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Abstract

Background: The evidence-based quantification of the relation between changes
in movement quality and functionality can assist clinicians in achieving more
effective structuring or adaptations of therapy. Facilitating this quantification
through computational tools can also result in the generation of large-scale data
sets that can inform automated assessment of rehabilitation. Interpretable
automated assessment can leave more time for clinicians to focus on treatment
and allow for remotely supervised therapy at the home.

Methods: In our first experiment, we developed a rating process and
accompanying computational tool to assist clinicians in following a standardized
movement assessment process relating functionality to movement quality. We
conducted three studies with three different versions of the computational rating
tool. Clinicians rated task, segment, and movement feature performance for 440
videos in which stroke survivors executed standardized upper extremity therapy
tasks related to functional activities. In our second experiment, we used the 440
rated videos, in addition to 140 videos of unimpaired subjects performing the same
tasks, to improve our previously developed automated assessment ensemble model
that automatically generates segmentation times and task ratings across impaired
and unimpaired movement. The automated assessment ensemble integrates expert
knowledge constraints into data driven training though a combination of HMM,
transformer, MSTCN++, and decision tree computational modules. In our third
experiment, we used the therapist and automated ratings to develop a four-layer
Hierarchical Bayesian Model (HBM) for computing the statistical relation of
movement quality changes to functionality. We first calculated conditional layer
probabilities using clinician ratings of task, segment, and movement features. We
increased the granularity of observation of the HBM by formulating ∆HBM , a
correlation graph between kinematics and movement composite features. Finally,
we used k-means clustering on the ∆HBM to identify three clusters of features
among the 16 movement composite and 20 kinematic features and used the
centroid of these clusters as the weights of the input data to our computational
assessment ensemble.

Results: We evaluated the efficacy of our rating interface in terms of inter-rater
reliability (IRR) across tasks, segments, and movement features. The third version
of the interface produced an average IRR of 67%, while the time per session (TPS)
was the lowest of the three studies. By analyzing the ratings, we were able to
identify a small number of movement features that have the highest probability of
predicting functional improvement. We evaluated the performance of our
automated assessment model using 60% impaired and 40% unimpaired movement
data and achieved a frame-wise segmentation accuracy of 87.85±0.58 and a
block-segmentation accuracy of 98.46±1.6. We also demonstrated the
performance of our proposed HBM in correlation to clinician’s ratings with a
correlation over 90%. The HBM also generates a correlation graph, ∆HBM that
relates 16 composite movement features to the 20 kinematic features. We can thus
integrate the HBM into the computational assessment ensemble to perform
automated and integrated movement quality and functionality assessment that is
driven by computationally extracted kinematics.

Conclusions: Combining standardized clinician ratings of videos with knowledge
based and data driven computational analysis of rehabilitation movement allows
the expression of an HBM that increases the observability of the relation of
movement quality to functionality and enables the training of computational
algorithms for automated assessment of rehabilitation movement. While our work
primarily focuses on the upper extremity of stroke survivors, the models can be
adopted to many other neurorehabilitation contexts.

Keywords: Rehabilitation; Computational Assessment; Movement quality;
Functionality; HBM; Clinician; Ratings
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Introduction

Establishing the detailed relationship between changes in function and the underlying

changes in movement quality remains a significant challenge in neurorehabilitation

[1, 2]. During assessment and training rehabilitation, clinicians are limited in the

number of impaired movement elements to which they can attend. Consequently

their ability to connect their expert observations to standardized norms or values

[3] is limited. Depending on their training and experience, clinicians focus on

different movement elements when assessing patients during either direct interactions

or when observing videos of patient performance [4, 5]. This level of subjective

assessment contributes to the function/quality challenge in the absence of a normative

quantitative framework [6, 7].

The evidence-based quantification of the relation between changes in movement and

function can assist clinicians in achieving more effective structuring or adaptations

of therapy [1]. This assistance could result in the generation of large scale data sets

to automate assessment, thus leaving more time for clinicians to focus on treatment

and allowing for remotely supervised therapy at the home [8]. This quantification

can be partially achieved through the detailed tracking of kinematics and their

correlation to validated, expert driven, clinical measures [2, 9]. Although high-end

sensing technologies can provide the necessary detailed tracking, these technologies

are cumbersome even in the clinic, and certainly not yet feasible for the home.

Tracking of movement through marker-based capture or intricate exoskeletons is

costly, complex, and obtrusive [10, 11, 12].

The home environments of many stroke survivors are also often constrained and

cannot easily accommodate the type of large-form technology typically used in

hospital or clinic rehabilitation systems [13]. Even small systems, if intrusive or

perceived negatively, tend to be rejected by the stroke survivor and/or their care

partner [13]. Therefore, kinematic data need to be captured through low-cost and

unobtrusive means if high-fidelity data are to be acquired. Currently, the effort

needed to capture patient data, combined with variations in the quality of patient

movement, presents profound limitations in the utility of such data.

Our team proposes a Hierarchical Bayesian Model (HBM) for computing the

relationship of movement quality to functionality in rehabilitation. The proposed

HBM leverages expert clinician knowledge to constrain the computational challenge

of working with limited, low fidelity, and high variability data. The model also

leverages computation to assist the clinician in integrated observation of function and

movement quality. In the following sections we discuss the development of the model

in detail. We show how the model can help establish evidence-based quantifiable

relations between movement changes and function and how these relationships

can then be used for the automated assessment of movement. Summaries of the

assessment are subsequently provided to the clinician to assist in structuring and

adapting therapy in the clinic, and remotely, in the home. We focus our presentation

on the application of the model to the rehabilitation of the upper extremity of stroke

survivors. However, the model can be adapted to many other neurorehabilitation

contexts.
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Making the clinician assessment process more observable
Technological systems aiming to assist the clinician in delivering rehabilitation may

not be adopted by clinicians if they are incompatible with the clinicians’ approaches

or introduce steep learning curves [14]. Busy clinicians have limited training time to

learn, troubleshoot, and maintain complex new systems. Over the past few years,

our team has used participatory design processes [15] and custom-made interactive

video rating tools [16] to help expert clinicians reflect on and reveal their movement

assessment processes and the related internalized (tacit) rating schema so that we

can base our cyber-human assessment models on observable expert schema. Our

work reveals that clinicians use a hierarchical probabilistic process for dealing with

the uncertainty and complexity of therapy assessment.

Figure 1: (Available per request) Different layers of the Hierarchical Bayesian

Model (HBM). The functionality decreases as we go down the hierarchy and

movement quality decreases as we go up. The area where both are greyed out is

the most important part of the HBM.

Figure 1 presents a representational approximation of the clinician observation and

decision processes. At the highest layer of the hierarchy, we place the movement im-

pairment level of the patient. The level of impairment is intrinsically on a continuum;

for convenience it is organized into three base categories – mild, moderate, severe –

and category combinations – mild/moderate and moderate/severe – allowing for a

total of five categories. This categorization is based on validated clinical tests that

use measurements of the components of the physical apparatus (e.g. Fugl-Meyer

test) [17], observations of timed-tasks in the clinic (e.g. Action Research Arm Test

(ARAT) [18]), and Activities of Daily Living (ADL) questionnaires (e.g. Motor

Activity Log [19]). The therapy is effective when the impairment assessments based

on ADL instruments, and the impairment assessment in the clinic, are both reduced

in a highly correlated manner (the more effective the therapy, the greater the impact

it has on daily living).

However, detailed and accurate observations (and potential quantification) of ADLs

are challenging. The clinician needs to rely on patient questionnaires, which in turn

rely on patient memory and perception, and can thus be subjective and imprecise

[1, 20]. To help increase the impact of therapy on daily functionality, clinicians utilize

sets of generalizable therapy tasks that map well to ADLs. If the performance of

these tasks improves during therapy training, then performance of ADLs should

also improve, indicating that the impairment level is decreasing. Understanding how

clinicians utilize these tasks to address functionality and movement quality is critical

in making their assessment processes more observable. We collaborated with expert

clinicians to define 15 generalizable training tasks for upper extremity rehabilitation,

ranging from simple reach-to-touch tasks to more complex transportation and

bimanual manipulation tasks. We also developed a rating rubric for these tasks.

