was defined as the sum of the 540 

relative abundances of all metagenomic species that encoded that module.  541 

 542 

Anthropometric, sociodemographic, health, and medication information  543 

SCAPIS participants answered an extensive questionnaire on demographic information, 544 

education, lifestyle, self-reported health, medication use, as well as a food frequency 545 

questionnaire65. Smoking was categorized as never, former, or current smoker. Education was 546 

categorized based on the highest level achieved. The possible education categories were 547 

uncompleted primary or lower secondary education, completed lower secondary education, 548 

upper secondary education, or university education. Leisure time physical activity was self-549 

reported as one of four possible categories: mostly sedentary, moderate but regular exercise, 550 

moderate activity, regular and moderate activity, or regular exercise or training. According to 551 
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country of birth, participants were categorized into four groups: born in Scandinavia (Sweden, 552 

Denmark, Norway or Finland), in Europe, in Asia, or in other countries. From the food frequency 553 

questionnaires, variables were calculated to estimate alcohol intake (g/day)66, fiber intake 554 

(g/day)67, and total energy intake (kcal/day)66. Dietary information was assigned as missing for 555 

participants whose ln(total energy intake) was greater than the mean of ln(total energy intake) ± 556 

3 standards deviations in the study sample. Anthropometric measurements were performed on 557 

site. BMI (kg/m2) was calculated as weight divided by the height squared. Systolic and diastolic 558 

blood pressure were assessed on site, calculated as the average of two measurements in the arm 559 

with the highest mean systolic pressure. 560 

 Anti-hypertensive medication and medication for hyperlipidemia were categorized as 561 

binary variable based on the questionnaire. Use of proton pump inhibitors (PPI) and use of 562 

metformin were defined as a binary variable based on the plasma metabolome. Participants with 563 

a measurable omeprazole and/or pantoprazole plasma level were classified as PPI users. 564 

Participants with a measurable metformin plasma level were classified as metformin users. 565 

Information on previous antibiotic use (Anatomical Therapeutical Chemical code J01) was 566 

provided by the SCAPIS cohort study after linkage with the Swedish Prescribed Drug Register 567 

(https://www.socialstyrelsen.se/en/statistics-and-data/registers/national-prescribed-drug-568 

register/). 569 

 570 

Plasma metabolome analysis  571 

The fasting plasma samples were collected during site visit and stored at -80°C in the central 572 

biobank until they were sent in random order to Metabolon Inc. (Durham, NC, USA) for 573 

metabolomics profiling, as previously described32,68. Briefly, after sample preparation, 574 
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metabolomics was conducted using four protocols: reverse phase (RP)/ultrahigh performance 575 

liquid chromatography–tandem mass spectroscopy (UPLC-MS/MS) with negative-ion mode 576 

electrospray ionization (ESI), hydrophilic interaction chromatography (HILIC)/UPLC-MS/MS, 577 

and two separate RP/UPLC-MS/MS resolutions with positive-ion mode ESI. Metabolites were 578 

annotated using Metabolon’s in-house compound library68. We used the GUTSY Atlas 579 

(https://gutsyatlas.serve.scilifelab.se/) to retrieve information on enrichment for metabolite 580 

groups in the gut microbiota species associations with plasma metabolites32. 581 

 582 

Statistical analyses  583 

To identify the set of confounders for adjustment, we created a hypothetical causal diagram in 584 

the browser-based application DAGitty 3.0 (www.dagitty.net; Fig. S2)69. To investigate the 585 

association between OSA and the gut microbiota, we identified sex, age, smoking, alcohol 586 

intake, and BMI as the minimal sufficient adjustment set. Therefore, these variables were 587 

included in the main model together with DNA extraction plate to account for technical 588 

variation. Age, alcohol intake, and BMI were modelled as continuous variables. Sex and 589 

smoking were modelled as categorical variables. DNA extraction plate was also modelled as a 590 

categorical variable with one level per plate (i.e., 52 levels). Given that the hypothetical causal 591 

