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Abstract  30 

Objectives: 31 

Cochlear implant (CI) users exhibit a large variance in understanding speech in noise (SiN). 32 

Past works in CI users found that spectral and temporal resolutions correlate with the SiN 33 

ability, but a large portion of variance has been remaining unexplained. Our group’s recent work 34 

on normal-hearing listeners showed that the ability of grouping temporally coherent tones in a 35 

complex auditory scene predicts SiN ability, highlighting a central mechanism of auditory scene 36 

analysis that contributes to SiN. The current study examined whether the auditory grouping 37 

ability contributes to SiN understanding in CI users as well.  38 

Design:  39 

47 post-lingually deafened CI users performed multiple tasks including sentence-in-noise 40 

understanding, spectral ripple discrimination, temporal modulation detection, and stochastic 41 

figure-ground task in which listeners detect temporally coherent tone pips in the cloud of many 42 

tone pips that rise at random times at random frequencies. Accuracies from the latter three 43 

tasks were used as predictor variables while the sentence-in-noise performance was used as 44 

the dependent variable in a multiple linear regression analysis.  45 

Results: 46 

No co-linearity was found between any predictor variables. All the three predictors exhibited 47 

significant contribution in the multiple linear regression model, indicating that the ability to detect 48 

temporal coherence in a complex auditory scene explains a further amount of variance in CI 49 

users’ SiN performance that was not explained by spectral and temporal resolution. 50 

Conclusions: 51 

This result indicates that the across-frequency comparison builds an important auditory 52 

cognitive mechanism in CI users’ SiN understanding. Clinically, this result proposes a novel 53 

paradigm to reveal a source of SiN difficulty in CI users and a potential rehabilitative strategy. 54 

55 
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Introduction 56 

Although cochlear implants (CIs) have been the most successful intervention for patients 57 

with severe sensorineural hearing loss, persistent variability in CI speech-perception outcomes 58 

remains (Gantz et al., 2016). Although much of this variability derives from peripheral factors 59 

such as the degree of current spread that affects spectral resolution (Bingabr et al., 2008) 60 

and/or changes to the spectral mapping in the periphery (Hamzavi et al., 2003), established CI 61 

users with similar audiometric profiles and spectral resolution still differ when confronted with 62 

noise (Fetterman & Domico, 2002; Noble et al., 2009). This suggests that perceptual and 63 

cognitive processes may account for differences in speech perception performance. However, 64 

the neural and computational mechanisms that underlie these central processes are poorly 65 

understood. 66 

Studies in normal auditory systems have considered speech-in-noise (SiN) 67 

understanding as a “cocktail party problem” (Cherry, 1953), a problem of extracting a target 68 

sound from intermixed competing sounds. A solution for the cocktail party problem is a 69 

successful auditory scene analysis (Bregman, 1994), which can be understood as a chain of 70 

processes including 1) sensory encoding of acoustic dynamics, 2) grouping of acoustics 71 

features to form auditory objects (Darwin, 1997), and 3) across-object competition. Under this 72 

ASA framework, individual differences in SiN understanding may originate from each of the ASA 73 

processes. Evidence exists of individual differences in such ASA functions including encoding of 74 

suprathreshold dynamics (Ruggles et al., 2011) and auditory grouping (Holmes & Griffiths, 75 

2019; Holmes et al., 2021). 76 

In cochlear implant users, most previous works investigating the sources of outcome 77 

variance have focused on the status of the peripheral auditory system, that is only related to the 78 

first process above (i.e. encoding acoustic cues) (Winn et al., 2016; Won et al., 2007), leaving a 79 

gap in our understanding of how the central auditory functions affect speech-in-noise perception 80 

in CI users.  81 
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Our premise is that auditory cognitive processes, independently from peripheral 82 

processing, also contribute to speech-in-noise understanding in CI users. Especially, auditory 83 

object formation is a key process for target identification in crowded auditory scenes. One of the 84 

most effective perceptual strategies for object formation is grouping frequency components with 85 

temporal coherence (Shamma et al., 2011; Teki et al., 2016; Teki et al., 2013; Teki et al., 2011). 86 

