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Abstract 

 

Background: Observational research provides a unique opportunity to learn causal effects when 

randomized trials are unavailable, but obtaining the correct estimates hinges on a multitude of 

design and analysis choices. We illustrate the advantages of modern causal inference methods 

and compare to standard research practice to estimate the effect of corticosteroids on mortality in 

hospitalized COVID-19 patients in an observational dataset. We use several large RCTs to 

benchmark our results. 

Methods: Our retrospective data consists of 3,298 COVID-19 patients hospitalized at New 

York-Presbyterian March 1-May 15, 2020. We design our study using the target trial framework. 

We estimate the effect of an intervention consisting of six days of corticosteroids administered at 

the time of severe hypoxia and contrast with an intervention consisting of no corticosteroids. The 

dataset includes dozens of time-varying confounders. We estimate the causal effects using a 

doubly robust estimator where the probabilities of treatment, outcome, and censoring are 

estimated using flexible regressions via super learning. We compare these analyses to standard 

practice in clinical research, consisting of two approaches: (i)Cox models for an exposure of 

corticosteroids receipt within various time windows of hypoxia, and (ii)Cox time-varying model 

where the exposure is daily administration of corticosteroids beginning at hospitalization. 

Results: Our target trial emulation estimates corticosteroids to reduce 28-day mortality from 

32% (95% confidence interval: 31-34) to 23% (21-24). This is qualitatively identical to the 

WHO’s RCT meta-analysis result. Hazard ratios from the Cox models range in size and direction 

from 0.50 (0.41-0.62) to 1.08 (0.80-1.47) and all study designs suffer from various forms of bias. 

Conclusion: We demonstrate that clinical research based on observational data can unveil true 

causal relations. However, the correctness of these effect estimates requires designing and 

analyzing the data based on principles which are different from the current standard in clinical 

research. Widespread communication and adoption of these design and analytical techniques is 

of high importance for the improvement of clinical research. 
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Introduction 

Observational databases are invaluable resources when randomized controlled trials (RCTs) are 

infeasible or unavailable. However, the correctness of the conclusions gleaned from analyses of 

observational data hinges on the careful consideration of study design principles and choice of 

estimation methodology. 

Threats to the validity of causality are pervasive in the clinical literature(1–4). A major reason 

for the failure to address these biases is the widespread adoption of a model-first approach to 

observational research. In this approach, a model is first chosen according to the data type and 

outcome of interest, and the quantity used to answer the research question is automatically 

determined by the model choice. For example, when faced with a time-to-event outcome, 

researchers automatically resort to a Cox regression model. It is common practice to then use the 

coefficients of the model or transformations thereof (e.g., hazard ratios) as the answer to the 

clinical question of interest. 

A model-first approach induces multiple problems for the estimation of causal effects(5). 

First, model parameters often do not represent quantities of scientific interest or well-defined 

causal effects(6)). Second, assumptions such as the proportional hazards assumption used in Cox 

models are rarely correct in medical research since hazards cannot be proportional when a 

treatment effect changes over time(7). Third, regression models cannot correctly handle time-

dependent feedback between confounders, treatment, and the outcome(1). Fourth, the model-first 

approach yields a tendency to interpret all coefficients in the model, which is a mistake known as 

the Table 2 fallacy(8). Lastly, model-first analyses often employ less-than-optimal model 

selection techniques, which may lead to improper variance estimates and model misspecification 

bias(9). 

Recent developments in the causal inference literature provide researchers with a number of 

tools to alleviate the aforementioned biases. Frameworks such as the target trial emulation(10) 

and roadmap for causal inference(11) allow researchers to proceed with a question-first approach. 

Instead of defaulting to effect measures provided by regression models, a question-first approach 

begins by defining a hypothetical target trial and subsequent target of inference that answers the 

scientific question of interest. This is the so-called estimand, or quantity to be estimated. After 
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the estimand is chosen, the most appropriate statistical technique may be selected. Incorporating 

these principles can help clarify the research question, determine study eligibility requirements, 

identify enrollment and follow-up times, decide whether sufficient confounder data are available, 

and more(12,13). A question-first approach also allows researchers the freedom to select an 

estimation technique which mitigates model misspecification biases and increases the likelihood 

of obtaining a correct estimate. 

