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1 Supplementary Methods

This section provides further details on the methods used to generate the synthetic data, and compute the
early warning signals of the time-series data. The code used to produce the data and generate the EWSs is
available at https://github.com/ersouthall/Time-of-detection.

1.1 Simulation Study

We generate stochastic simulations using the Gillespie algorithm (Gillespie, 1977) for an underlying Susceptible-
Infectious-Susceptible (SIS) model. In this model, new infections are generated at a rate 3(¢)SI/N and indi-
viduals recover from infection at a rate vI. We study EWSs on incidence (new cases) data produced by the
SIS model, where the system is slowly moving away from the endemic steady state and towards the disease
free state. We use the version of the model proposed by (O’Regan and Drake, 2013) where the transmission
rate

B(t) = Bo(1 — pt) (1)

is gradually reducing through time, until the disease is unsustainable. Parameter values used for the simu-
lations are given in Table [I} and the simulated data were initially aggregated into timepoints At = 1 years
apart. We investigate the quantity of time-series data needed to provide robust EWSs, by increasing At to
reflect less frequent sampling of incidence data. We consider At € [1,2, 5,10, 25].

’ Parameter \ Value ‘
Initial transmission rate 5o 1
Recovery rate ol 0.2
Change in transmission D 1/500
Population size N 10,000

Initial number of infections 7(0) 0.8N

Table 1: Simulation parameter values

We evaluate the detection methods with three different types of incidence data:

e Bifurcating data: Ext (extinct), the SIS model described above, with a decreasing transmission rate
B(t) = Po(1 — pt) over time.


https://github.com/ersouthall/Time-of-detection

e Null data: Fix (fixed/endemic), the SIS model with a fixed value of 5(t) = By, for all ¢.

e Null data: NExt (not extinct), as in Ext, but 5(¢) stops decreasing at t+ when [(¢*) = 1.3y and remains
at B(t) = 1.3y for the rest of the simulation (¢ > tx).

1.2 A description of how EWSs are computed

In practice, without the availability of replicates, statistics cannot be calculated over multiple realisations.
Instead, a moving average approach is often used, whereby the statistic is calculated on a subset of the time-
series of length w. The time evolution of the statistic is achieved by shifting the window, w, forward by one
timepoint, so that each new subset contains the next timepoint and removes the first point of the previous
subset. For example, the variance of a single time-series {x(t) : t € [0,n — 1]}, can be estimated using a
right-edge window,

or a central-window,

Y w
t=t—%

A right-edge window is often preferred as it does not use future data points in the estimation of the statistic at
time t. In this paper, we use right-edge windows in our analysis and the numerical formulas for the statistical
moments used in this paper are shown in Table [2|



Mathematical Numerical Numerical
Statistic Definition (N replicates) (moving average)
Mean e = E[X] pr(t) = &SN 2.(t) () =130, L x(t)
Residuals Yt = Xt — Mt yr(t) = Ir(t) - IMR(t) yw(t/) = x(t/) - /'Lw(t)7 te [t —w, t]

Variance (Va)

of = E[X?] - E[X/*

oR(t) = 5 200 ()’

() = 25 X Yu(t)?

Coeflicient of

variation (CoV) o/ e or(t)/ur(t) w(t)/ ph(t)

Index of dispersion (InD) o2/ or(t)?*/pr(t) Ow(t)?/ ()
Skewness (SK) Ely;)/o} N Lor e (1) i otrt—w Y ()
Kurtosis (KT) Ely;]/o} NowT 2o Yr(t)* a7 o=t Yu ()

Acovy(T) = Acovy, (1) = Acovy, (1) =
Autocovariance (Acov) Ely:y1++] % vazl yr-(t)y.-(t +7) i Zi/:pw Yo ()Y (T + T)
ACt(T) = ACtR (7') = AC’tw (T) =
Autocorrelation (AC) Acovy(1)/(010147) | Acove, (T)/(or(t)or(t + T)) Acovy, (1) /(0w(t)ow(t + 7))
Decay Time (DT) —7/In(AC, (7)) —7/In(AC(7)) —7/In(ACy, (7))

Table 2: List of early warning signals used in this paper (and their acronyms). Note: for the calculation of

statistics on a moving window, the sample form is taken (degree of freedom is one).