diagram on the effect of OSA on the gut microbiota is rather complex and that confounders such 592 

as diet70 and socioeconomic status71 were not included in the minimal sufficient adjustment set, 593 

we chose to construct an extended model accounting for these factors. Thus, the extended model 594 

additionally included fiber intake, total energy intake, leisure time physical activity, highest 595 

education level achieved, country of birth, and season. Fiber intake and total energy intake were 596 

modelled as continuous variables. Leisure time physical activity, highest education level, and 597 
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country of birth were modelled as categorical variables with four levels each. The variable 598 

season consisted of 11 categories based on the month of the study site visit. The categories 599 

“June” and “July” were merged because there were only four participants for July. 600 

Analyses were conducted using the R software version 4.1.1 (https://cran.r-project.org/). 601 

Partial Spearman’s correlations were performed using the function pcor.test in the R package 602 

ppcor72. Gut microbiota beta diversity and alpha diversity were calculated using the package 603 

vegan version 2.5-773. For the alpha diversity analyses, the Shannon index22 was calculated for 604 

each participant using the function diversity. To investigate how AHI, T90 and ODI were 605 

associated with the Shannon index, we used partial Spearman’s correlation. The beta diversity 606 

was assessed with the Bray-Curtis dissimilarity, which was calculated using the function vegdist. 607 

PERMANOVA was conducted using the function adonis2 (package vegan) with 9,999 608 

permutations assessing the marginal effects of the terms. The Bray-Curtis dissimilarity matrix 609 

was set as the outcome and the AHI, T90, or ODI severity groups were set as the main exposure 610 

separately. Principal coordinate analysis was conducted using the function pcoa from the 611 

package ape74. 612 

To investigate how AHI, T90, and ODI associated with the relative abundance of the gut 613 

microbiota species, we examined the partial Spearman’s correlation between each of the OSA 614 

parameters and each of the 1,602 species. To understand the effect of BMI on our results, we 615 

first conducted this analysis with the main model not including the covariate BMI. The species 616 

identified in this first step were further investigated in two additional analyses: one with all main 617 

model covariates, including BMI, and another model including the extended model covariates. 618 

Multiple comparison was accounted for using the Benjamini-Hochberg method with a FDR set at 619 

5%75.  620 
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The species associated with at least one of the three OSA parameters in the extended 621 

model were further examined in three sensitivity analyses. In the first sensitivity analysis, we 622 

included to the extended model the variables of medication use, more specifically metformin, 623 

PPI, anti-hypertensive medications, and/or medications for hyperlipidemia. In the second 624 

sensitivity analysis, we excluded participants (n = 367 among those with valid T90/ODI values) 625 

that had used any antibiotic in the previous six months. And in the third sensitivity analysis, we 626 

excluded the 29 participants with lung disease, defined as a self-reported diagnosis of COPD, 627 

chronic bronchitis, or pulmonary emphysema. After removing these participants, we re-628 

conducted the Spearman’s correlation analyses adjusting for the extended model covariates.  629 

We handled missing data using complete-case analysis; i.e., participants that did not have 630 

information for all variables included in a model were removed from that respective analysis. 631 

The variable with the highest frequency of missing information was leisure time physical activity 632 

followed by smoking, antihypertensive medication use, and use of medication for 633 

hyperlipidemia. Of the participants with valid AHI data, 6% were missing information for leisure 634 

time physical activity. Information on smoking, anti-hypertensive medication, and medication 635 

for hyperlipidemia was missing for 5% of the participants who had valid AHI data. After 636 

removing participants with incomplete information on the main model covariates, there were 637 

3,004 participants for AHI analyses and 3,364 participants for the T90 and ODI analyses. Adding 638 

or removing BMI did not change the number of participants included, as this variable was not 639 

missing for all participants. For the extended model, after removing participants with incomplete 640 

information on covariates, there were 2,909 participants for the AHI analyses and 3,249 641 

participants for the T90 and ODI analyses. In the sensitivity analysis adjusting for medication 642 

use, there were 3,305 participants for the T90 and ODI analyses. 643 
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Because of the lower number of participants with valid AHI values than the number of 644 

participants with valid T90 and ODI values, we conducted a secondary analysis where we 645 

imputed the AHI values for the 340 participants that for whom we had information on T90 and 646 