Because most CI programming schemes deliver relatively intact temporal envelope patterns, 87 

theoretically, temporal coherence can be perceived by electric hearing.  88 

This study aimed to promote our understanding of a relationship between the central 89 

auditory functions and speech-in-noise outcomes in CI users by testing whether an auditory 90 

figure-ground task, an established paradigm that tests temporal coherence detection ability, 91 

explains the further amount of variance in CI outcomes in addition to spectral and temporal 92 

resolution. A relatively large number (47) of post-lingually deafened CI users were recruited for 93 

this study and performed the stochastic figure-ground task (SFG: (Teki et al., 2011)) in which 94 

listeners detect temporally coherent tone pips in the cloud of many tone pips that rise at random 95 

times at random frequencies. The same subjects also performed spectral ripple discrimination 96 

and a temporal modulation detection task as well as a sentence-in-noise understanding task 97 

(AzBio: (Spahr et al., 2012)). The accuracy of SFG, spectral ripple discrimination, and temporal 98 

modulation detection tasks were used as three predictor variables of a multiple linear regression 99 

model to predict the AzBio performance, to test the hypothesis that the performance on the SFG 100 

task explains a further amount of variance in CI users’ AzBio performance that is not explained 101 

by spectral and temporal resolution. 102 

 103 

Materials and Methods 104 

Participants 105 

Forty-seven CI users, between 20 and 79 years of age (mean = 60.9 years, SD = 12.1 106 

years; median = 63.3 years; % female), were recruited from the University of Iowa Cochlear 107 
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Implant Research Center. All the participants were post-lingually deafened and neurologically 108 

normal. The average length of device use was 39.5 months (SD = 56.8 months). The average 109 

duration of deafness was 22.0 years (SD = 15.0 years). Five subjects were bilateral CI users. 110 

Among the remaining subjects, 66.1% had CI in the right ear. 76.3% were Hybrid CI users (i.e., 111 

electric acoustic stimulation within the same ear). Average threshold of low-frequency (i.e., 250 112 

and 500 Hz) residual acoustic hearing was 59.4 dB HL (SD = 20.5 dB HL). American English 113 

was the primary language for all the participants. Most participants were tested during the same 114 

day as a clinical visit in which they received an annual audiological examination and device 115 

tuning. Most of these CI users were bimodal or hybrid CI users who would have some residual 116 

acoustic hearing. Duration of device use was obtained from clinical records. All study 117 

procedures were reviewed and approved by the local Institutional Review Board. 118 

 119 

Task design and procedures 120 

All CI users performed the spectral ripple discrimination, temporal modulation detection, SFG, 121 

and speech in noise (AzBio). 122 

 123 

Speech-in-noise: AzBio 124 

Performance on a sentence-in-noise task (AzBio; (Spahr et al., 2012)) was used as a 125 

dependent variable in the later multiple linear regression analysis to predict CI individuals’ SiN 126 

ability. Our AzBio task was performed at +5dB SNR condition at 70dB SPL in a double-walled 127 

sound booth using a sound field presentation. A loudspeaker was located 1.5 m in front of the 128 

subject. A single loudspeaker was used for both speech and noise (i.e., diotic listening). 129 

Subjects had to repeat the sentence they heard. Audiologists counted the number of currently 130 

repeated words from the outside of the sound booth. The ratio of currently repeated words to 131 

the total number of words in all the presented sentences was determined and used as an 132 

individual subject’s accuracy for later analyses.  133 
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 134 

Spectral Ripple and Temporal Modulation: Stimuli 135 

The stimuli for both tasks were generated in MATLAB at the time of testing based on the 136 

parameters set by the Updated Maximum-Likelihood (UML) adaptive procedure (Shen et al., 137 

2015). Starting parameters were based on pilot data from 40 CI users, and subsequent trials 138 

were adaptively generated based on the predictions of the UML procedure given the subject’s 139 

responses. Unlike traditional tasks, the UML procedure adaptively predicts what to test to best 140 

estimate an individual’s psychometric function. Estimates of the psychometric function were 141 

updated after every trial. 142 

For the spectral ripple task, stimuli were broadband noise with sinusoidal variations 143 