We hypothesize that a question-first approach will have improved success in recovering 

causal effects as opposed to a model-first approach. To test this hypothesis, we use a 

retrospective cohort of 3,298 coronavirus 2019 (COVID-19) patients hospitalized at New-York-

Presbyterian Hospital (NYPH) March 1-May 15, 2020. Lack of guidance for clinical practice at 

the beginning of the pandemic meant that high variability existed in the administration and 

timing of corticosteroids. While provider practice variability aids in the estimation of causal 

effects, the resulting complex longitudinal treatment patterns can complicate study design and 

analytical methods. Our dataset together with results from numerous RCTs on corticosteroids 

provide a unique opportunity to assess various design and analysis methods. We benchmark the 

results of our analyses against the effect measures obtained in the World Health Organization 

(WHO)’s RCT meta-analysis(14). 

Methods 

Hypothetical target trial 

Population 

Inclusion criteria is all adult patients with COVID-19 who were admitted to NYPH Weill 

Cornell, Lower Manhattan Hospital, or NYPH Queens. Cases are confirmed through reverse-

transcriptase–polymerase chain-reaction assays performed on nasopharyngeal swab specimens. 

Patients who have chronic use of corticosteroids prior to hospitalization or who are transferred 

into the hospital from an outside hospital are excluded. 
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Intervention strategies 

Patients are randomized on their first day of hospitalization to receive either (1)standard of care 

therapy (without corticosteroids) or (2)standard of care plus a corticosteroid regimen to be 

administered if and when criteria for severe hypoxia are met. The corticosteroid dosage is a 

minimum of 0.5 mg/kg body weight of methylprednisolone equivalent per 24-hour period and 

the duration of therapy is six days(15). Corticosteroids include prednisone, prednisolone, 

methylprednisolone, hydrocortisone, and dexamethasone and choice of drug is at the attending 

physician’s discretion. Severe hypoxia is defined as the initiation of high flow nasal cannula, 

venti-mask, noninvasive or invasive mechanical ventilation, or an oxygen saturation of <93% 

after the patient is on 6 Liters of supplemental oxygen via nasal cannula. 

Outcome and estimand 

The primary outcome is 28-day mortality from time of randomization. The estimand of interest is 

the difference in 28-day mortality rates between the two treatment strategies. 

Data analysis plan 

In this hypothetical target trial with no loss-to-follow-up, we analyze the difference in proportion 

of patients who experienced the outcome between those who were randomized to the “standard 

of care” treatment regime and those who were randomized to the “standard of care plus 

corticosteroids at time of hypoxia” treatment regime.  

Emulation using observational data 

Cohort description and data source 

The target trial emulation uses retrospective data from patients who meet the hypothetical trial’s 

eligibility criteria between March 1 and May 15, 2020. Demographics, comorbidity, intubation, 

death, and discharge data were manually abstracted by trained medical professionals into a 

secure REDCap database(16). These were supplemented with a data repository housing 

laboratory, procedure, diagnosis, medication, and flowsheet data documented as part of standard 

care(17). Patients are followed for 28 days from hospitalization and lost to follow-up by 

discharge or transfer to an external hospital system. 
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Treatment strategies and measurement 

To emulate the target trial corticosteroid treatment strategy, we estimate the effect of a 

hypothetical dynamic treatment regime(18), whereby each patient is administered six days of 

corticosteroids if and when they meet severe hypoxia criteria. This dynamic regime is contrasted 

with a static regime where patients never receive corticosteroids. 

We measure severe hypoxia using vital signs (for oxygen saturation) and flowsheet data (for 

supplemental oxygen) and define it in the same way as our target trial. We measure corticosteroid 

exposure using the Medical Administration Record. We compute cumulative mg/kg dosing of 

corticosteroids over rolling 24-hour windows, and if a patient received >0.5 mg/kg 

methylprednisolone equivalent, they are denoted as having corticosteroids exposure that day. 

Unlike our target trial, patients in the observational study are subject to loss-to-follow-up. 

Thus, our emulation requires a hypothetical intervention whereby patients are not loss to follow-

up, so that we can observe their 28-day mortality status. A sample of observed data is shown in 

Supplemental Figure 1. An illustration of the treatment regimes as they relate to the observed 

data are shown in Figure 1. 

Confounders 

In contrast to the hypothetical trial, treatment assignment in the observational study is not 

randomized and depends on physiological characteristics of each patient. Correct emulation 

requires: (i) careful consideration of all possible confounders, and (ii) careful adjustment for 

these confounders in data analysis. 