ODI but not on AHI, considering the extended model covariates. This analysis was conducted 647 

using the software Stata 15.1 (Stata Corp., Texas, USA). Multiple imputation was conducted 648 

using predicted mean matching with the five nearest neighbors and 10 imputations. Variables 649 

used for imputation included all extended model covariates, as well as Shannon index, AHI, T90, 650 

ODI, waist-hip-ratio, and the species relative abundance. To avoid including all 1,602 species in 651 

the same imputation equation, we performed an imputation step for each species, followed by the 652 

Spearman’s correlation analysis between AHI and the species, adjusted for the extended model 653 

covariates. The uncertainty of imputations was accounted for using Rubin’s combination rules76. 654 

 The effect modification by hemoglobin level was explored by categorizing participants 655 

into low or high hemoglobin groups based on the sex-specific median hemoglobin level. First, 656 

we conducted the Spearman’s correlation of OSA parameters with species relative abundance 657 

stratified by hemoglobin group and adjusted for the extended model covariates. Next, each pair 658 

of correlation coefficients obtained from the two groups were compared as described in Altman 659 

et al.77 Briefly, the standard error for each coefficient was estimated using 1,000 bootstrap 660 

replications (R package boot78). Z-scores were then calculated as the ratio of the difference 661 

between the two coefficients to the standard error of the difference. The two-sided p-values were 662 

then obtained from the standard normal distribution.  663 

 For the pathway enrichment analysis for GMM, we used the Spearman’s correlation 664 

results from the extended model on the associations of AHI, T90, and ODI with the 1,602 665 

microbiota species. The enrichment analyses were conducted based on ranked p-values using the 666 
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R package fgsea79, stratified by the direction of the correlation coefficients. To investigate the 667 

metabolite groups associated with each T90/ODI-associated species, we retrieved from GUTSY 668 

Atlas32 the enrichment analysis results for metabolite groups for each of the species.  669 

In a post hoc analysis, we used Spearman’s correlation to assess the association of our 670 

main gut microbiota findings with systolic and diastolic blood pressure, as well as HbA1c. To 671 

decide on the set of covariates for adjustment, we created a hypothetical causal diagram of the 672 

effect of the gut microbiota on blood pressure and insulin resistance (Fig. S3). Based on the 673 

causal diagram, we adjusted the analysis for age, sex, alcohol intake, smoking, fiber intake, total 674 

energy intake, leisure time physical activity, country of birth, ODI, T90, and AHI, in addition to 675 

DNA extraction plates. Due to the effect of medication on the gut microbiota and the health 676 

outcomes of interest, we excluded the participants who self-reported medication use for 677 

hypertension from the analyses with blood pressure measurements. In the analyses of the 678 

association with HbA1c, we excluded participants who self-reported medication use for diabetes. 679 

Using a complete-case analysis, data were available for 2,335 participants for the analyses with 680 

blood pressure measurements and for 2,801 participants for the Hb1Ac analyses. Lastly, we 681 

assessed the effect of adding BMI to the model.   682 

Data availability  683 

The anonymized metagenomic sequences can be found in the European Nucleotide Archive 684 

under the accession code “PRJEB51353”. The individual-level data underlying this article were 685 

provided by the SCAPIS cohort study under agreement, after ethical approval, and are not shared 686 

publicly due to confidentiality. Data will be shared upon reasonable request to the corresponding 687 

author only after permission by the SCAPIS Data access board (https://www.scapis.org/data-688 

access/) and by the Swedish Ethical Review Authority (https://etikprovningsmyndigheten.se).  689 
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Code availability 690 

The code used in the present analyses is available at GitHub 691 

(https://github.com/MolEpicUU/sleepapnea_gut) 692 
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Figure captions 919 