(ripples). The ripple peaks were evenly spaced on a log-frequency scale with the density of 144 

ripples held constant at 1.25 ripples per octave. The amplitude depth of the ripples (in dB) was 145 

manipulated based on the UML predictions. Two standard sounds were created with a 146 

randomized starting location for the spectral peak and the oddball was created with an inverted 147 

phase to be maximally distinct. 148 

For the temporal modulation detection task, stimuli were a complex tone comprised of 149 

component frequencies at 1515, 2350, 3485, 5045, and 6990 Hz. A sine wave was overlaid on 150 

the complex tone to modulate its amplitude. The envelope frequency was 20 Hz and the depth 151 

of the sinusoid was determined by UML prediction. Trials either had two modulated sounds, 152 

where the oddball was unmodulated, or two unmodulated sounds, where the oddball was 153 

modulated. 154 

Stimuli for both tasks were 500 ms in duration and ramped with a 50 ms rise/fall. To 155 

compensate for intensity differences in the modulated stimuli, root mean square values were 156 

equalized and the presentation level was roved randomly, so loudness could not be used as a 157 

cue.  158 

 159 
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Spectral Ripple and Temporal Modulation: Procedure 160 

Spectral and temporal resolutions were determined by spectral ripple discrimination and 161 

temporal modulation detection tasks using a 3-alternate forced-choice oddball detection 162 

paradigm. The task was implemented using Psychtoolbox 3 ((Brainard, 1997); (Pelli, 1997)) in 163 

MATLAB (The Mathworks). On each trial, two standard stimuli and one oddball were played in 164 

random order with an ISI of 750 ms. A numbered box appeared on the computer screen as 165 

each stimulus played. Subjects were instructed to choose the token that differed from the other 166 

two. The UML approach allowed the tasks to be much shorter than traditional staircase 167 

measures; each task was 70 trials. Both tasks began with 4 practice trials to familiarize the 168 

subject with the task and correct/incorrect feedback was given on every trial. 169 

 170 

SFG: stimuli 171 

The SFG stimuli were generated using the same design principle described in (Teki et 172 

al., 2011); figure and ground tone pips overlap in time and frequency space, and they can be 173 

distinguished only by their fluctuation statistics. In 50% of the trials, the tonal components 174 

repeated in frequency over 2 seconds, which popped out as “figure” out of “ground.”  175 

In our experiment, the frequencies of the figure varied from trial to trial but the number of 176 

figure tone pips was always six. To avoid subjects’ spectral resolution or low-frequency residual 177 

acoustic hearing confounding their SFG ability, the frequency gap between adjacent figure tone-178 

pips (i.e., repeated tonal components) was at least one octave and they were all above 1kHz. 179 

Figure 1 shows an example schematic stimulus containing the “figure” tone pips in the second 180 

half. 181 

 182 
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 183 

Figure 1. A schematic spectrogram of SFG stimulus. 184 

All stimuli were created using MATLAB software (The Mathworks) at a sampling rate of 185 

44.1 kHz and 16-bit resolution.  186 

 187 

SFG: task 188 

The SFG task was implemented in custom-written Matlab scripts (The Mathworks) using 189 

the Psychtoolbox 3 toolbox ((Brainard, 1997); (Pelli, 1997)). The SFG was conducted in an 190 

acoustically-treated, electrically-shielded booth with a single loudspeaker (model LOFT40, JBL) 191 

positioned at a 0° azimuth angle at a distance of 1.2 m. Visual stimuli were presented via a 192 

computer monitor located 0.5m in front of the subject at eye level. Sound levels were the same 193 

across subjects. 194 

For each trial, participants saw a fixation cross on the computer screen. r a response 195 

was given. 196 

 197 

Statistical analyses 198 

We related each predictor to speech perception performance on AzBio. The final model 199 

is given in (1), in the syntax of the linear modeling (i.e., lm() ) function in R.  200 