Baseline confounders include age, sex, race, ethnicity, Body Mass Index (BMI), 

comorbidities (coronary artery disease (CAD), cerebral vascular event, hypertension, diabetes 

mellitus (DM), cirrhosis, chronic obstructive pulmonary disease, active cancer, asthma, 

interstitial lung disease, chronic kidney disease (CKD/ESRD), immunosuppression, human 

immunodeficiency virus (HIV)-infection, home oxygen use), mode of respiratory support within 

three hours of hospital arrival, and hospital admission location. 

Time-dependent confounders include heart rate, pulse oximetry percentage, respiratory rate, 

temperature, systolic/diastolic blood pressure, blood urea nitrogen (BUN)-creatinine ratio, 

creatinine, neutrophils, lymphocytes, platelets, bilirubin, blood glucose, D-dimers, C-reactive 
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protein, activated partial thromboplastin time, prothrombin time, arterial partial pressures of 

oxygen and carbon dioxide, and level of supplemental oxygen support. Figure 2 summarizes the 

relationship between confounders, treatment, and outcomes in the form of a Directed Acyclic 

Graph (DAG). 

Outcome and estimand 

Our estimand of interest is the difference in 28-day mortality rates in a hypothetical world where 

we had implemented the two different corticosteroid treatment strategies, as well as an 

intervention to prevent loss-to-follow-up. Under the assumption that treatment and loss-to-

follow-up each day are randomized conditional on baseline and time-dependent confounders, this 

estimand is identified by the longitudinal g-computation formula(19). This longitudinal g-

computation formula for our two corticosteroids treatment regimens with a censoring 

intervention will be our estimand of interest. 

Data analysis plan 

Correct emulation of a target trial requires proper adjustment for measured confounding through 

estimation of the g-computation formula. It is important to use estimation methods capable of 

fitting the data using flexible mathematical relationships so that confounding is appropriately 

removed, especially when the number of baseline and time-dependent confounders is large. 

Several methods can be used to estimate the g-computation formula (e.g., inverse probability 

weighting (IPW), parametric g-formula, targeted minimum loss-based estimators (TMLE), 

sequentially doubly robust estimators (SDR), etc.)(20,21). These estimation methods rely on two 

kinds of mathematical models: (i)models of the outcome as a function of the time-dependent 

confounders, and (ii)models of treatment as a function of time-dependent confounders. Methods 

that use only one of these models are often called singly robust, because their correctness relies 

on the ability to correctly specify one of the models (e.g., IPW relies on estimating treatment 

models correctly). Estimation methods that use both of these models are often called doubly 

robust, because they remain correct under misspecification of one of the two models. 

Furthermore, doubly robust estimators such as TMLE and SDR allow the use of machine 

learning to flexibly fit relevant treatment and outcome regressions(22,23). This is desirable 

because these regression functions might include complex relationships between exposures and 
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treatments, and capturing those relationships is not possible using simpler models such as the 

Cox proportional hazards(24). 

The primary analysis is conducted using SDR estimation with a dynamic intervention, time-

varying confounders, and a time-to-event outcome. An ensemble of machine learning models 

using the super learner algorithm is used to estimate the regressions for treatment and 

outcome(25,26). Additional methodological details are available in Supplemental Materials. A 

code tutorial is available at https://github.com/kathoffman/steroids-trial-emulation. 

Emulation of model-first approaches common in clinical literature 

For contrast with the target trial emulation strategy, we review methodology of papers cited in 

Chaharom et al.’s(27) meta-analysis, and then analyze the data using study designs common in 

other corticosteroids for COVID-19 observational research. The data source, outcome, and 

confounders are the same as the above target trial. Modifications to the cohort and treatment 

definitions to accommodate the model-first approaches are outlined below. 

Cox models using a point treatment 

The first approach we explore is a regression for mortality with a point (as opposed to time-

varying) treatment variable. The inclusion criteria and time zero are defined as the time of 

meeting hypoxia criteria, which is the intended indication for corticosteroids. A study design 

using this analytical approach entails a number of choices, including: 

1. Defining a range of time relative to inclusion criteria for a patient to be considered 

“treated”. 

2. Deciding whether to exclude patients treated before the inclusion time. 

3. Deciding how to handle patients who died during the treatment time window. 

4. Deciding how to handle patients treated after the treatment time window. 

We fit Cox proportional hazards models using data sets obtained from various design choices, 

summarized in Table 1. All baseline confounders, time-dependent confounders from day zero, 

and the corticosteroid exposure are included as variables in the Cox models. The exponentiated 
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coefficient for corticosteroids is interpreted as the hazard ratio for corticosteroid exposure within 

the defined treatment window for moderate-to-severe COVID-19 patients. 

