
Supplementary Methods for "Governance is key to
controlling SARS-CoV-2’s vaccine resistance"

Here we describe in further detail the modeling approach we use to assess the evolutionary invasibility of an

immunity-evading strain  of SARS-CoV-2 in a host population in which an ancestral, immune-susceptible

strain  circulates.

In the absence of vaccination or epidemiologically-relevant variability in the human or viral populations, the

ancestral viral strain is assumed to circulate in the host population following an S E I R (Susceptible-

Exposed-Infectious-Recovered) compartmental model over the time horizon (170 days following the roll out of

vaccinations) that we investigate. The ancestral strain spreads through frequency-dependent transmission

with a per-capita force of infection equal to , where  is the host population ( )

and  the ancestral strain's infection coefficient. Based on Bi et al. (2020) and Qin et al. (2020), we use an

incubation period  of 8.29 days and an infectious period  of 5 days. For purposes of the present analyses,

we consider disease-induced mortality to not substantively alter the pathogen's dynamics, and that the total

host population is approximately constant over the timescale of concern.

We then relax the assumption of immunity being acquired solely via infection by allowing susceptible hosts to

become vaccinated. Thus, our S E I R model is modified so that vaccinated hosts are diverted into a

compartment , representing fully-vaccinated hosts. We assume fully-vaccinated hosts are unable to transmit

the ancestral strain, but still circulate in the host population. Thus, after vaccinations begin,
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Broadly, our basic strategy is as follows. First, we estimate the daily infection coefficient  for the ancestral

strain  in each polity from daily ( ) data on incidence, prevalence and vaccination using an Ensemble

Kalman Filtering regime. Next, we derive the average number  of secondary infections by single, immune-

evading mutant strain  arising from a single host in which strain  has mutated to strain . , in turn, is a

time-dependent quantity whose magnitude depends, in part, on the ancestral strain's infection coefficient 

at time . Thus, we characterize how the invasibility of the mutant strain  into the host population changes

depending on (i) the phenotypic consequences of the mutation events giving rise to , and (ii) the

epidemiological profile (number of susceptible hosts, vaccinated hosts, etc...) of the host population when the

mutant emerges. Below, we explain each of these in greater detail, as well as the  code used in our

analyses. All underlying code is released under the GNU Public License v3 and is freely available at

kewok.github.com.
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Estimating the daily infection coefficient  from
epidemiological data
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Daily data recording total population size, as well as incidence, cumulative incidence, fatalities from SARS-

CoV-2, as well as vaccinations against SARS-CoV-2 were collated for four polities in the Western Hemisphere

(Panama, Costa Rica, Uruguay - collated as described in Chaves et al. 2020 - and Texas

https://dshs.texas.gov/coronavirus/AdditionalData.aspx (https://dshs.texas.gov/coronavirus

/AdditionalData.aspx); the underlying data are available at kewok.github.com). Thus, for a given polity

, the data are read in as a variable countryID d

In [ ]: d <- read.csv(paste('LatinAmerica_Data/',countryID,'.csv', sep=''))

General model parameters are specified as:

In [ ]: btest = seq(0.01,3.5,by=0.01)
sigma <- 1/8.29 
gamma <- 1/5 
ief <- gamma/sigma

For polities representing countries (Panama, Costa Rica and Uruguay), initial conditions for infectious ( ) and

recovered ( ) hosts were determined as follows:

I0

R0

In [ ]: I0 <- sum(diff(d$total_cases[(min(which(!is.na(d[,'new_vaccinations_
smoothed'])))-14):(min(which(!is.na(d[,'new_vaccinations_smoothed
'])))) ])) # Prevalence based on all infectious from 14 days ago thr
ough present.
R0 <- d$total_cases[min(which(!is.na(d[,'new_vaccinations_smoothed
'])))-14]
d <- d[min(which(!is.na(d[,'new_vaccinations_smoothed']))):nrow(d),]
d$Date <- as.Date(d[min(which(!is.na(d[,'new_vaccinations_smoothed
']))):nrow(d),'date'],'%m/%d/%Y')

while for Texas, the initial conditions were specified as:

In [ ]: I0 <- sum(diff(d$total_cases[(min(which(!is.na(d[,'new_vaccinations_
smoothed'])))-14):(min(which(!is.na(d[,'new_vaccinations_smoothed
'])))) ])) # Prevalence based on all infectious from 14 days ago thr
ough present.
R0 <- d$total_cases[min(which(!is.na(d[,'new_vaccinations_smoothed
'])))-14]
d <- d[min(which(!is.na(d[,'new_vaccinations_smoothed']))):nrow(d),]
d$Date <- as.Date(d[min(which(!is.na(d[,'new_vaccinations_smoothed
']))):nrow(d),'date'],'%m/%d/%Y')
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In both cases, the dataset is concatenated to include only data following the beginning of vaccinations, and it

is assumed that two weeks (approximately the incubation period plus the infectious period) must pass before

new cases are considered no longer infectious.

For all locations, following the onset of vaccinations, the initial number of exposed individuals ( ) is assumed

to be a proportion  of  initially infectious individuals, with  (see Engbert et al. 2021),

and the initial number of vaccinated individuals  is given by the number of people fully vaccinated in the

dataset or, in the case of Texas, 0. The total population size  is determined from XYZ. Thus,

.

E0

π I0 π ∼ N(γ/σ, 0.25)
V0

N

= N − − − −S0 E0 I0 R0 V0

Once initial conditions are determined, a time-lagged per-capita vaccination rate is calculated, whereby the

daily fraction  of susceptible hosts vaccinated changes over time. Because of differences in the data

reported, the routine for calculating the per-capita vaccinatino rate is somewhat distinct for Texas and the

other polities. We assume that is takes 30 days following the initial administration of vaccination for individuals

to enter the vaccinated compartment.

v(t)

In [ ]: if(countryID=='Tejas_revised')
{
vaxRate <- c(diff(d$people_fully_vaccinated[1:31])/(N-d$total_c

ases[1:30] - d$Cumulative.Fatalities[1:30] - d$people_fully_vaccinat
ed[1:30]), d$daily_vaccinations[31:nrow(d)]/(N-d$total_cases[31:nrow
(d)] - d$Cumulative.Fatalities[31:nrow(d)] - d$people_fully_vaccinat
ed[31:nrow(d)]))

}
else

{
# impute fully vaccinated data if missing
for (i in 31:nrow(d))

{
if (is.na(d$people_fully_vaccinated[i]))

{
d$people_fully_vaccinated[i] <- d$people_fully_vaccinate

d[i-1]
}

}
vaxRate <- c(rep(0,30), d[31:nrow(d),'new_vaccinations_smoothed

']/(N-d$total_cases[31:nrow(d)]-d$total_deaths[31:nrow(d)]-d$people_
fully_vaccinated[31:nrow(d)]))

}
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These data are then used to seed an Ensemble Kalman Filter (EnKF) algorithm to determine the daily

infection coefficient . Our approach loosely follows the strategy described in Engbert et al. 2021. Briefly,

using the initial conditions and daily vaccination rates, we use the Gillespie algorithm (Gillespie 1977) to

simulate 100 stochastic realizations of an S E I R model with a daily varying vaccination rates to identify

distinct epidemiological trajectories up to a given date  for a given infection coefficient  ranging from 0.01

to 3.5 in increments of 1/100. An EnKF is then applied on the 100 trajectories to estimate the ensemble mean

score for each value of  on each date for each polity. The following segment of code illustrates the

implementation of the EnKF:

β

→ → →

T β

β

In [ ]: # Implement the EnKF:
rho <- 10
dt <- 1
Nruns <- 100

numb = length(btest)
E = matrix(data=rep(0,(Time-1)*numb),ncol=numb,nrow=Time-1)
best = rep(0,Time-1)
b = btest[j]
Z = matrix(data=rep(c(S0,E0,I0,R0),Nruns),ncol=4,nrow=Nruns,byrow=T)
Z[,2] = round(Z[,2]*(1+rnorm(Nruns,mean=0,sd=0.5)))
dt = d$dt[t]