The rubric follows well established paradigms (e.g., WMFT, ARAT etc.) with task

ratings ranging from 0 to 3, where 0 denotes that the task was not attempted and 3

indicates a close to unimpaired performance. We place the generalizable training
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tasks at the second layer of our hierarchy. Performance on a task is characterized

by a label (T2) (i.e. Task 2 of the 15 training tasks) and the clinician Rating (T2,r)

for that performance (i.e. a rating of 0 to 3). We use a dotted line representation of

the relation of the observed tasks to ADLs to denote that the relation is not fully

observable.

We place detailed raw kinematics of movement during therapy (which are captured

with low cost/low intrusion technology) at the bottom of our hierarchy and represent

it as a two-dimensional matrix. The y-axis represents the different patients and the

x-axis the multitude of movement features that need to be tracked. Following related

work by [21], we denote the representation of this lowest level as data (D). Looking at

the top and bottom of our hierarchy, any one indication of impairment (i.e. some level

of moderate impairment) is probably due to a high number of different combinations

of low level features that cannot be fully observed in real time by a clinician [6].

At best, a clinician can focus on a few movement elements and describe them as

impaired, mildly impaired or not impaired, without quantifying this categorization

in detail. In our matrix visualization, we show this coarse categorization using a

grayscale schematic where black is impaired, grey is mildly impaired, and white is

not impaired.

To manage the complexity of real time movement observation and to make gener-

alizable observations across different therapy tasks, clinicians tend to segment tasks

into a small set of generalizable segments that can be combined through different

paths to generate the therapy tasks. Even though most clinicians use intuitive

segmentation of movement for observation and assessment, the segment vocabulary

is not standardized. We worked with expert clinicians to create a standardized

segment vocabulary that can produce the 15 training tasks used in our model as well

as many other upper extremity therapy tasks that map to ADLs. The segments are:

Initiation + Progression + Termination (IPT), Manipulate & Transport (M&TR),

Complex Manipulation and Transport (CMTR), and Release and Return (R&R). As

an example, a drinking related task can be described by the following codification:

subject reaches out and grasps a cone object (IPT) and brings it to their mouth

(M&TR), then returns the object to the original position (M&TR), and releases the

object and returns the hand to the rest position (R&R).

For computational purposes, the devised segment vocabulary and the combination

paths that allow the compilation of the tasks can be represented as a simple state

machine (see Figure 2). To make assessment of segments in real-time, the clinician

significantly limits the features observed per type of segment. This limitation is

achieved by using their own experience to develop a probabilistic filtering of irrelevant

low-level features for a segment (i.e. digit positioning is likely not that relevant to

movement initiation), and a probabilistic composite observation of relevant individual

features (i.e. a strategy for quick impressions of shoulder and torso compensation

during movement initiation). This process is not well standardized as the filtering

and compositing activities are based on individual experience and training. We

again worked with expert clinicians to define a consensus-limited set of composite

movement features that are important when assessing the performance of each

segment in our model. In [16] (Table 3), data from our previous study shows the key

composite features per type of segment. For example, the resulting rubric identifies
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Figure 2: State -achine used to design different activities in the SARAH system.

four key features to assess during the Complex Manipulation and Transport stage: i)

appropriate initial finger positioning, ii) appropriate finger motion after positioning,

iii) appropriate limb motion following finger positioning, and iv) limb trajectory with

appropriate accuracy. We also worked with the clinicians to establish operational

definitions of the terms used to evaluate the composite movement features. For

example, the word “appropriate” used in the above instruction is defined as “the

range, direction, and timing of the movement component for the task compared to

that expected for the less impaired upper extremity.”

We can now see how the full hierarchy can be used to begin to reveal the integrative

relations between functionality and movement quality. The movement impairment

level of the patient depends on the assessment of performance of therapy tasks that

map to Activities of Daily Living. The performance of the therapy tasks depends

on the performance of different series of standardized segments. The performance

of each segment depends on the quality of a small number of composite movement

features. The quality of the composite movement features depend on the quality of

individual kinematic features. Each layer of the hierarchy conditions the layer below

and through the full series, overall functionality during daily life can be connected

to the quality of individual kinematic features.

Although our work with clinicians reveals a hierarchical approach to assessing

the performance of therapy tasks and establishes the layers of such a hierarchy, the

exact relationships of the layers can not yet be established. For example, what is the

exact level of torso compensation during initiation of a reach, grasp, and transport

task that could impair performance of the initiation segment (and consequently

of the overall task) and how does the level of compensation relate to the amount

of torso rotation or leaning? Without these relations, a standardized approach to

computationally assisted analysis of the connections of function and movement can

not be realized.

We also note that clinicians can have a much more informed discussion on moment

quality and functionality when reacting to video recordings of movements of patients.

Further advancement of modeling requires the collection of video recordings of

patient movement and the structured rating of those recordings by clinicians. These

ratings could inform the further modeling and standardization of the clinician

assessment process. The ratings and the resulting models could then be used to

train computational algorithms for the automated assessment of movement quality.
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We could also formulate the proposed hierarchical Bayesian model to quantify the

relation between movement quality and function using the clinician’s ratings and

raw kinematics.

Materials and Methods
Our methodology integrates three processes and three related experiments. In

experiment 1, we describe the development and testing of a rating process and

tool that helps clinicians standardize a movement assessment approach relating

functionality to movement quality. In experiment 2, we describe our machine learning

ensemble methodology for the automated segmentation and assessment of patient

movement. The automated assessment methodology leverages clinician ratings and

the expert knowledge integrated in the ratings to overcome the challenge of working

with variable, noisy, and limited data. In experiment 3, we describe a method that

combines the clinician ratings with computational analysis to express an HBM that

quantifies (in a statistical manner) the relationship of function to movement quality.

Impaired activity space variant data collection

We collected videos of nine stroke survivors performing 12 of the 15 upper extremity

generalizable training tasks that we established through our pilot research. Seven

men and two women participated in our study. Two participants were categorized as

moderate impairment (Fugl-Meyer score between 30 - 55), while seven participants

presented with mild to moderate impairment (Fugl-Meyer score of greater than 55).

The nine participants also had different specific movement challenges thus providing

an even more varied data set. Each patient was asked to attempt each of the 12 tasks

four times. The more severely impaired patients could not complete four iterations.

The majority of patients could not perform the more challenging tasks (tasks 11 and

12). The patients were not asked to attempt the most challenging tasks (tasks 13-15).

Three of the nine patients were asked to return for two repeat sessions to allow the

clinician to explore differences within data sets of the same patients. In total, our

15 data capture sessions produced 600 usable video recordings of single tasks. The

movement of the patients was recorded using one low-cost video camera. No detailed

instructions were given to the clinicians for setting up the camera. Clinicians were

told to set up the camera on the impaired limb side, approximately three feet away.

These instructions facilitated an easy setup of the camera without interfering with

the therapy sessions. However, this resulted in variant points of view for the camera

and a noisy dataset. Such datasets creates significant challenges in training machine

learning models and thus require additional pre-processing (as discussed in [22]).

Unimpaired activity space invariant data collection

To establish a ground truth, we also collected videos of seven unimpaired patients

performing the 15 upper extremity generalizable training tasks. Three men and

four women participated. All the participants were right limb dominant. Each was

asked to attempt each of the 15 tasks two times each. In total, our 15 data capture

sessions produced 210 usable video recordings of single tasks. As we were working

with unimpaired individuals, we could have a lengthier preparation and system

setup time and thus secure better data. To standardize the capture setup and ensure
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high-quality video capture with activity space invariance, we introduced a real-time

activity space calibration step. The details of this setup will be elaborated in a

future publication. We also added an additional camera to the capture system. We

used both a right sagittal and a frontal camera for the unimpaired data capture as

changing the viewing angle to better understand hand-object interaction over time

is important. The setup used to capture the unimpaired patient data is shown in

[22] (Figure 1). As we are in the initial development stage, all the analysis in this

paper were performed using the right sagittal captures.