Time-varying Cox models 

In our second model-first approach, we fit a time-varying Cox model for time to mortality up to 

28 days from the day of hospitalization. This model uses our entire cohort and contains all 

baseline and time-dependent confounders, as well as daily corticosteroid administration. The 

coefficient for corticosteroids is exponentiated and used as an estimate of the hazard ratio for 

corticosteroids. 

Software 

All data were analyzed in R version 4.0.3 with open-source packages ggplot2, gtsummary, 

survival, survminer, lmtp, and sl3(28–34).  

RCT benchmark 

Several RCTs have established the effectiveness of corticosteroids in the treatment of moderate-

to-severe COVID-19 patients(35–37). The WHO performed a meta-analysis of seven such RCTs 

and estimated the odds ratio (OR) of mortality to be 0.66 (95% CI (0.53-0.82)(14). We use this 

estimate, as well as supporting evidence from other RCT meta-analyses(27,38) to benchmark our 

results. 

Results 

Target trial emulation 

The final cohort includes 3,298 patients of a median age 65 (IQR 53, 77) and 60% males. The 

median BMI was 27 (IQR 23-31). There were 1033 (31%) patients with DM, 460 (14%) with 

CAD, 1780 (54%) with hypertension, and 159 (4.8%) with CKD/ESRD. Table 2 shows baseline 

characteristics of the cohort, overall and stratified by any corticosteroid exposure. There were 

1,690 patients who reached the randomization criteria of severe hypoxia and 423 patients who 

received corticosteroids at any point during follow-up. 699 patients died before 28 days.  
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In the target trial emulation analysis, all 3,298 patients who were admitted to the hospital are 

analyzed. The estimated mortality rate under a hypothetical intervention of no corticosteroids is 

32% (95% CI 31-34). The estimated mortality rate under a hypothetical intervention in which 

corticosteroids are administered for six days upon patients becoming severely hypoxic is 23% 

(21-24). This yields an estimated mortality reduction of 9.6% (8.8-10.4) if this policy had been 

implemented. 

Model-first approaches 

In a subset of 1,690 patients who met severe hypoxia, 72 patients received corticosteroids within 

one day of hypoxia and 191 patients received corticosteroids within 5 days of hypoxia. There 

were 18 and 451 patients who died within one and five days of hypoxia without receiving 

corticosteroids, respectively. 

Model A, which defined corticosteroid exposure as anytime during hospitalization, yielded an 

HR of 0.50 (0.41-0.62). Models B-I, which placed either a one- or five-day limit on 

corticosteroids treatment from the time of hypoxia, yielded mostly non-significant HRs in both 

directions (B: 0.95 (0.66-1.37), C: 0.92 (0.63-1.33), D: 0.89 (0.56-1.41), E: 0.66 (0.41-1.04), G: 

1.05 (0.77-1.45), H: 1.04 (0.75-1.45)). The exception to this was Model I, which excluded 

patients who died before five days and estimated the HR to be 0.63 (0.48-0.83). Model F also 

reached statistical significance, 0.77 (0.60-0.99), and was the result of a 5-day treatment window 

with no exclusion or censoring variations. The time-varying Cox model (J), yielded an HR of 

1.08 (0.80-1.47). HRs for the model-first approaches are summarized in Figure 3. 

Discussion 

Our research illustrates how a question-first approach can aid in devising an optimal design and 

choice of estimation procedure for an analysis of observational data. Specifically, we show that 

using the target trial framework succeeds in recovering the benchmark causal effect obtained in 

RCTs. Our final estimate that corticosteroids would reduce overall 28-day mortality in a 

hospitalized cohort by 9.6% is equivalent to an OR of 0.62, which is qualitatively identical to the 

WHO’s estimate of 0.66. Our study design allowed us to create a realistic trial with a meaningful 

intervention, i.e. randomize patients at hospitalization but do not give corticosteroids unless the 
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patient becomes severely hypoxic. Our analysis plan enabled us to flexibly adjust for a large 

number of potential time-dependent confounders of the treatment, censoring, and outcome 

mechanisms. 