# Simulate ensemble
sim = seir_custom(N=N,I0=Z[,3],E0=Z[,2],R0=Z[,4], V0=V0, b=b,a=a,g=
g,Time=dt,runs=Nruns, vaxRate=vaxRate)
Z[,] <- as.numeric(as.matrix(sim[,paste('Var',1:4,sep='')]))

# Ensemble Kalman filter
H = c(0,0,1,1)
P = cov(Z)
K = P%*%H/as.numeric(H%*%P%*%H+rho)

Zprime = Z
for ( r in 1:Nruns ) {

Zprime[r,] = round(Z[r,]- 0.5*K*as.numeric(t(H)%*%Z[r,] + t(H)%
*%colMeans(Z) - 2*d$total_cases[t+1])) # Note they use cumulative ca
ses in xinfer.R

Zprime[r,1] = N - sum(Zprime[r,2:4]) - sim[r,'Var5'] # enforc
e N = S+E+I+R+V

}

E[t,j] = E[t,j] + 1/(2*(H%*%P%*%H+rho))*norm(H%*%colMeans(Z)-d$total
_cases[t+1])^2 + 0.5*log(H%*%P%*%H+rho)

Z = Zprime

E.df = data.frame(time=t, beta=b, E=E[t,j])
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where the underlying stochastic realization of SEIR+V is simulated by the function , in which

the  package (Zepeda-Tello and Camacho-García-Formentí 2016) enables us to apply the stochastic

Gillespie simulation when the vaccination rate parameter  is itself time-varying.

seir_custom

ssar

v(t)

In [ ]: install.packages("devtools")
devtools::install_github("INSP-RH/ssar")

# The state change/propensity matrix corresponding to 
# A <- c("b*S0*I0/n","u(t)*S0","sigma*E0","g*I0")
# should look like:

# S -1 -1 0 0
# E +1 0 -1 0 
# I 0 0  +1 -1
# R 0 0 0  +1
# V 0 +1 0 0

v <- matrix(c(
-1, -1, 0, 0,
+1, 0, -1, 0, 
0, 0, +1, -1,
0, +1, 0, +1,
0, +1, 0, 0

),nrow=5, byrow=TRUE)

seir_custom <- function(N, I0, E0, R0, V0, b, sigma, g, Time, runs,
vaxRate, complete_trajectory = FALSE)

{
X <- matrix(c(S0=N-I0[1]-E0[1]-R0[1]-V0, E0[1], I0[1], R0[1], V

0), nrow=1)
parameters <- c('b'=as.numeric(b), 'n'=as.numeric(N), 'sigma'=a

s.numeric(sigma), 'g'=as.numeric(g))

u <- function(t) vaxRate[round(t+1)]
# The time-dependent propensity function now becomes:

pfun <- function(t, X, parameters)
{
cbind(parameters['b'] * X[,1] * X[,3]/parameters['n'], u(t)

* X[,1], parameters['sigma']*X[,2], parameters['gamma']*X[,3])
}

res <- ssa(X, pfun, v, parameters, tmin=0, tmax=Time, nsim=runs,
plot.sim=FALSE)

if (complete_trajectory)
return(res)

else
return(res[(nrow(res)-runs + 1):nrow(res),])

}
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All calculations described above were performed on the Mangi cluster at the Minnesota Supercomputing

Institute at the University of Minnesota, Twin Cities.

We dentified the date- and polity-specific infection coefficient  by determining with the minimum ensemble

mean score for that date and polity.