Experiment 1: Rating Interface
Design of the Experiments

The detailed development of the rating process and interactive rating interfaces

are described in previous publications [16, 15, 22]. Here, we summarize only the

development components that proved critical to the expression of the functionality-

movement quality HBM. We developed a custom rating interface, called the Video

Application Tool (VAT), using an HTML, CSS, and JavaScript front-end. We stored

the patient information on our secure MongoDB server, and encrypted the videos of

patients before saving them to individual computers for each clinician. The VAT

presents the clinician with the instruction video of an unimpaired person completing

each task (which was shown to the patient before attempting each task), and the

sagittal view of the stroke survivor/patient then attempting that particular training

task.

The VAT allows clinicians to assess the video recordings of tasks through integrative

ratings of the three layers of our assessment hierarchy that are readily observable by

experts: task performance, segment performance, and composite feature performance

per segment. To facilitate effective ratings by clinicians, the composite feature ratings

are binary (impaired, not impaired) and the rating of segments and tasks is realized

on a 4-point scale similar to scales used for other validated assessment instruments

(i.e ARAT, WMFT):

• 0 segment/task not attempted

• 1 incomplete or inaccurate performance of segment/task and/or performance

through significant compensation

• 2 complete performance but with noticeable movement impairment or very

slow performance

• 3 segment/task performed with no significant movement impairment and

within reasonable amount of time.

Through a pilot session with expert clinicians, we established that a skilled clinician

could complete one full task rating (overall movement and all movement segments)

in five minutes or less. The participating clinicians also concluded that a rater would

most likely reliably rate no more than 12 tasks in one sitting/session (owing to

possible fatigue or focus issues over time). Thus, the interface allows the clinician

to move through 12 full task ratings at a time per session, although they have the

option of beginning a new 12 video session upon completion if they wish.

We designed three rating experiments to help the clinicians explore and define

the relations of the three layers of our hierarchy and concurrently reveal their tacit

understanding of the relationship of functionality (as captured through the rating of
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the performance of the overall task) with movement quality (as captured through

the rating of segments and their related composite movement features). We assessed

the three experiments through an interactive participatory design approach. We

combined qualitative (semi-structured interviews and longitudinal diary studies)

with quantitative statistical analysis to track the relations and potential causation

between these three layers. The quantitative analysis focused on: inter-rater reliability

(IRR) – the task, segment, and composite feature agreement among clinicians. We

calculated IRR using Cohen’s kappa with two raters. Time per session (TPS) - the

average time (in minutes) needed to complete the rating of all the videos per session.

Score distribution: the distribution of scores among all ratings in each experiment.

The three therapist raters had 40, 15, and 12 years of rehabilitation experience

each respectively. One rater had assisted with the design and development of the

rating rubric, while the other two received in-person and online instructional training

to familiarize them with the rubric, the rating schema, and the rating tool. Two

therapists participated in the first two experiments, while all three participated in

experiment 1c. The third therapist joined the rating team as they will take the lead

in co-developing the rating rubric schema for a different future and related upper

extremity measurement instrument for the clinic.

Experiment 1a: Function to Movement Quality (F2MQ) Experiment 1a

presents our first attempt at understanding how clinicians approach the relation

of function to movement quality in rehabilitation. We customized the interface

for this experiment though a co-design process with five expert clinicians. All

clinicians proposed initially that a function to movement quality rating sequence

would best resemble their assessment framework. The score of a task denotes the

overall assessment of functionality, while the movement features denoted as impaired

by the clinician for each segment provide a more specific interpretive rationale

detailing how and why the clinician arrived at their overall score. Thus, the VAT first

presents the rater with videos depicting the entirety of the patient performing the

task. Next, the rater must assign a discrete score for each movement segment (e.g.,

Initiation, Progression, and Termination) and selected a checkbox for any of the

key movement features of each segment that they assess as impaired. The clinician

moves in a linear progression scoring each of the segments. They cannot move from

a segment until the rating for that segment is complete. Once they finish rating each

of the segments, they are once again presented with the videos depicting the entirety

of the patient performing the task, which they must rate again. This feature was

implemented at the request of the rubric and rating assessment development team

as they were interested in discovering if the process of reflecting on and assessing the

movement in discrete segments and individual movement features might compel the

clinician to alter their overall score from their initial first assessment. Two clinicians

rated 72 tasks in experiment 1a.

The VAT “F2MQ” model interface is displayed in Fig 3 and depicts the interface

that the clinician is presented with when viewing the overall training task video.

They can choose to view the instructional video or the patient video in the large

video panel. The top of the screen presents the linear series of tabs that the clinician

selects to move from the overall/total activity video through the segments comprising
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Figure 3: (Available per request)VAT (F2MQmodel) function to movement quality

interface. (a) Overall video assigned rating of 1, with interpretive feature “Task

complete, but 2 or more movement elements showed significant impairment; (b)

Initiation segment video assigned rating of 1 with interpretive features “shoulder

elevation” and “shoulder flexion or abduction” selected, while Progression is

rated 2 with interpretive feature “Trunk sway, flexion and rotation” selected.

Termination segment is rated 3 with no features selected.

the complete activity before returning to the overall/total activity video again. When

rating tasks, clinicians select one of the rating buttons to provide an overall score.

When rating segments, the clinician selects one of the rating buttons and then

denotes composite movement features as impaired (using the checkbox next to each

feature) to provide interpretive (movement quality) context for the segment rating.

In addition, the clinicians can use the “comment” button beneath the main video

panel to further annotate their assessment with commentary about the specific video

they are viewing. Similarly, the clinicians can use the “flag” button beside it to

send a message to the tool development team regarding a technical problem with

the interface or an issue with the displayed video. Finally, the progress bar at the

bottom of the screen displays where the rating clinician is within a typical rating

“session.”

Figure 4: (Available per request)VAT (MQ2F model) movement quality to function

interface. (a) Overall video assigned rating of 1, with interpretive feature “Task

complete, but 2 or more movement elements showed significant impairment; (b)

Initiation segment video assigned rating of 1 with interpretive features “shoulder

elevation” and “shoulder flexion or abduction” selected, while Progression is

rated 2 with interpretive feature “Trunk sway,flexion and rotation” selected.

Termination segment is rated 3 with no features selected.

Experiment 1b Movement Quality to Function (MQ2F) The second itera-

tion of the rating process and tool begins to challenge the clinician’s methods of

assessing rehabilitation movement while exploring further the conditioning effect of

movement quality observations on functionality assessment (Figure 4). In experiment

1b, the overall task and segment scores are computationally generated based on the

composite movement feature impairment observations of the clinician. We customized

the interface for this experiment though a co-design process with three clinicians.

We moved the main video interface panel to the left of the screen with the video

selection buttons placed above. This change provided additional screen real-estate to

the right of the interface where we could more carefully and prominently display the

composite movement features for clinicians to consider. When assessing a segment,

a clinician is first asked to check the composite movement features showing a level

of impairment that can influence function/task execution. If only one feature is
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checked as impaired, then a segment score of 2 is automatically generated. If two or

more features are checked as impaired, then a segment score of 1 is automatically

generated. The clinician can influence the segment score by denoting fewer or more

composite movement features as impaired. With input from the three clinicians

participating in the co-design process, we instructed each rating therapist as to how

to understand the relationship between the meaning of each movement feature and

its connection to the score generated by the VAT (MQ2F).

Figure 4(b) displays the interface presented to clinicians when asked to rate the

Release and Return movement task segment. After rating all segments of a task,

the clinician moves on to rate the overall patient performance of the task. Instead

of giving a score from 0-3 for the task, the clinicians selects one of six possible

interpretations of overall task performance:

• task not attempted

• task not performed fully

• task complete but two or more movement elements showed significant impair-

ment

• task complete but one movement element showed significant impairment

• task complete but length of execution is long

• task completed without impairment

Depending on which phrase is chosen, the computer automatically generates the

score shown in parenthesis next to the phrase. These six phrases were co-designed with

expert clinicians so as to facilitate connecting their functionality assessment, denoted

through the assessment of task performance, to movement quality issues identified at

the segment level. In the situation depicted in Figure 4(a), the clinician has selected

“Task complete, but one movement element showed significant impairment,” which

generates a score of 2. The feature “Task complete, but the length of execution is

long” is also displayed in bold text in this situation as it is the one other option

that could also generate a score of 2. If the clinician agrees with the score generated

based on their interpretive assessment, they can select the confirm button and

move to the next segment. This version of the interface introduces the possibility

of a performance score of 0. We had overlooked this possibility in our previous

version of the rubric/assessment and rating/annotation tool combined. During the

presentation session with the clinical team at the end of Experiment 1a, it became

clear that performance events were not well described using our 1 - 3 rating schema,

and non-performance needed to be considered. Two clinicians rated 185 tasks for

Experiment 1b.

