McKee 2022 Supplemental Information

Table of Contents

Figure S1 Neonatal EEG Template	Page 1
Figure S2: Kaplan-Myer Survival Analysis	Page 2
Figure S3: Example decision tree for HIE patients	Page 3
Table S1: Model Methods	Page 4

EEG Result Summary Misc Info						
History & Technical Description Standard ICU Neonate Daily Impression Final Impression and Correlation						
EEG DESCRIPTION:						
Monitoring: Unchanged						
Patient State: awake asleep indeterminate	Text Box					
Continuity: normal continuity normal discontinuity excessive discontinuity burst suppression asymmetry low voltage suppressed	Text Box					
Synchrony: normal abnormal abnormal abnormal bursts separated by IBI < 5 uV with no normal patterns in bursts.						
Predominant Background Frequencies: beta alpha theta delta entirely attenuated asymmetry						
Voltage: normal borderline low low voltage suppressed electrocerebral inactivity high asymmetry	Text Box					
Variability: present absent unknown/unclear/not applicable	Text Box					
Reactivity: present absent unclear not tested	Text Box					
Dysmaturity: absent present unclear/unknown/not applicable	Text Box					
Graphoelements: present absent unknown	TextBox					
Focal Slowing: none present	TextBox					
EEG Transients: absent sharp wave (1 type) sharp wave (2 types) sharp wave (3 types) sharp wave (4 types) sharp wave (5 types)	Text Box					
Seizures: none EEG-only seizures electroclinical seizures clinically only seizures	Text Box					
Non-Ictal Events: none occurred without cerebral electrographic correlate	Text Box					

Figure S1: Neonatal EEG Template. EEG variables are derived from American Clinical Neurophysiology Society standardized EEG terminology, and hover boxes define terms to users.

Figure S2: Kaplan-Myer Survival Analysis. Proportion of individuals with seizure-free survival is displayed for both the entire cohort (yellow) and those with HIE (blue). Individuals are censored when monitoring is discontinued (vertical marks).

Figure S3: Example decision tree for HIE patients. The model is initiated with all patients and 22% risk of seizures (top). This tree then divides patients based on the presence or absence of seizures on day 1. For example, among patients who did not have seizures on day 1 (on the left), only had a 12% risk of seizures on subsequent days. Next, the model recursively splits the population based on the other features to create the branches, until it reaches a terminal leaf that is either homogenous in outcome or too small to split further. The highlighted group on the left accounts for 48% of the population, but only has a 4% risk of future seizures. However, the highlighted group on the right, while only representing 5% of the population has a 60% chance of future seizures.