Figure 1. Principal coordinate analysis showing progressive differences in the overall gut 920 

microbiota composition, measured with Bray-Curtis dissimilarity, across groups of obstructive 921 

sleep apnea (OSA) severity. Closed circles represent the mean axis value per group and bars 922 

represent the standard errors. The percentages on the axes labels represent the variance explained 923 

by each axis.  a. AHI severity groups. No OSA: AHI < 5; Mild: AHI 5–14.9; Moderate: AHI 15–924 

29.9; Severe: AHI ≥ 30. b. T90 severity groups were defined as one category including 925 

participants with T90 = 0, and the remaining participants divided by tertiles (t1: T90 = 1–3; t2: 926 

T90 = 4–14; and t3: T90 ≥ 15). c. ODI severity groups were defined by quartiles of ODI (q1: 927 

ODI = 0–1.8; q2: ODI = 1.9–4.3; q3: ODI = 4.4–9.4; and q4: ODI ≥ 9.5). AHI: apnea-hypopnea 928 

index; ODI: oxygen desaturation index; PCo: principal coordinate; T90: percentage of time with 929 

oxygen saturation < 90%. 930 

 931 

Figure 2.  Number of microbiota species associated with AHI, T90, and/or ODI. Associations 932 

investigated using partial Spearman’s correlation after removing participants with missing data 933 

on covariates. Adjustment for multiple comparisons using the Benjamini-Hochberg method with 934 

a 5% false discovery rate. a. Results from the main model (i.e., adjustment for age, sex, smoking, 935 

alcohol intake, and DNA extraction plate) not including adjustment for body mass index (BMI) 936 

and b. including adjustment for BMI. For AHI, n = 3004. For T90 and ODI, n = 3,364. c. Results 937 

from the extended model (i.e., further adjustment for fiber intake, total energy intake, leisure 938 

time physical activity, education, country of birth, and season). For AHI, n = 2,909. For T90 and 939 
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ODI, n = 3,249. AHI: apnea-hypopnea index; ODI: oxygen desaturation index; T90: percentage 940 

of time with oxygen saturation < 90%. 941 

 942 

Figure 3. a. Enrichment for gut metabolic modules (GMM) among the positive associations 943 

between T90 and gut microbiota species. The pathway enrichment analysis was conducted on the 944 

ranked p-values obtained from Spearman’s correlations adjusted for age, sex, alcohol intake, 945 

smoking, body mass index, fiber intake, total energy intake, leisure time physical activity, 946 

education, country of birth, season, and DNA extraction plate. Multiple comparisons were 947 

adjusted for using the Benjamini-Hochberg method. q-values: adjusted p-values considering a 948 

5% false discovery rate b. Heatmap showing the species associated with T90 or ODI and the 949 

T90-enriched GMM(1) that were also associated with at least one of the health outcomes: systolic 950 

blood pressure (SBP), diastolic blood pressure (DBP), and glycated hemoglobin (Hb1Ac). OSA 951 

adj: Spearman’s correlation adjusted for age, sex, alcohol intake, smoking, fiber intake, total 952 

energy intake, leisure time physical activity, country of birth, apnea-hypopnea index (AHI), 953 

oxygen desaturation index, T90, and DNA extraction plate. OSA+BMI adj: additional 954 

adjustment for body mass index (BMI). Associations with an asterisk (*) were identified 955 

considering a 5% false discovery rate. NES: normalized enrichment score; OSA: obstructive 956 

sleep apnea; T90: percentage of time with oxygen saturation < 90%. 957 

 958 

Figure 4. Relationship of the T90- and/or ODI-associated species with the plasma metabolome. 959 