Experiment 1c Structured Decision Process (SDP) In our final iteration, the

VAT guides the rating clinician through a structured decision tree process. The binary

decision points and their sequence were again co-designed with expert clinicians and

informed by validated clinical measures for the standardized assessment of upper

extremity therapy of stroke survivors [23]. The process aims to reveal underlying

assumptions made by clinicians when assessing movement and assist the rating

clinicians in explicitly connecting assessment of functionality and movement quality.

Additionally, in this iteration, we wanted to analyze if the process of using the VAT

helped each clinician reflect on their practice beyond the use of the VAT.
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Figure 5: (Available per request)VAT structured decision process interface. (a)

Overall video generated a score of 2 after clinician answer yes to task performed

fully, and no to both whether it was performed within a reasonable time and

if any of the movement qualities made the task execution challenging. (b) IPT

segment generates a score of 3 after clinician selects “Task completed with no

impairment”.

Clinicians were asked to answer binary yes/no questions at the level of the task

and segment: successful completion of task/segment; within reasonable amount of

time, without movement impairment; check impaired composite features. A “Yes”

answer to the first two questions automatically assigned a score of 3 to the task

or segment being rated. A “Yes” to the first question, with a “No” to the second

provided a 2. A “Yes” to the first and second question, with a “No” to the third

provided a 2 and opened up the annotation interface for composite features where

at least one composite feature needed to be checked as impaired. A “No” to the 1st

question provided a score of 1 and yielded a “Yes/No” question regarding completion

of the initiation segment. If a “No” was provided to the initiation segment, the score

became a 0. For example, in Figure 5 the clinician is first asked if the task has been

performed fully. A positive answer generates the next question, which inquires if

the task was performed in a reasonable time. In this instance, the clinician answers

“No”, which prompts a question as to whether any movement quality elements might

have impacted the task execution. Again the clinician answers “No” to this question,

which generates an overall score of 2 for the task. The clinician then moves on to

rating the segment movement features. Figure 3b depicts the outcome from the

questions about the first segment of the task (the IPT segment). Again, the clinician

answered negatively to question one and two for the segment, resulting in a generated

score of 0. With this iteration, we allowed the interface to give the clinicians more

freedom in assessing the rating compared to the version in Experiment 1a, but still

generated the score to keep a level of consistency for the clinician. Three clinicians

rated 150 tasks for Experiment 1c.

Results and Discussion

Figure 6 summarizes the quantitative assessment of the three experiments. For

Experiment 1a, we gave the clinicians the option to annotate the composite movement

features that influenced their segment and task rating. However, the clinicians did

not regularly or consistently provide these annotations. Thus IRR for composite

movement features for experiment 1a is NA. There are only 3 ratings at the overall

task level – the level that is most associated with the assessment of functionality.

The few ratings of 3 across all experiments are associated, for more than 90% of the

cases, with mildly impaired patients performing simpler tasks (tasks 1-6). Most task

scores are 2s and 1s. In experiment 1b, most scores (70%) are 1s.

Experiment 1a produced an inter-rater reliability (IRR) of 61% on the task level,

and 45% on the segment. For Experiment 1b, there was an increase in the IRR

for task level to 83%. However on both the segment and composite level, the IRR
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remained relatively low at 43% for the segment level, and 46% for the composite. In

Experiment 1c, the IRR at the level of the task dropped to 64%. However, the IRR

at the level of the segment and composite levels remained high at 68%. Across all

experiments, most (> 96%) of the rating disagreement between clinicians are ± 1.

These disagreements are fairly evenly split between ratings of 1 and 2 (one clinician

gives a 1 and the other clinician(s) give a 2) and ratings of 2 and 3. As shown in

Figure 6, the clinicians learned to use the interface faster when the rating process

was guided/structured by the interface (Experiments 1b and 1c).

In Experiment 1a, clinicians were not asked to explicitly denote the movement

quality elements that influenced their assessment of functionality, which meant

that there was little agreement and standardization of assessment. The task and

segment scores in Experiment 1b were directly influenced by the movement quality

observations of the clinicians (if more than one movement quality element is checked

as impaired then the segment score automatically becomes 1). This resulted in a

radical compression of functionality results (70% of tasks are rated 1). Much of the

nuance of a 4 point rating scale was lost in this case and the exploration of the relation

of movement quality to functionality becomes difficult. The structured decision tree

approach of Experiment 1 produced the most consistency across task, segment and

composite movement feature assessment and was thus the most promising approach

for exploring the relation of movement quality to functionality in a standardized

manner.

Clinicians can readily embrace and utilize a top-down hierarchical approach to

rating that consists of three layers: task layer (which is strongly associated with

assessment of function), the segment layer (partly associated with function and

party with movement quality) and the composite feature layers (associate with

movement quality). This may denote that clinicians already use tacit and personalized

hierarchical approaches to rating. But even when using a highly structured approach,

as in Experiment 1c, clinician approaches to the impact of movement quality on

functionality have similarities and differences. Figure 7 visualizes some of these

differences for Experiment 1c. We show the percentage of times that a clinician

checked a movement element as impaired enough to influence function when this

movement feature was available for clinicians to check as impaired. For each of the

times a clinician checked an available movement quality feature as impaired, we also

searched to see if the other rating clinician checked the same feature for that same

task. Clinicians consistently agreed on the impact of movement quality impairment

on functionality for only five of the twenty available movement quality features and

partially agreed on seven more.

To further explore the clinician differences, in Figure 8, we visualize the level of

disagreement between two clinicians as a function of the rating score. The x-axis

spans the rating scores from severely impaired (score of 0) to unimpaired (score of

3) at the task and segment layers. As clinicians only check the composite features

that relate to impaired movement for a particular segment, we use the segment

ratings on the x-axis for the composite feature plot in Figure 8 (C). The level of

disagreement is presented on the y-axis ranging from 0 units (agreement) to 2 units

of disagreement on the task and segment level (Figure 8 (A) and (B)). For the

composite layer, the disagreement is the average difference between the number of

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 27, 2022. ; https://doi.org/10.1101/2022.05.25.22275480doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.25.22275480


Ahmed et al. Page 14 of 34

Figure 6: Inter-rater reliability and score distribution across all three experiments

using the three version of the rating interface.

Figure 7: Percentage of agreement vs. percentage of observation per feature

using the two clinician ratings from Experiment 1c. In this case we have set the

thresholding based on the x-axis, meaning when both clinician check the same

feature (they agreed these features are influencing functionality).

composite features checked as impaired. The pixel intensities as shown by the color

bar indicates instances of different units of disagreement. Both clinicians’ ratings are

used as ground truth and average instances of the level of disagreement are shown

in the image. Two points emerge from the visualization: (i) most of the task and

segment ratings are a score of 2, and (ii), most of the disagreement is ±1 unit and

is at its highest for rating scores of 2.

In all experiments, clinicians are rating impaired movement since all patients have

mild to moderate impairment. The clinicians can clearly separate functional move-

ment with even slight impairment from non-impaired functional movement as shown
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by the high number of 1s and 2s and low number of 3s in our experiments. However,

clinicians differ in their assessment of impact of movement quality on functionality.

They partly differ on the movement impairments they focus on during assessment,

and partly on whether the observed impairments would have a mild, moderate,

or significant impact on functionality (i.e. whether an observed movement quality

issue should generate a 1 or a 2 or 3 rating at the level of task performance). This

variation of approaches among clinicians generates different profiles of uncertainty

at each of the layers of the hierarchy. As we go down the hierarchy, the granularity

increases and therefore we expect proportional division in the probability space.