 201 

𝑆𝑝𝑒𝑒𝑐ℎ	𝑃𝑒𝑟𝑐𝑒𝑝𝑡𝑖𝑜𝑛		~	1 + 𝑆𝐹𝐺 + SpecRipple + 𝑇𝑒𝑚𝑝𝑀𝑜𝑑𝑢𝑙		   (1)	202 

 203 

204 
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Results 205 

Evaluation of independent variables in bivariate analyses 206 

We started by evaluating the correlations among all the independent variables: to check 207 

for co-linearity prior to multiple linear regression analysis. No significant correlation was found 208 

between any predictor variables. The relationship between the predictor variables is shown in 209 

Figure 2 as scatter plots. 210 

 211 

 212 

Figure 2. Results from predictor co-linearity analysis. No significant correlation is observed. 213 

 214 

Next, we conducted exploratory bivariate analyses examining correlations between each 215 

independent variable and AzBio accuracy. All three predictors exhibited a statistically significant 216 

correlation with SiN ability. These are shown in Figure 3. In Figure 3, the spectral ripple 217 

discrimination and temporal modulation detection threshold values are in an arbitrary unit, 218 

measured as crossover during an adaptive procedure. 219 

 220 
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 221 

Figure 3. Results from bivariate correlation analyses. Spectral ripple discrimination and temporal 222 

modulation detection threshold values are in an arbitrary unit. 223 

 224 

Multiple linear regression 225 

Following bivariate analyses, we conducted a multiple linear regression analysis to 226 

determine which of the independent variables predicted AzBio accuracy when accounting for all 227 

others (see Table 1 in its entirety). When adjusted for the number of independent variables, the 228 

model accounted for 46.3% of the variance in AzBio accuracy, F(3, 43) = 12.4, p <0.00001, 229 

Adjusted R2 = 0.426. All three predictors reached statistical significance. 230 

 231 

Table 1: Results from multiple linear regression on SiN accuracy (N=47, R2=0.463): 232 

AzBio b 
(normalized) SE T(43) p Partial r 

SFG 0.292 2.65 2.51 0.0160 0.357 
SpecRippleThres -0.250 0.167 -2.18 0.0345 -0.316 
TempModulThres -0.434 0.863 -3.72 <0.001 -0.493 

 233 
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 234 

Figure 4. Results from multiple linear regression analysis. A. Main effects of predictor variables. B. 235 

Relationship between estimated AzBio accuracy (i.e., the model output) and measured AzBio accuracy 236 

(i.e., the dependent variable). C. Relationship between SFG accuracy and the residual of AzBio accuracy 237 

after regressing out the other two predictor variables (i.e., spectral and temporal resolution). 238 

 239 

Discussion 240 

In this study, post-lingually deafened CI users performed a stochastic figure-ground (SFG) 241 

task in which listeners detect temporally coherent frequency components in the cloud of tone 242 

pips that rise at random times at random frequencies. The bivariate correlation between figure-243 

detection performance (d-prime) and sentence-in noise performance (AzBio score) was high as 244 

r = 0.45 (p <0.005). The effect size is greater than that in normal hearing subjects reported in 245 

(Holmes & Griffiths, 2019). Moreover, multiple linear regression demonstrated a significant 246 

effect of figure detection (normalized beta coefficient = 0.29, p < 0.05) even after accounting for 247 

the fidelity of spectral and temporal encoding in the auditory periphery. The combined model 248 

explained 46% of the variance in SiN performance. This work has therefore established a 249 

relationship between a simple measure of the cross-frequency grouping of electrically coded 250 

signals, relevant to SiN ability. 251 

This result suggests that auditory-cognitive mechanisms play a powerful explanatory in CI 252 

users’ outcomes in everyday communications. Adopting the SFG task in clinics may reveal a 253 
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source of SiN difficulty in CI users that has not been recognized in the current clinical practice, 254 

which potentially opens up an opportunity for a novel aural rehabilitative strategy for CI users. 255 

The figure detection ability during the SFG task is unlikely the only auditory cognitive 256 

mechanism that contributes to SiN performance. Although 47 was a relatively large sample size 257 

for a CI study, the number of predictor variables was limited to three to ensure a reasonable 258 

statistical power. A future study will consider more auditory-cognitive mechanisms (e.g., auditory 259 

working memory: (Akeroyd, 2008; Dryden et al., 2017; Kim et al., 2020)) as well as linguistic 260 

and general cognitive mechanisms.  261 

 262 

263 
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