T90 and ODI were a. negatively associated with 100 species and b. positively associated with 28 960 

species. The heatmaps show the enriched metabolites groups in the associations between species 961 

and metabolites stratified by the direction of the associations. Enrichment results retrieved from 962 
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the GUTSY Atlas (https://gutsyatlas.serve.scilifelab.se/)32. Multiple comparisons were adjusted 963 

for using the Benjamini-Hochberg method. Associations with an asterisk (*) were identified 964 

considering a false discovery rate of 5%. NES: normalized enrichment score; ODI: oxygen 965 

desaturation index; T90: percentage of time with oxygen saturation < 90%. 966 

 967 

 968 

Table 1. Participants’ characteristics by obstructive sleep apnea (OSA) severity groups.  969 

caption: Continuous variables presented as median [interquartile range] and categorical 970 

variables presented as absolute numbers (%). AHI: apnea-hypopnea index; BMI: Body mass 971 

index; DBP: diastolic blood pressure; ESS: Epworth sleepiness scale; HbA1c: glycated 972 

hemoglobin; med.: medication; ODI: oxygen desaturation index; PPI: proton-pump inhibitors; 973 

SBP: systolic blood pressure; T90: percentage of time with oxygen saturation < 90%; WHR: 974 

waist-hip-ratio. a Percentages do not add to 100% as participants with incomplete compulsory 975 

education were not included in the table. 976 

 977 

Supplementary Figures captions 978 

Figure S1. Study flowchart for the 4,839 SCAPIS-Uppsala participants with available data on 979 

their gut microbiota composition.  980 

 981 

Figure S2. Directed acyclic graph depicting the causal assumptions on the effect of obstructive 982 

sleep apnea (OSA) on the gut microbiota composition. A directed edge (or “arrow”) from one 983 

node to another represents a direct effect between these two nodes. Green line: causal path; pink 984 
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line: biasing path; pink nodes: ancestor of exposure and outcome; and blue nodes: ancestor of 985 

outcome. 986 

 987 

Figure S3. Directed acyclic graph depicting the causal assumptions on the effect of gut 988 

microbiota on blood pressure measurements and insulin resistance. A directed edge (or “arrow”) 989 

from one node to another represents a direct effect between these two nodes. Green line: causal 990 

path; pink line: biasing path; pink nodes: ancestor of exposure and outcome; and blue nodes: 991 

ancestor of outcome. 992 

  993 
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Table 1.  994 
 

All No OSA 

(AHI < 5/h) 

Mild 

(AHI 5–14.9/h) 

Moderate 

(AHI 15–29.9/h) 

Severe 

(AHI ≥ 30/h) 

N 3,175 1,851 (58.3%) 899 (28.3%) 295 (9.3%) 130 (4.1%) 

Age (years) 57.7 [53.9;61.4] 56.8 [53.2;61.0] 58.8 [54.9;62.0] 59.4 [55.7;62.5] 59.5 [55.5;61.7] 

Female 1,708 (53.8%) 1,122 (60.6%) 446 (49.6%) 98 (33.2%) 42 (32.3%) 

AHI (events/h) 3.8 [1.5;8.6] 1.7 [0.9;3.1] 7.8 [6.2;10.4] 20.1 [17.2;24.1] 38.0 [33.8;49.4] 

ODI (events/h) 4.1 [1.7;9.2] 2.1 [1.0;3.6] 8.3 [6.0;11.0] 19.1 [15.3;23.7] 35.5 [29.2;42.6] 

T90 (%) 2.0 [0.0;12.0]  1.0 [0.0;4.0] 5.0 [2.0;18.0] 12.0 [6.0;25.0]  20.0 [11.0;41.8] 

BMI (kg/m2) 26.3 [24.0;29.2] 25.2 [23.1;27.7] 27.5 [25.2;30.3] 28.9 [26.1;32.2] 30.0 [27.4;34.2] 

WHR 0.9 [0.9;1.0] 0.9 [0.8;1.0] 0.9 [0.9;1.0] 1.0 [0.9;1.0] 1.0 [0.9;1.0] 

Shannon index 4.2 [3.9;4.4] 4.2 [4.0;4.4] 4.1 [3.8;4.4] 4.1 [3.9;4.4] 4.0 [3.6;4.2] 