β(t)

In [ ]: locations <- c('Panama','CostaRica','Tejas_revised','Uruguay')

btest_index <- 1:length(seq(0.01,3.5,by=0.01))

Days <- 170
E_vals <- list(locations)

for (countryID in locations)
{
E_vals[[countryID]] <- matrix(nrow=Days, ncol=length(btest_index))

for (Date in 1:Days) 
{
for (j in 1:length(btest_index))

{
inname = sprintf('LatinAmerica_Data/LKbeta/E_%s_%s_%s.dat',c

ountryID, j, Date)
E_vals[[countryID]][Date,j] <- read.table(inname, header=

T)$E
}

}
}

beta.df <- data.frame(nrow=Days*length(locations),ncol=3)

current_row <- 1
bvals <- seq(0.01,3.5,by=0.01)
for (countryID in locations)
{
for (Date in 1:Days)

{
beta.df[current_row, 1] <- Date
beta.df[current_row, 2] <- bvals[which(E_vals[[countryID]][Dat

e,]==min(E_vals[[countryID]][Date,]))[1]]
beta.df[current_row, 3] <- countryID
current_row <- current_row + 1
}

}

Derivation of the Average Number  of Secondary Infections

for the Immune-Evading Mutant Strain 

Rμ

μ
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We assume that virions within a single host infected with the ancestral strain  undergo a mutation (or series

of mutations) within the single host that leads to the host becoming infected by virions of a novel strain . Until

this host infects other hosts, all other infectious hosts continue to be infected by the ancestral strain .

We consider a situation where there are  hosts that have never been infected by either strain,  hosts that

have either been vaccinated or previously infected by, and are now immune to, strain . We further neglect

coinfection. Under these conditions, the average number  of secondary infections for the mutant strain 

characterizes the evolutionary invasibility of the novel strain. This quantity can, in turn, be determined from the

next generation operator. In particular,

A

μ

A

Su Sv

A

Rμ μ

(t) =Rμ
(t)(q+σ)b (t) + (t)σ (t)(q+ )Sv βA σv Su βA σv

n(q+γ)(q+σ)(q+ )( (t)(q+σ)b (t) + (t)σ (t)(q+ ))σv Sv βA σv Su βA σv√

where  are as above,  are the incubation period and relative infectivity, respectively, of the

immune-evasive strain.

To contrast the different evolutionary effects of public health interventions, we model a situation where hosts

infected by the novel strain  are potentially removed from the host population by a rate . We assume that

this rate  is reflective of the testing intensities across different polities. Thus we highlight how the evolutionary

invasibility  of strain  depends not only on the mutant and ancestral strain's phenotypes, but also on the

prevailing commitment to effective public health surveillance across the polities we examined. For detailed

derivations, we refer the reader to the Supplementary Mathematica code.

Taken together, the average number  of secondary infections is therefore calculated as:

γ, σ, N , βA , bσv

μ q

q

Rμ μ

Rμ

In [ ]: Rm <- function(b, B1, sigmaV, q, su, sv)
{
(B1*sigma*(q + sigmaV)*su + b*B1*(q + sigma)*sigmaV*sv)/sqrt(B1*

(gamma + q)*(q + sigma)*(q + sigmaV)*(n)*(sigma*(q + sigmaV)*su + b*
(q + sigma)*sigmaV*sv))

}

Characterizing the Evolutionary Invasibility of Different Immune-
Evading Strains  During the First Six Months of the Vaccination
Campaign across Polities

μ
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We systematically explored how distinct immune-evading strains with different epidemiological phenotypes

can emerge in each polity. In particular, we varied the mutant transmission coefficient  relative to the

ancestral transmission coefficient  across three orders of magnitude (from 1/20  transmissibility to 5x

transmissibility); varying the novel-strain specific incubation period  had very little discernable quantitative

effect (results not shown), so we present results when the ancestral and novel strain have equivalent

incubation periods.