2 Supplementary Figures
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Figure 1: Power Metric Analysis: for different time-series lengths considered (lengths: 20, 50, 100 and
250). Each heatmap shows the total power metric (2T'PR — FPR; — FPR, € [—2,2]) for the two null models
considered, where T'P R is calculated as the proportion of disease elimination simulations which are successfully
detected; FPR; is the proportion of steady state simulations which are incorrectly detected and FPR, is
the proportion of declining incidence (but not bifurcating) simulations which are incorrectly detected. Each
group of subplots shows the results for each detection method considered: (a) 2-sigma composite framework,
(b) Kendall’s 7 p-value methodology, (c) the logistic composite methodology and (d) the quickest detection
approach. Each figure demonstrates how the performance of the total power metric changes when stricter
constraints on the number of consecutive points required to cross the threshold are applied.
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Figure 2: Power metric for time-series data up to the bifurcation point. For a time-series of length
100 and bifurcation occurring at t* = 80, the total power metric (2I'PR — FPR; — FPR,), is calculated
over the time-series data up to the bifurcation. Results are shown for each detection method considered: (a,
Kendall’s 7 p-value); (b, logistic composite).
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((c)) Time-series length 100
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Figure 3: Number of consecutive points: For each detection method, the “best” number of consecutive
points are found from the ROC curves by selecting the number of consecutive points which minimises the
classification error. Each scatter plot shows the best number of consecutive points as a percentage of the
time-series length for each null dataset: triangular markers show NExt results and circular markers show Fix
results. Results are shown for time-series of length (a) 20, (b) 50, (c¢) 100 and (d) 250 and for each online
detection method: 2-sigma (blue); Kendall’s 7 p-value (orange); logistic (green) and quickest detection (red).
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Figure 4: Maximum likelihood estimation with different penalties: For a time-series of length 100,
the time-of-detection of Ext data (blue boxplots); Fix data (green boxplot) and NExt data (purple boxplots).
For each 500 simulation set, the time-of-detection is calculated using the MLE approach and the alternative

hypothesis is accepted following a penalty criteria. Penalty criteria considered: (a) Hannan-Quinn, (b) AIC,
(c¢) Wilk’s Theorem, (d) BIC and (e) MBIC. The TPR, FPR; and F PR, are given in the legend.



2-sigma | Kendall’s 7 Logistic Quickest
composite p-value composite Detection MLE
True positive rate
(disease elimination) 0.712 0.218 0.992 0.97 0.968
True negative rate 1
(steady state) 0.846 0.998 0.438 0.808 0.986
True negative rate 2
(declining incidence) 0.746 0.82 0.24 0.77 0.936

Table 3: Time-series length 20. Statistic used (number consecutive points used): 2-sigma, CV (2);
Kendall’s 7, CV (10); logistic, InD (3); quickest detection, A = log(20) (3).

2-sigma | Kendall’s 7 Logistic Quickest
composite p-value composite Detection MLE
True positive rate
(disease elimination) 0.816 | 0.426 0.968 0.994 1
True negative rate 1
(steady state) 0.984 | 0.992 0.71 0.994 0.986
True negative rate 2
(declining incidence) 0.85 0.6 0.366 0.99 0.918

Table 4: Time-series length 50. Statistic used (number consecutive points used): 2-sigma, CV (7);

Kendall’s 7, CV (25); logistic, InD (10); quickest detection, A = log(50) (7).

2-sigma | Kendall’s 7 Logistic Quickest
composite p-value composite Detection MLE
True positive rate
(disease elimination) 0.964 | 0.742 1 1 1
True negative rate 1
(steady state) 0.944 0.782 0.844 1 0.996
True negative rate 2
(declining incidence) 0.53 0.288 0.208 1 0.706

Table 5: Time-series length 250. Statistic used (number consecutive points used): 2-sigma, CV (15);
Kendall’s 7, CV (74); logistic, InD (49); quickest detection, A = log(250) (33).

Table Notes: Each table provides the TPR, T'N Ry and T'N R, for the most predictive statistic and
number of consecutive points of each detection method. This is demonstrated for different time lengths: 20
(Table [3), 50 (Table[d)), 100 (Table ??) and 250 (Table[5). The best performing online method is highlighted
in violet, the second best in blue and the MLE (offline method) is highlighted in grey. A result in bold font
has a classification rate > 0.75.
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Figure 5: Quickest detection performance for different distributions f and g. Find 0% as the variance
of the first 25 time-points of a time-series of length 100. For our 500 simulation sets, we find oy € [20.5,53.4].
In this example, we take 01 = 40 and o5 = 10 and use a 6 consecutive points constraint, as before.
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