As a result, the span of the uncertainty decreases and the magnitude increases. As

evident from Figure 8, the center of the oscillation in the task level is between scores

1 and 2 and the magnitude range is ±1. If we go down one layer, the span of the

center is narrowed around 2 and the magnitude range is ≤ 2. In the composite layer

the oscillation is more narrowed around 2 but the range of oscillation is now ±3.

We propose that relations of movement quality to functionality are probabilistic

with uncertainty distributions peaking around the middle of the impaired to unim-

paired continuum. By collecting more data through the interface used in Experiment

1c we can continue to inform and reveal these statistical relations. It is also important

to introduce computational means that decrease the magnitude of the uncertainty as

we go down the hierarchy. We propose to use an HBM to connect, in a conditional

manner, the three layers of the clinicians’ ratings to a lower layer of kinematics.

We propose to use the results to automate a hierarchical assessment of movement

that produces interpretable results; where the functionality score is correlated with

specific movement quality issues. We present our two step approach to this challenge

in the next two experiments.

Experiment 2: Computational Analysis
Methods

The realization of the proposed interpretable automated movement assessment

first of all requires a computational engine that can reliably perform the operations

that clinicians readily do: automated differentiation of completed task/segments

from non-completed; and automated differentiation of impaired movement from

unimpaired movement. Of course this also means that the engine needs to perform

automated segmentation of the captured videos. In a previous publication [22], we

presented our work in developing a machine learning ensemble that could perform

automatic segmentation and assess task and segment completion when analyzing

the impaired patient movement used for the clinician rating experiments. In this

section, we discuss how we have now extended this engine to perform these tasks

across impaired and unimpaired movement so that we can begin the process of

automated differentiation of impaired from unimpaired movement. For impaired

movement samples, we use the patient data used for the clinician ratings, and for

unimpaired samples, the unimpaired data captured in our lab (see methods section).

Experiments with impaired patient data Our computational analysis solutions are

developed with the goal of leveraging the hierarchical movement analysis structure

and ratings provided by the clinicians to achieve a robust and interpretable automated
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Figure 8: Rating scores vs. level of disagreement between two clinicians on the

task, segment and composite feature level; on the x-axis ratings (0, 1, 2, and 3)

are shown and on the y-axis the level of rating disagreement (0, 1, and 2 units)

are shown; the color bars show the instances of any particular case.

Figure 9: Updated block diagram from [22]. We have included the patient and

the therapist blocks to complete the cyber-human loop.

assessment when working with limited, noisy, and variable rehabilitation movement

data. In Fig. 9, we summarize the different ML engines used in our approach and

how we have leveraged them to create an ensemble model for segmentation and task

completion prediction. We also show the interconnection between the computational

engine and the human (clinician and patient).
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Using a custom capture interface [16], we capture high quality videos and extract

RGB images. As discussed in [22], the captured data was activity space variant. To

reduce the variance, we also adapted a normalisation method, which is also detailed in

[22]. We extract composite features from raw RGB images to train a MSTCN++[24]

temporal segmentation model that uses multistage temporal convolutional neural

networks. The next constituent member of our ensemble is based on the recently

proposed transformer architecture which has found great success in natural language

processing and time-series processing applications. We train our transformer on

the keypoints extracted from the videos through OpenPose [25] and the object

locations obtained using a Faster R-CNN object detection model. The last member

of our ML ensemble is a Hidden Markov Model(HMM). We train our HMM using a

collection of six kinematic features compiled from upper torso and upper extremity

keypoints obtained via OpenPose and object locations extracted using Faster-RCNN.

We implement a rule based binary decision tree (RBBDT) for segment blocks

identification from per frame labels generated by the ensemble model. We leverage

a unique set of features to interpret and find the transition between two segment

blocks.

In experiments detailed in [22], using this ensemble model with patient data we

achieved a mean performance of 85.1% with a standard deviation of 2.14% across 5

experiments using pre-defined random train-test splits of data. Using a combination

of the frame level ensemble model and the segment block and task assessment

algorithms using RBBDT that emerged from our work with clinicians, we are able

to correctly assess segment completion about 99% of the times and task execution

over 92% of the time. This means we can correctly identify which segments were

completed, if those segments were completed in the right order for the satisfactory

execution of a task, and whether that execution was completed within a reasonable

(functional) amount of time.

Experiments with unimpaired subject data. The patient data used for these earlier

experiments has very few unimpaired movement examples (very few examples rated

a 3). For our machine learning ensemble to be generalizable and scalable, it needs

to predict the edges with precision. We can add edges to the existing probability

space by introducing training tasks performed by unimpaired subjects. We removed

all incorrectly performed tasks from the the data we collected with unimpaired

subjects so as to be able to assign a rating score of 3 to all tasks performed by

unimpaired subjects that we included in these experiments. The ability of our

ensemble to segment training tasks and assess task and segment completion across

impaired and unimpaired data is critical for training the ensemble to automatically

differentiate impaired from unimpaired movement and, in the future, automatically

extract correlations of movement impairment to functionality.

We performed three experiments using mixes of impaired patient data and unim-

paired subject data and compared the results to the experiments from [22]. The

data mixes of the three new experiments are shown in 1.

Results and discussion

In Table 2, we show the comparative analysis for frame wise label prediction for

Experiments 2a, 2b, and 2c from Table 1. As evident from the results, Experiment c
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Table 1: Experiments with Unimpaired invariant data

Train Test

Experiment 2a trained model using impaired unimpaired data
Experiment 2b 75% impaired 25% unimpaired test set using impaired
Experiment 2c 75% impaired 25% unimpaired 60% impaired 40% unimpaired

has the highest accuracy for per frame label prediction. This supports our argument

that training the models with both impaired and unimpaired data makes the model

more generalised and also increases the performance of the model compared to

[22]. In Experiment 2a, the models were trained using noisy patient data captured

in a variant activity space. However, we evaluated using unimpaired subject data

captured in an invariant space. As shown in Table 3 the models achieved 88.5%

accuracy in segment detection of unimpaired subject data even when the model

is trained using only noisy patient data. It is evident that the model is learning

the relationship between movement patterns and the function(s) embedded in each

training task. In Experiments 2b and 2c, the models were trained once using 75%

Table 2: Frame Wise Segmentation Results for Experiments 2a, 2b and 2c in Table 1

Experiment 2a Experiment 2b Experiment 2c
Mean Mean STD Mean STD

ACC 80.52 86.01 1.28 87.85 0.58

patient data and 25% unimpaired subject data. However, for Experiment 2b, the

test set was the whole patient dataset and for Experiment 2c the test set included

both patient (60%) and unimpaired subject (40%) data. The target of these two

experiments was to improve the model performance by increasing the size of the

dataset and by introducing a different domain data (unimpaired subject data).

In both of these cases the overall performance improved significantly as shown in

Table 2 and 3 .

Table 3: Segmentation Block Results for Experiments 2a, 2b and 2c in Table 1
Experiment 2a Experiment 2b Experiment 2c

mean mean std mean std

Segment accuracy 88.52 98.71 1.1 98.46 1.6
Precision 84.13 98.65 1.1 98.22 1.7
Recall 83.38 97.92 1.7 97.63 2.01

Our expanded ensemble model is able to reproduce the unimpaired movement

scores (3s) on the tasks and segment level with over 90% accuracy. In Figure

10, we show the comparison between the computer generated task scores and the

clinicians’ ratings for 440 videos that combine videos of patient performed tasks

from Experiment 1b and 1c and videos of task performance by unimpaired subjects.

The ensemble can correctly label with a score of “3”, 130 of 140 videos that had

no impairment or had minimal impairment and had thus received a rating of 3 by

the clinicians. In the rating rubric, a score of 0 means the patient didn’t attempt

the task or complete the first segment(IPT). A score of 0 doesn’t reveal the relation

between movement quality and functionality and therefore, we use the RBBDT

component of the ensemble to reliably and automatically reproduce all the 0s.
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Figure 10: Level of disagreement vs rating scores between the computer generated

task scores and the clinician’s ratings. On the y-axis the level of disagreement

is shown. The 2-D pixels indicates the instances of any particular case and the

value of the pixels are indicated by the color bar on the right.