Table S1: Model Methods

Key	Model Name	Model Type	Description
LR1	log_regress_c aret	Logistic Regression	Default logistic regression model with k-fold cross-validation (k=10) using the Caret package in R.
DT	regresstree_ca ret	Decision Tree	Default decision tree model with cross-validation (k=10) using the Caret package in R.
RF1	random_mod el1	Random Forest	Default random forest model using the randomForest package in R.
RF2	random_mod el_mtry	Random Forest	Random Forest model, optimized for minimal OOB Error using stepwise tuning of mtry. Optimal mtry = 7.
RF3	random_mod el_opt	Random Forest	Random Forest model, optimized for minimal error rate. Parameters tested included mtry (range 1-10, by increments of 1), minimal node size (3-9, by increments of 2) and number of trees (250-500, by increments of 50). Optimal mtry = 4, optimal node size = 9, optimal number of trees = 500.
RF4	range_1	Random Forest	Random forest model using the Ranger package in R optimized for OOB error rate. Parameters tested included mtry (range 1-10, by increments of 1), minimal node size (3-9, by increments of 2), sample size (0.55 , 0.632 , 0.7 , 0.8), and number of trees (250-500, by increments of 50). Optimal mtry = 8, optimal node size = 3, optimal sample size = 0.632 , optimal number of trees = 250.
RF5	h2o_1	Random Forest	Distributed Random Forest model using the H2O package in R. Parameters tested included mtry (range 1-10, by increments of 1), sample size (0.55 , 0.632 , 0.70 , 0.80), and number of trees (200-500, by increments of 100). The model was optimized towards maximum AUCPR. Optimal mtry = 2, optimal sample size = 0.55 , optimal number of trees = 400.
RF6	h2o_balanced	Random Forest	Distributed Random Forest model using the H2O package in R. Parameters tested included mtry (range 1-10, by increments of 1), sample size (0.55 , 0.632 , 0.70 , 0.80), and number of trees (200-500, by increments of 100). In order to create balance, the model was stratified and the class balance default parameter was activated. The model was optimized towards maximum AUCPR. Optimal mtry = 2, optimal sample size = 0.80, optimal number of trees = 200. Cross-validation (k=10) was also implemented within the model.
RF7	h2o_custom_ bal	Random Forest	Distributed Random Forest model using the H2O package in R. Parameters tested included mtry (range 1-10, by increments of 1), sample size (0.55 , 0.632 , 0.70 , 0.80), and number of trees (200-500, by increments of 100). In order to create balance, the model was stratified and the class balance parameter was activated with "no subsequent seizures" undersampled at a rate of 0.5 and "subsequent seizures" sampled at a rate of 0.9 . The model was optimized towards maximum AUCPR. Optimal mtry = 1, optimal sample size = 0.70 , optimal number of trees = 400. Cross-validation (k=10) was also implemented within the model.
RF8	h2o_weighted _0.6068152_ 2.840491	Random Forest	Distributed Random Forest model using the H2O package in R. Parameters tested included mtry (range 1-10, by increments of 1), sample size (0.55 , 0.632 , 0.70 , 0.80), and number of trees (200-500, by increments of 100). In order to create balance, the model was stratified and weighted in order to proportionally distribute points to "non-subsequent seizure" (0.61) and "subsequent seizure" (2.84) instances. The model was optimized towards maximum AUCPR. Optimal mtry = 1, optimal sample size = 0.55 , optimal number of trees = 200. Cross-validation (k=10) was also implemented within the model.
RF9	h2o_weighted _0.5_1.5	Random Forest	Same as above model, aside from weighted metrics for "non-subsequent seizure" (0.5) and "subsequent seizure" (1.5). Optimal mtry = 1, optimal sample size = 0.55 , optimal number of trees = 200.
RF10	h2o_weighted _0.5_2	Random Forest	Same as above model, except weights for "non-subsequent seizure" (0.5) and "subsequent seizure" (2.0) . Optimal mtry = 1, optimal sample size = 0.55, optimal number of trees = 200.
RF11	h2o_weighted _0.5_3	Random Forest	Same as above model, except weights for "non-subsequent seizure" (0.5) and "subsequent seizure" (3.0) . Optimal mtry = 1, optimal sample size = 0.55, optimal number of trees = 200.
RF12	h2o_weighted _0.5_4	Random Forest	Same as above model, except weights for "non-subsequent seizure" (0.5) and "subsequent seizure" (4.0) . Optimal mtry = 1, optimal sample size = 0.55, optimal number of trees = 200.
RF13	h2o_weighted _0.5_5	Random Forest	Same as above model, except weights for "non-subsequent seizure" (0.5) and "subsequent seizure" (5.0) . Optimal mtry = 1, optimal sample size = 0.55 , optimal number of trees = 200.

RF14	h2o_weighted _0.5_10	Random Forest	Same as above model, except weights for "non-subsequent seizure" (0.5) and "subsequent seizure" (10). Optimal mtry = 1, optimal sample size = 0.55 , optimal number of trees = 300.
RF15	h2o_weighted _0.5_15	Random Forest	Same as above model, except weights for "non-subsequent seizure" (0.5) and "subsequent seizure" (15). Optimal mtry = 1, optimal sample size = NA, optimal number of trees = 200.
LR2	log_regress_c aret_wb	Logisitc Regression	Logistic regression model with cross-validation (k =10) using the Caret package in R. Weights were added to proportionally distribute points to "non-subsequent seizure" (0.61) and "subsequent seizure" (2.84).
LR3	log_regress_c aret_w3	Logisitc Regression	Same as above model, aside from weighted metrics for "non-subsequent seizure" (0.5) and "subsequent seizure" (3.0)
LR4	log_regress_c aret_w5	Logistic Regression	Same as above model, aside from weighted metrics for "non-subsequent seizure" (0.5) and "subsequent seizure" (5.0)