SBP (mmHg) 124 [114;135] 121 [112;131] 127 [116;138] 129 [118;140] 132 [120;144] 

DBP (mmgHg) 76 [70;84] 75 [68;81] 78 [72;85] 80 [74;88]  82 [74;88] 

HbA1c (mmol/mol) 35 [33;38] 35 [33;37] 36 [34;38] 36 [34;39] 38 [35;41] 

Hemoglobin (g/L) 141 [133;150] 139 [132;147] 142 [134;151] 146 [138;154] 146 [139;153] 

Current smoker 249 (8.3%) 137 (7.8%) 79 (9.3%) 20 (7.2%) 13 (10.9%) 

Alcohol intake (g/day) 5.5 [1.9;10.2] 5.2 [1.8;9.3] 6.1 [2.2;11.2] 7.2 [2.5;13.0] 6.3 [1.2;12.8] 

Fiber (g/day) 18.3 [13.1;25.1] 19.2 [13.7;26.1] 17.3 [12.4;23.5] 17.5 [12.3;23.4] 16.8 [12.8;23.8] 

Total energy intake (kcal/day) 1,611 

[1,267;2,014] 

1,624 

[1,289;2,039] 

1,594 

[1,240;1,983] 

1,593 

[1,198;2,000] 

1,672 

[1,278;2,067] 

Leisure time physical activity                                                                                      

   mostly sedentary 306 (10.3%) 135 (7.7%) 106 (12.6%) 41 (14.8%) 24 (19.8%) 

   moderate activity 1,369 (45.9%) 749 (42.8%) 425 (50.7%) 137 (49.5%) 58 (47.9%) 

   regular and moderate activity 964 (32.3%) 622 (35.6%) 238 (28.4%) 74 (26.7%) 30 (24.8%) 

   regular exercise or training 346 (11.6%) 243 (13.9%) 69 (8.2%)  25 (9.0%)  9 (7.4%) 

Highest educationa                                                                                      

   Compulsory 191 (6.3%) 82 (4.6%) 65 (7.5%) 32 (11.3%) 12 (9.9%) 

   Upper secondary 247 (41.0%) 681 (38.3%) 368 (42.7%) 136 (48.2%) 62 (51.2%) 

   University 1,593 (52.3%) 1,012 (56.9%) 421 (48.8%) 113 (40.1%) 47 (38.8%) 

Birth place                                                                                      

   Scandinavia 2,861 (90.4%) 1,670 (90.5%) 809 (90.3%) 264 (89.5%) 118 (90.8%) 

   Europe 123 (3.9%) 73 (4.0%) 30 (3.3%) 15 (5.1%) 5 (3.8%) 

   Asia 112 (3.5%) 61 (3.3%) 37 (4.1%) 9 (3.1%) 5 (3.8%) 

   Other 70 (2.2%) 41 (2.2%) 20 (2.2%) 7 (2.4%) 2 (1.5%) 

Type 2 diabetes 253 (8.0%) 106 (5.7%) 90 (10.0%) 28 (9.5%) 29 (22.3%) 

Hypertension 674 (21.2%) 292 (15.8%) 235 (26.1%) 104 (35.3%) 43 (33.1%) 

Hyperlipidemia 368 (11.6%) 169 (9.13%) 124 (13.8%) 52 (17.6%) 23 (17.7%) 

Medication      

   metformin 91 (2.9%) 30 (1.6%) 38 (4.2%) 9 (3.1%)  14 (10.8%) 

   antihypertensive med. 585 (18.4%) 244 (13.2%) 207 (23.0%) 92 (31.2%) 42 (32.3%) 

   hyperlipidemia med. 236 (7.4%) 92 (5.0%) 90 (10.0%) 37 (12.5%) 17 (13.1%) 

   PPI 94 (3.0%) 42 (2.3%) 25 (2.8%) 19 (6.4%) 8 (6.2%) 

ESS 6 [3;9] 5 [3;8] 6 [3;9] 6 [4;10] 6 [4;10] 
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