In contrast, the majority of our model-first approaches could not recover the RCT benchmark 

using the same data source. This finding aligns with other corticosteroids research; a recent meta-

analysis containing observational analyses on over 18,000 patients found no overall effect for 

corticosteroids on mortality (OR 1.12, (0.83–1.50))(27). The task of creating reliable evidence 

from complex longitudinal data is not an easy one, and many of these studies suffer from flawed 

designs. 

We found most studies in the current observational corticosteroids literature allowed the 

“treated” group to receive corticosteroids anytime during hospitalization(39–41). This is 

problematic because it introduces immortal time and biases results towards a protective effect of 

corticosteroids(42). A few studies did limit the treatment time frame in an effort to diminish 

immortal time bias. The “grace period” for treatment was handled in various ways, e.g. excluding 

patients who die prior to a time window after inclusion criteria(43), or excluding patients who 

receive treatment after the treatment window ends(44,45). Both exclusions are incorrect and may 

lead to bias and spurious associations(1). An alternative to exclusion is censoring patients at their 

time of receiving treatment if that time is after the treatment window passes. However, since Cox 

regression cannot handle time-dependent censoring, this biases results in favor of 

corticosteroids(1). 

In addition to these issues, it is often unclear in the current literature how patients who 

receive corticosteroids prior to meeting inclusion criteria are handled in the analysis(39–41,46). 

A related issue is that corticosteroids can, according to RCTs, affect severity of illness (e.g. 

severe hypoxia). All of the point treatment studies are thus subject to this form of collider 

bias(47). Although the time-varying treatment approach does not suffer from the same time-

alignment biases as the point-exposure design, the time-varying Cox model cannot properly 

account for time-dependent confounders(1), such as the relationship between intubation, 

corticosteroids, and mortality. These biases appear in our model-first results; the only study 

designs which demonstrate a protective effect of corticosteroids in line with the RCT benchmark 

suffer from extreme immortal time bias through undefined or extended treatment time windows 

(A, I).  
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There are limitations of our study. First, while the study time frame is ideal in terms of 

corticosteroid experimentation, it includes New York City’s initial pandemic surge conditions 

and rapidly changing clinical practice. We cannot rule out the presence of unmeasured 

confounding. Second, we did not have the data to look at individual corticosteroid types, making 

an exact comparison to a specific randomized trial impossible. 

Despite these limitations, our study serves as an example in which the current standard for 

clinical research methods fail to recover the correct treatment effect where a modern causal 

inference method succeeds. Using observational data to guide clinical practice is possible, but 

relies on the incorporation of advanced epidemiological and statistical methodology principles. 

We hope this study and accompanying technical guide encourages the incorporation of these 

innovative techniques into study designs and statistical analyses of observational data. 
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Figure 1: Illustrated example of two patients under the two hypothetical interventions of our 
target trial emulation. Patient A reaches severe hypoxia criteria at study day 2 and is followed the 
entire study duration. Patient B never reaches severe hypoxia criteria and is lost to follow up 
after five study days. Under the dynamic corticosteroids intervention (Intervention #1), Patient A 
receives 6 days of corticosteroids, and under Intervention #2 they receive no steroids. Patient B 
does not receive corticosteroids under either intervention strategy, however, in both hypothetical 
worlds they are observed for the entire study duration. 
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Figure 2: Directed Acyclic Graph (DAG) showing the relationship between confounders Lt, 
corticosteroid exposure At, and mortality Yt. Baseline confounders are included in L0. 
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Figure 3: Forest plot of model-first results. Study designs A-J correspond to Table 1’s 
specifications. Hazard ratio estimates (95% confidence interval) for each model are as follows: 
Model A: 0.504 (0.409-0.622), Model B: 0.949 (0.657-1.37), Model C: 0.917 (0.633-1.328), 
Model D: 0.886 (0.556-1.411), Model E: 0.656 (0.414-1.039), Model F: 0.773 (0.601-0.994), 
Model G: 1.054 (0.766-1.451), Model H: 1.044 (0.75-1.452), Model I: 0.63 (0.48-0.826), and 
Model J: 1.083 (0.801-1.466). 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 7, 2022. ; https://doi.org/10.1101/2022.05.27.22275037doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.27.22275037
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Model Study Design 

A Corticosteroid exposure defined as anytime during the course of 
hospitalization. All patients satisfying inclusion criteria are included 
in the analysis and time to event is defined as time from hypoxia to 
death. 

B Corticosteroid exposure defined as any administration up to one day 
after meeting hypoxia criteria. All patients satisfying inclusion 
criteria are included in the analysis and time to event is defined as 
time from hypoxia to death. 