However, the computational ensemble cannot reliably produce automatically the 1

and 2 ratings provided by clinicians. Separating a rating of 2 from a 3 or a 1 requires

a detailed understanding of movement quality, and their relation to function. As

discussed in Experiment 1c, there is significant uncertainty even among clinicians

when using ratings 1 and 2. Clinicians reduce this uncertainty by using tacit and

explicit knowledge to calculate the probable effect of an observed movement quality

issue on task dependent functionality. In the next section, we show how an HBM

can capture and reproduce the probabilistic process used by the clinicians and

connect this process to computationally extracted kinematics. The HBM can then

be integrated into the computational ensemble, thus, allowing the ensemble to

automatically and reliably produce all four possible ratings (0-3), at the task and

segment level, and denote potential movement quality issues that may be significantly

impeding functionality and require focused therapy.

Experiment 3: Formation of the HBM
Methods

We aim to develop a model that can integrate raw features and kinematics extracted

computationally in the hierarchical and statistical assessment structures of reha-

bilitation movement used by clinicians. Our goals are to help quantify relations of

movement quality to functionality and advance automated interpretable analysis

of rehabilitation movement. Hierarchical models are used in many other areas of
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structured human activity such as language [26], music [27], logic and computation

[28], sports [29] and motor learning in general [30]. This has inspired the development

of generalizable models of human intelligence [31], [32] and human learning [33].

Tenebaum et al [21] suggest that human performance in complex situations with

noisy data can be modeled as a hierarchical Bayesian model (HBM) [21]. Building

on this prior work, we propose an HBM for integrating the information captured by

the expert ratings of videos with a hierarchical computational analysis of movement

using combinations of knowledge-driven and data-driven algorithms. As we show

below, using the HBM we can begin to quantify the relations of movement quality to

functionality even when using limited and noisy data. We can integrate the HBM in

our computational ensemble and start real world automated assessment applications

in the clinic and home with limited training data. As additional data becomes

available through these applications, the results will become more robust.

Figure 11: Block diagram incorporating the HBM with the computational engine

Table 4: the mathematical notations and their definitions used in the formulation of

HBM

Notations Definitions
It Overall Impairment level measured in the clinic
Ti Task number; i=1,2,...,15
r rating of the clinician, r=0,1,2,3
Sx Types of Segment; x=IPT,MTR,R&R,CMB

CMy Composite features; y=1,2,3,4
CMIy Impaired composite features,y=1,2,3,4
Sx,r rating for the Sx segment
Ti,r rating for the Ti task
n(x) frequency of incident x occurring
KFkf kinematic features,kf=1,2,3,...,20

Expressing HBM layers using clinician ratings

The hierarchy layers of the proposed HBM have already been defined by our prior

work with expert clinicians: task performance, segment performance, composite
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movement features, kinematics, and raw features as depicted in Figure 1. In Ex-

periment 3 of this paper, we want to begin to quantify the statistical relationships

of these layers. We first exploit the expert knowledge captured through the rating

rubric and clinician ratings to express the relationships of layers as conditional

probabilities. The conditions are imposed on the prior level of the hierarchy to get a

posterior of the immediate lower level. The mathematical notations used to calculate

the probabilities between each layer are given in Table 4.

By expressing the relationships between all the layers, we can then define a joint

posterior probability to reveal which changes in movement quality (CMIy to CMy)

have the highest probability of affecting function (raising Sx,r and/or Ti,r to 3)

as well as the CMIy, Sx, Ti, r sets where this is more observable. We can then

explore the relationship between the most impactful CMIy to CMy changes in

movement quality to the kinematics data being captured through low cost/low

intrusion infrastructure (i.e. video camera and/or IMUs). We use the clinicians’

ratings to compute the conditional probabilities up to the composite movement

features layer of the hierarchy. We then replace the composite features layer with the

raw kinematics layer, thus deriving conditional probabilities relating task and segment

performance to kinematics. We then use a novel matrix structure to combine the

conditional probabilities and compute the relationships between impactful changes in

composite features and correlated changes in kinematic features. This makes possible

the automated detection of movement quality issues that may be effecting task

performance and overall functionality and sets the stage for intepretable automated

assessment of rehabilitation movement.

Task-segment relations

To investigate meaningful relations of task (x) and segment (i) execution we need

to calculate conditional probabilities for all the (x, r)and(i, r) pairs for any given

clinician’s rating (r). The overall space of possible relations between the Task layer

and Segment layer can be divided into three categories of task-segment completion

relations

• complete execution in both layers, P (Sx,r ≥ 2|Ti,r ≥ 2)

• incomplete execution in both layers, P (Sx,r ≤ 1|Ti,r ≤ 1)

• incomplete execution in one of the two layers, P (Sx,r ≥ 2|Ti,r ≤ 1) or P (Sx,r ≤
1|Ti,r ≥ 2)

Complete tasks and segments may be rated 3 or 2 based on movement quality

observations by the clinician. Therefore each of these three categories of task-segment

completion relations presents three subcategories of relations: two 3s, two 2s, a

combination of one 2 and one 3. We will now briefly discuss each of the categories

(and their subcategories) and calculate the conditional probabilities for each. All the

frequencies are calculated using clinician ratings of the segment and tasks.

a) Complete execution in both layers, P (Sx,r ≥ 2|Ti,r ≥ 2)

When all the segments are executed (with or without impairment) and the task

is completed within the allowable time, the movement quality observations of the

clinician can create the following rating combinations:
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i) Unimpaired execution in both layers, P (Sx,r=3|Ti,r=3). The probability

of unimpaired execution at the task level (r=3) being related to unimpaired (r=3)

execution at the segment level for all pairs of relevant Sx, Ti would be calculated

using,

P (Sx,r=3|Ti,r=3) =
P (Ti,r=3|Sx,r=3)× P (Sx,r=3)

P (Ti,r=3)
,

where, P (Ti,r=3) =
n(Ti,r=3)∑

i n(Ti)
,

P (Sx,r=3) =
n(Sx,r=3)∑

x n(Sx)
,

and P (Ti,r=3|Sx,r=3) =
n(Ti,r=3|Sx,r=3)

n(Ti, Sx)
.

(1)

ii) Impaired execution in one of the layers, P (Sx,r=2|Ti,r=3) or P (Sx,r=3|Ti,r=2).

The type of segments that have a higher probability of receiving a 2 when the task

receives a 3 (the (x, r = 2), (i, r = 3) pairs) would denote segment execution where

the movement impairment is not significantly influencing function.

iii) Impaired execution in both layers, P (Sx,r=2|Ti,r=2). The type of segments

that have a higher probability of receiving a 2 when the task receives a 2 (the

(x, r = 2), (i, r = 2) pairs) would denote the segments we would need to focus on

in terms of movement changes that affect function. Therefore, we would need to

calculate

P (Sx,r=2|Ti,r=2) =
P (Ti,r=2|Sx,r=2)× P (Sx,r=2)

P (Ti,r=2)
,

where, P (Ti,r=2) =
n(Ti,r=2)∑

i n(Ti)
,

P (Sx,r=2) =
n(Sx,r=2)∑

x n(Sx)
,

and P (Ti,r=2|Sx,r=2) =
n(Ti,r=2|Sx,r=2)

n(Ti, Sx)
.

(2)

B) Incomplete execution in either of the layers, P (Sx,r ≥ 2|Ti,r ≤ 1) or

P (Sx,r ≤ 1|Ti,r ≥ 2)

A high probability of a task receiving a r ≥ 2 when a segment receives a r ≤ 1 rating

would denote significant compensation during that type of segment in a way that

negates the full use of the affected limb. For example, a bi-manual manipulation

(screwing of a jar lid) task is fully executed using primarily rotation of the unimpaired

limb during the MTR stage. A high probability of a segment receiving a r ≥ 2 rating

when a task receives a r ≤ 1 rating would denote that this type of segment is not the

one causing the challenge with this task and would direct us to find the challenge in

other segments.

Incomplete execution in both layers, P (Sx,r ≤ 1|Ti,r ≤ 1)

A high probability of a task receiving a r ≤ 1 when a segment receives a r ≤ 1 rating

would denote significant movement impairment across that type of segment and
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other segments resulting in an incomplete task execution. Therefore, the relation of

each individual segment to a task is not fully observable and thus not meaningful.