On a given date  in polity , we therefore calculated the evolutionary invasibility  of the

immune-evading mutant virus as follows:

b

βA
th

σv

t countryID Rμ

In [ ]: bRange <- bRange <- c(0.05,0.5,1,5)) # e.g.; relative infectivities 
of the mutant strain

# Calculate the invasability value for each date across
get_Rms <- function(sigmaV, q, dats_by_day, countryID)

{
R_ms <- matrix(nrow=nrow(dats_by_day), ncol=length(bRange))
for (i in 1:length(dats_by_day[,'Date']))

{
for (j in 1:length(bRange))

{
R_ms[i,j] <- Rm(bRange[j], B1[1], sigmaV, q, dats_by_day

[i,'Su'], dats_by_day[i,'Sv'])
}

}
return(R_ms)
}

For each polity, starting with 30 days after which vaccinations began (assuming a two-dose schedule followed

by a two-week waiting period - e.g., Polack et al. 2020 and Baden et al. 2021), we calculated the number

 of hosts that are immune as the sum of the number of fully-vaccinated hosts and the total number of

cases on a given day . We further assumed that instantaneous co-infection by the two strains is negligible,

and that new cases from infection by the ancestral strain  are unable for infection by the novel strain .

Thus, the number  of susceptible hosts on day  was therefore calculated as the difference between the

total population size of the polity and  as well as total deaths (Supplementary Figure S1).

Based on the daily  values estimated from the EnKF routine (Supplementary Figure S1), and assuming

polity-specific testing rates (obtained Hasell et al. Sci Data 7, 345 (2020) and from Johns Hopkins University's

testing dataset; https://coronavirus.jhu.edu/testing/states-comparison (https://coronavirus.jhu.edu/testing

/states-comparison) Accessed Aug. 24 2021) are approximately constant in each polity, we then applied the

function  to determine the daily evolutionary invasibilities of the novel strain illustrated in Fig. 1 of the

main text. The code for the producing the data underlying the figures is reproduced below.

(t)Sv

t

A μ

(t)Su t

Sv

(t)βA

get_Rms
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In [ ]: sigma_v <- 1

locations <- c('Panama','CostaRica','Tejas_revised','Uruguay')
# Final daily values of beta_A
B1s <- read.table('LatinAmerica_Data/LKbeta/betaVals_revised.dat',he
ader=T)
Rms <- list()
susceptibles <- list()
vaxes <- list()
beta_ests <- list()

counter <- 1

for (countryID in locations)
{
d <- read.csv(paste('LatinAmerica_Data/',countryID,'.csv', sep=''))

# remove all records from before people were fully vaccinated:
if (countryID != 'Tejas_revised')

{
non_vax_days <- 1:min(which(!is.na(d[,'new_vaccinations_smoothed

'])))
d <- d[-non_vax_days,]
}

# Determine the time-lagged vaccination rate; assume it takes 30 day
s to become fully vaccinated
if(countryID=='Tejas_revised')

{
for (i in 1:nrow(d))

{
if (is.na(d$people_fully_vaccinated[i]))

{
d$people_fully_vaccinated[i] <- d$people_fully_vaccinat

ed[i-1]
}

# As there is a date in Texas with NA deaths
if (is.na(d$total_deaths[i]))

{
d$total_deaths[i] <- d$total_deaths[i-1]
}

}
Sv <- d$people_fully_vaccinated + d$total_cases
}

else
{
# impute fully vaccinated data if missing; note the non-Texas da

ta begin when vaccinations began.
for (i in 31:nrow(d))

{
if (is.na(d$people_fully_vaccinated[i]))

{
d$people_fully_vaccinated[i] <- d$people_fully_vaccinate

d[i-1]
}
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}
Sv <- c(rep(0,30), d[31:nrow(d),'new_vaccinations_smoothed']) +

d$total_cases
}

Su <- d$population - Sv - d$total_deaths
B1 <- B1s[which(B1s[,'LK_ID']==countryID),'b_est']
beta_ests[[counter]] <- B1
dats_by_day <- data.frame(Date=1:Days, Su=Su[1:Days], Sv=Sv[1:Days])
n <- unique(d$population[1])
my_q <- tests_by_country[countryID] / (n/1e6) # Convert tests per mi
llion into tests per capita
susceptibles[[counter]] <- Su[1:Days] / n * 1e6 # Convert susceptibl
es to per-million
vaxes[[counter]] <- Sv[1:Days]/n # Convert vaccinated to per-million

Rms[[counter]] <- get_Rms(sigma_v, my_q, dats_by_day, countryID)
counter <- counter + 1
}
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