C Corticosteroid exposure defined as any administration up to one day 
after meeting hypoxia criteria. Patients who died during this time 
window are excluded. Patients who receive corticosteroids after the 
time window are included in the control group. 

D Corticosteroid exposure defined as any administration up to one day 
after meeting hypoxia criteria. Patients who died during this time 
window are excluded. Patients who receive corticosteroids before 
hypoxia are excluded. Patients who receive corticosteroids after the 
time window are included in the control group. 

E Corticosteroid exposure defined as any administration up to one day 
after meeting hypoxia criteria. Patients who receive corticosteroids 
before hypoxia are excluded. Patients who receive corticosteroids 
after the one-day time window passes are censored at the time of 
corticosteroids receipt. 

F Corticosteroid exposure defined as any administration up to five 
days after meeting hypoxia criteria. All patients satisfying inclusion 
criteria are included in the analysis and time to event is defined as 
time from hypoxia to death. 

G Corticosteroid exposure defined as any administration up to five 
days after meeting hypoxia criteria. Patients who died during this 
time window are excluded. Patients who receive corticosteroids after 
the time window are included in the control group. 

H Corticosteroid exposure defined as any administration up to five 
days after meeting hypoxia criteria. Patients who died during this 
time window are excluded. Patients who receive corticosteroids 
before hypoxia are excluded. Patients who receive corticosteroids 
after the time window are included in the control group. 

I Corticosteroid exposure defined as any administration up to five 
days after meeting hypoxia criteria. Patients who receive 
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corticosteroids before hypoxia are excluded. Patients who receive 
corticosteroids after the one-day time window passes are censored at 
the time of corticosteroids receipt. 

J Corticosteroid exposure is allowed to be a time-varying covariate 
beginning at the time of hospitalization. 

 

Table 1: Study design specifications for the model-first approaches. 
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Characteristic1 Overall 
[N=3,298] 

Corticosteroid 
Never [N=2,875] 

Corticosteroids 
Ever [N=423] 

Age 65 (53, 77) 65 (52, 77) 67 (58, 75) 

Male 1,970 (60%) 1,697 (59%) 273 (65%) 

Race    

    Asian 602 (18%) 517 (18%) 85 (20%) 

    Black 399 (12%) 352 (12%) 47 (11%) 

    White 938 (28%) 818 (28%) 120 (28%) 

    Other 1,141 (35%) 1,009 (35%) 132 (31%) 

    Unknown 218 (6.6%) 179 (6.2%) 39 (9.2%) 

BMI 27 (23, 31) 27 (23, 31) 28 (24, 32) 

Home supplemental oxygen 312 (9.5%) 286 (9.9%) 26 (6.1%) 

Coronary Artery Disease 460 (14%) 402 (14%) 58 (14%) 

Diabetes Mellitus 1,033 (31%) 891 (31%) 142 (34%) 

Hypertension 1,780 (54%) 1,544 (54%) 236 (56%) 

Cerebral Vascular Event 225 (6.8%) 193 (6.7%) 32 (7.6%) 

Cirrhosis 35 (1.1%) 30 (1.0%) 5 (1.2%) 

CKD/ESRD 159 (4.8%) 146 (5.1%) 13 (3.1%) 

Asthma 180 (5.5%) 145 (5.0%) 35 (8.3%) 

COPD 134 (4.1%) 100 (3.5%) 34 (8.0%) 

Active cancer 136 (4.1%) 118 (4.1%) 18 (4.3%) 

Immunosuppressed 51 (1.5%) 44 (1.5%) 7 (1.7%) 

ILD 5 (0.2%) 3 (0.1%) 2 (0.5%) 

HIV 35 (1.1%) 33 (1.1%) 2 (0.5%) 

Active smoker 104 (3.2%) 93 (3.2%) 11 (2.6%) 

Former smoker 543 (16%) 442 (15%) 101 (24%) 

Outcome: 28-day mortality 699 (21%) 574 (20%) 125 (30%) 
1All continuous variables are reported as median (interquartile range) and categorical variables are n (%). Abbreviations: 
BMII=Body Mass Index, CKD=Chronic Kidney Disease, ESRD=End Stage Renal Disease, COPD=Chronic Obstructive 
Pulmonary Disease, ILD=Interstitial Lung Disease, HIV=Human Immunodeficiency Virus  

 
Table 2: Demographics and outcome for study cohort, overall and stratified by any corticosteroid 
exposure. 
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