Segment-composite feature relation

The relationship between the segment layer (Sx) and the composite movement feature

layer (CMy) will indicate which composite features contribute to the segment’s rat-

ings. This probability space is divided into three categories of completion-impairment

relations.

Completed segment execution with movement quality impairment ,

P (CMIy|Sx,r=2) We would calculate this by:

P (CMIy|Sx,r=2) =
P (Sx,r=2|CMIy)× P (CMIy)

P (Sx,r=2)
,

where, P (CMIy) =
n(CMIy)∑
y n(CMI)

,

and P (Sx,r=2|CMIy) =
n(Sx,r=2|CMIy)

n(CMIy, Sx)
.

(3)

Here, the frequency of any particular impaired composite features, CMIy indicate

the total number of times that particular feature, y was denoted by the clinician as

impaired when assessing the execution of a type of segment. To show this as a ratio

of the total times a feature is available for denoting as impaired we can rewrite the

equation as:

P (CMIy|Sx,r=2) =
P (Sx,r=2|CMIy)× P (CMIy)

P (Sx,r=2|CMIy)× P (CMIy) + P (Sx,r=2|CMy)× P (CMy)
.

(4)

Incomplete impaired execution, P (CMIy|Sx,r=1). We can similarly calculate

the probability of incomplete execution of a segment being related to the impairment

of a specific composite feature using the frequencies of each incident.

Complete unimpaired execution, P (CMy|Sx,r=3) We can also calculate the

contributions of composite features to the complete and unimpaired execution of a

segment using:

P (CMy|Sx,r=3) =
P (Sx,r=3|CMy)× P (CMy)

P (Sx,r=3)
,

where, P (CMy) =
n(CMy)∑
y n(CM)

,

and P (Sx,r=3|CMy) =
n(Sx,r=3|CMy)

n(CMy, Sx)
.

(5)

Similar to (3), the frequency of any particular unimpaired composite features, CMy

indicate the total number of times that a particular feature,y was available for

observation but was not denoted as impaired by the clinician.
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Increasing granularity of HBM movement quality layers through computational

experimentation

We can now calculate the joint posterior probabilities by taking a product of the

conditional probabilities for each of the impaired and unimpaired composite features:

PCFI = P (CMIy, Sx,r≤2|Ti,r≤2)

= P (CMIy|Sx,r=2) ∗ P (Sx,r=2|Ti,r=2)

+ P (CMIy|Sx,r=1) ∗ P (Sx,r=1|Ti,r=1)

+ P (CMIy|Sx,r=2) ∗ P (Sx,r=2|Ti,r=1)

+ P (CMIy|Sx,r=1) ∗ P (Sx,r=1|Ti,r=2),

PCFU = P (CMy, Sx,r≥2|Ti,r≥2) = P (CMy|Sx,r=3) ∗ P (Sx,r=3|Ti,r=3)

+ P (CMy|Sx,r=2) ∗ P (Sx,r=2|Ti,r=3)

+ P (CMy|Sx,r=3) ∗ P (Sx,r=3|Ti,r=2),

δPcf
(y, i) = |log( PCFI

PCFU
)|.

(6)

Here, PCFI and PCFU denote the joint posterior for impaired (CFI) and unimpaired

(CFU) execution. We calculate all the task and segment layer probabilities for each

case of CFI and then sum them together to calculate the joint posterior. We repeat

the same process for CFU. We hypothesize that the more observable features have

prominent relationships with all the layers and will contribute to higher probabilities.

The impaired execution involves multiple cases and thus, the dimension of the

feature space will be large. Therefore, we can use thresholding to rule out some of

the cases with very small conditional probabilities. We then need to calculate the

PCFI and PCFU delta for each composite feature ,and CFy to estimate the impact

of each feature in differentiating an unimpaired from an impaired execution. The

δPcf
has the dimension of (y, i) meaning for each task, i the composite features, y

with large probabilities may have a significant impact on functionality and related

task execution assessment. As we collect more data, the quantification of the impact

of movement features on different types of functionality (different types of tasks and

segments) will become more robust and help disambiguate the differences between

clinician ratings at this layer of the assessment hierarchy. Adding a kinematics layer

below the composite features layer, and connecting these kinematics to the composite

features, allows us to increase the granularity of observation of movement quality and

further disambiguate the relation of movement quality to functionality. Our previous

work [2] and [22] established a list of twenty kinematic features that can be used

to capture and analyze movement quality issues affecting functionality. However,

there are currently no direct mappings of these kinematic features to composite

movement features used by the clinicians for assessing movement quality and the

performance of standardized segments. To establish these important connections, we

first repeat the delta calculation we described for composite features for each of the

computationally extracted kinematics. We consider all the probability sub-spaces

where segment ratings are different and for each rating we compute the conditional
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Figure 12: Visualization of ∆HBM feature values captured between composite

features (x-axis) and kinematic features (y-axis).

feature mean, F using:

F (KFkf |Sx,r) =

∑
n(µkf |Sx,r)∑
i n(Ti, Sx,r)

. (7)

Here, µkf is the sample mean of the kinematic feature, kf per segment, Sx,r. We

calculate the mean per data and then add all the µ’s for n number of occurrences of

the case Sx,r. The F notation is used to separate conditional probability, P from

the conditional feature mean calculated using (7). This way we calculate all the

conditional segment-kinematic feature probabilities for all the cases. Similar to (6),

we can calculate the joint posterior probability and compute the δ.

PKFI = F (KFkf , Sx,r≤2|Ti,r≤2)

= F (KFkf |Sx,r=2) ∗ P (Sx,r=2|Ti,r=2)

+ F (KFkf |Sx,r=1) ∗ P (Sx,r=1|Ti,r=1)

+ F (KFkf |Sx,r=2) ∗ P (Sx,r=2|Ti,r=1)

+ F (KFkf |Sx,r=1) ∗ P (Sx,r=1|Ti,r=2),

PKFU = P (KFkf , Sx,r≥2|Ti,r≥2) = F (KFkf |Sx,r=3) ∗ P (Sx,r=3|Ti,r=3)

+ F (KFkf |Sx,r=2) ∗ P (Sx,r=2|Ti,r=3)

+ F (KFkf |Sx,r=3) ∗ P (Sx,r=3|Ti,r=2),

δPKF
(kf, i) = |log( PKFI

PKFU
)|.

(8)

Here, PKFI and PKFU denote the joint posterior for impaired and unimpaired

execution respectively. Here, the δPKF
signifies the kinematic components that
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change significantly between impaired and unimpaired performance of segments.

This technique allows us to map performance of segments to change patterns of

kinematic components and indicate what changes in kinematic components may

significantly affect the execution of a type of segment. The δPKF
has the dimension of

(kf, i) meaning for each task, i the kinematic components, kf with large probabilities

are significant for integrated assessment of movement quality and functionality.
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Figure 13: Demonstrating the probability of a segment to have a rating of 2

(impaired) when a task was rated 2.

Since both of the composite movement features and kinematic component deltas

have the task and segment layers as a common conditional reference, we can simply

multiply them to get a (kf, y) matrix to define the relationship between composite

features and kinematic components,

∆HBM (kf, y) = δPcf
× δPKF

. (9)

HBM Analysis Results and Discussion

Figure 12 shows the relation of the (∆HBM ) of the 16 composite movement features

to the 20 kinematics components. The color bar represents the normalised value

of ∆HBM . When a clinician denotes a movement feature as impaired, we can use

this table to further estimate the level of impairment by tracking differentiation

from the unimpaired mean for the kinematic components strongly correlated to

that particular composite movement feature. We can also estimate the effect of the

denoted impairment on segment execution using the deltas of kinematic components

established earlier. However, as shown in earlier sections, these relations are condi-

tional (i.e changes in movement quality impact execution of different segments and

tasks differently). Connecting the kinematics layer to the performance of composite

features and segments directly (as discussed above) reveals the global movement

quality to functionality relations. To also reveal the conditional relations, we need

to calculate the cascading probabilities that connect task and segment execution

to composite features quality and in turn kinematic patterns. The addition of the

kinematics layer to the HBM allows us to increase the granularity of observation of
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Figure 14: Demonstrating the probability of a composite feature (A) and kinematic

components (B) to influence the performance of an impaired segment (rated 2).

movement quality. The conditional probabilities across the four layers of the HBM

(task, segment, composite, kinematics) allow us to further disambiguate the relation

of functionality to movement quality.

For example, the four layer HBM can help us analyze the potential contributing

factors for any task being rated 2. We first use the task ratings to estimate which of

the segments of that task have the highest probability of impaired execution (Figure

13). We then estimate which composite features have the highest probability of

influencing the performance of these impaired segments (Figure 14 (A)). We finally

estimate which kinematic components have the highest probability of defining the

details of each composite movement feature impairment for each of the impaired

segments (Figure 14 (B)). The x-axis in Figure 14 (B), has 3 segment labels since the

total time of the segment IPT is used as the temporal segmentation (the segment

concludes at end of T ). Also, since the computational analysis included only Tasks

1 - 10, we do not include CMB or M&TRB segments as these are only found in

Tasks 11 and 12. For the same reason the last four composite features in Figure 14

(A) have zero instances.
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Figure 15: Demonstrating the probability of a composite feature to influence the

performance of an impaired task (rated 2).

Comparing Figure 14 (A) to Figure 7 shows that the inter-layer probability graphs

produced through the HBM fully align with clinician observations. The five movement

quality features that are most often observed by the clinicians when rating videos are

clustered in the upper right hand corner of the Figure 7. This cluster has significant

overlap with the cluster of features showing the highest probability of affecting

function (performance of segments) in Figure 14 (A). Therefore, the four layer HBM

can be used in a top-down manner (task to segment to movement features) to reveal

and quantify (in a statistical manner) the relations of functionality and movement

quality that emerge from clinician ratings. The HBM can also be use in a bottom-up

manner (from the kinematics upwards) for the automated calculation of the relation

of movement quality impairment to functionality. Figure 15 shows that we can

calculate the probability of a particular composite movement feature influencing the

performance of a task. Figure 16 shows that we can calculate the probability of a

particular kinematic feature influencing the performance of a task.

Automatic Assessment: Weight Optimization and Transformer

One of the goals of the proposed approach is to integrate the HBM into our compu-

tational ensemble in order to be able to perform semi-automated and interpretable

assessment of rehabilitation movement. To achieve this goal we need to appropriately

weight the raw kinematic features before giving them as inputs to the machine

learning models. The transformer model or the HMM models will then be optimized

to predict the correct segment labels and ratings with the weighted features as input.

While there could be multiple ways of producing weights, we adopt an interpretable

approach for the initial weight generation. Specifically, we use an unsupervised

clustering algorithm to cluster the raw features into three categories: (i) mild , (ii)

medium and ,(iii) severe cases of movement impairment. This step is carried out for

every raw feature independently.

Concretely, consider the final feature matrix ∆HBM given in (9) that captures

the relationship between (i) kinematic features and (ii) composite features. Let

∆HBM ∈ RN×M . We run k-means clustering for all columns and rows independently
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Figure 16: Demonstrating the probability of a kinematic feature to influence the

performance of an impaired task (rated 2).

i.e., say for each kinematic feature, we take the features corresponding to all M

composite features and cluster them into three clusters as described. The cluster

centroids are then used to weight the features. In Figures 20 and 18, we plot

the clusters and cluster centroids for 4 randomly chosen kinematic and composite

features. We observe that in most cases, the features can be clustered into three

distinguishable categories thus making it amenable to produce meaningful weights.

We can then use the centroid of these clusters as the weights of the input data to

our computational ensemble (the Transformer, MSTCN++ HMM) so as to:

i) compute quality of performance of composite features from kinematic features/

raw visual features

ii) rate segments automatically

iii) rate tasks automatically.

We can then adjust our ensemble model to produce a joint rating of segment blocks

across the HMM, Transformer, MSTCN++ and other algorithms. We can then rerun

the HBM pipeline for the computational results to explore if there are significant

differences. Some of these potential differences may be due to elements that are

observable by data driven algorithms but not captured in the rating rubrics created
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Figure 17: Visual representation of the three different clusters formed for limb

angle.

Figure 18: Three different clusters for the feature: displacement of limb in the x

direction.

by the expert clinicians. For example, there could be a composite movement feature

that is important for a particular segment/task pair that was not included in

the rating rubric. We can bring this information back to the expert clinicians to

continuously improve the rubric and rating interface. As we capture more varied

data and the HBM is more generalized, then we can start tuning the weights. The

HBM weights could also be used as input to other machine learning algorithms

(beyond the HMM, Transformer, MSTCN++) that are attempting the automated

assessment of rehabilitation movement.

Conclusion and Future Work
Through low-cost capture of clinic and home-based upper extremity therapy sessions,

and the subsequent rating of these sessions by clinicians through our rating interface,

we can produce data that increases the observability of the relation of movement

quality to functionality. We can feed this data into our rehabilitation movement

assessment HBM to quantify in a statistical manner the relations of movement
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Figure 19: Three different clusters formed for the feature: shoulder elevation.

Figure 20: Three different clusters formed for the feature: range of motion for

elbow.

quality to functionality. We can use the captured videos, clinician ratings and

probabilities of our HBM to train computational algorithms for automated assessment

of rehabilitation movement.

Automated assessment of rehabilitation movement during therapy would allow

remotely supervised therapy at the home. We are creating an interactive therapy

system (SARAH) [16] where a remote clinician can use the system to assign the

sequence of tasks to be executed per training session at the home and receive

automated summaries of performance. Clinicians can use automated summaries of

therapy task performance at the home, along with quantitative identification of

relations between movement changes and function for remote decision making in

structuring therapy and remote feedback to the patient. We are planning to test the

SARAH system in the home extensively thus generating more data for informing

the HBM.

Automated assessment in the clinic can release more time for clinicians to focus on

delivering therapy. The quantification of movement quality changes and their affect

on functionality can help support the clinician decision processes for structuring
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therapy. In partnership with the Shirley Ryan Ability Lab (SRLab), we have adapted

the SARAH system for use with automated assessment of the ARAT measure [23]

in the clinic using four cameras. We have began the capture of over 100 patients

performing the ARAT. The captures will generate standardized and invariable

data of upper extremity rehabilitation movement while performing functional tasks.

The captured data will further inform the HBM and test the transferability of our

automated assessment approaches across the home and the clinic. Results from this

work will be discussed in an upcoming publication.

Because our 15 training tasks (and their generalizable segment vocabulary) map

well to ADLs, we expect that the relations established through our system between

movement changes and task performance can reveal the relation between movement

changes and overall daily life function. But the relation between the task layer of

our hierarchy and the overall daily life functionality layer needs to be quantitatively

developed and verified in a similar manner as the relation of the other layers. Some

data for the ADL layer is already capturable through questionnaires as well as

simple wearables (like activity monitoring applications on a smartphone). IMU

based tracking of the affected limb, hand, and torso using methods being developed

by our lab [34] and other research [8] can significantly increase observability of the

daily activity. We are integrating unobtrusive IMUs units in the SARAH system

[34]. The IMUs will be worn on the two wrists, index finger of the affected limb and

on the waist throughout the day, including the training sessions at the home. The

cross training of the IMU data with the video data and the expert ratings could

allow us to identify particular distributions of IMU based kinematics that can be

used to recognize particular segment blocks during ADLs. We could then adapt our

decision tree algorithm to use this segment information to estimate types of tasks

being performed.

We also plan to use the IMUs for localization(s). As certain types of tasks (i.e.

reaching and grasping cups) have a high probability of being performed in certain

spaces in the house (i.e. kitchen) we can use the localization as additional infor-

mation for the computation of joint posterior probabilities of tasks and segments

being performed during daily life activity. This would allow us to reconstruct the

probabilities of all layers of the HBM during daily life (from task performance and

location of performance to kinematics). We could then develop search algorithms

that seek to continuously improve therapy impact for a patient by jointly maximizing

the posterior probability of the HBMs calculated across therapy and ADL.
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