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Supplementary Methods 1 

Phenotype definitions 2 

Vasomotor symptoms derived from primary care records 3 

We identified Read v2 and CTV3 codes containing the full and partial words “flush”, “flash”, “meno”, 4 

“sweat”, “vaso” in the term descriptions, to account for the two clinical coding systems used in the UK 5 

Biobank linked primary care data. This resulted in the identification of 970 code and term descriptions 6 

which were manually reviewed along with their frequency of use in females in UK Biobank, resulting in 7 

the identification of 11 Read v2 and 22 CTV3 codes that were considered to be of direct relevance for 8 

vasomotor menopausal symptoms (VMS) (Supplementary Table 1). We used primary care data linked 9 

to UK Biobank to identify women with one or more clinical events containing codes for VMS. Such 10 

clinical events are coded from interactions with health care professionals in general practice including 11 

consultations, diagnoses, history, symptoms, procedures, laboratory tests and secondary care 12 

interactions reported back to general practice. 13 

Proxy phenotype definitions 14 

For secondary analyses we derived proxy phenotypes for VMS based on self-reported hormone 15 

replacement therapy use. These proxy phenotypes included the binary phenotype “Ever taken HRT” 16 

in postmenopausal women (n=72,535 cases and n=80,617 controls), and the quantitative traits “Age 17 

started HRT”, “Age ended HRT” and “Time taken HRT” in up to 85,488 women (Supplementary Table 18 

2). We derived phenotypes based on the most recent study visit with non-missing information as 19 

described below. In the phenotype calculations, ages were rounded to ages in years. 20 

HRT ever 21 

We included women who answered “Yes” to “2724: Have you had your menopause (periods 22 

stopped)?”. Cases (used HRT) answered “Yes” to “2814: Have you ever used hormone-replacement 23 

therapy (HRT)?” while controls answered “No”. Women were excluded if they provided conflicting 24 

information at separate UK Biobank visits. 25 

HRT before and after 2002 26 

The year in which the woman started HRT was calculated from year of birth plus the age at which 27 

HRT was started. Women using HRT before 2002 were those who were ‘HRT ever’ cases and who 28 

started taking HRT before or during 2002, while those using HRT after 2002 were ‘HRT ever’ cases 29 

who started taking HRT after 2002. Controls were as described for ‘HRT ever’. 30 

Age started HRT 31 

We included women who gave an age for “3536: How old were you when you first used HRT?”  that 32 

was younger than their age at the respective study visit and who answered “Yes” to “2814: Have you 33 

ever used hormone-replacement therapy (HRT)?”.   34 
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Age ended HRT 35 

We included women who gave an age for “3546: How old were you when you last used HRT?” that 36 

was younger than their age at the respective study visit and who answered “Yes” to “2814: Ever used 37 

hormone-replacement therapy (HRT)?”. 38 

Length of time that HRT was taken 39 

We calculated the difference between age starting and ending HRT in women with this information 40 

available who answered “Yes” to “2814: Have you ever used hormone-replacement therapy (HRT)?”, 41 

provided that the age ending HRT was after that starting HRT. 42 

 43 
Calculation of proportion of women using HRT 44 

To calculate the proportion of women taking HRT, we identified women who stated that they were 45 

postmenopausal at baseline and thus ‘at risk’ of taking HRT in 2006−2010. To compare the proportion 46 

of women using HRT before and after 2002, we used year of birth to identify which of these 47 

postmenopausal women turned 50 (the average age of menopause in the UK) before and after 2002 48 

(i.e. born before 1952 or in/after 1952) to minimise the effect of differences in age distribution in the 49 

cohort on temporal trends in HRT use.  50 

Genome-wide association study analyses 51 

Age used for adjustment of statistical analyses 52 

Statistical analyses were adjusted for the age of the woman which was calculated at the study visit 53 

used to define the phenotype. 54 

Fisher’s exact test of the associations for HRT use 55 

Since mixed linear models can result in inflation of test statistics at low allele frequencies and 56 

adjustment for covariates can contribute to this, for genome-wide significant signals identified for 57 

case−control phenotypes we carried out a Fisher’s exact test. We calculated the total number of effect 58 

and other alleles in the case and control groups for the genetic signals and tested the null hypothesis 59 

of no difference in the distribution using a Fisher’s exact chi squared test carried out in Stata-MP v14. 60 

We considered genome-wide significant associations to be confirmed if P<5×10-8. 61 

Matched case−control sensitivity analyses 62 

To ensure that different age distributions of the cases and controls did not affect the effect estimates 63 

for HRT use, we generated effect estimates from case−control matched analyses. For the phenotypes 64 

ever used HRT, used HRT before 2002 and used HRT after 2002, cases and controls were 1:1 65 

matched on age and year of birth using “ccmatch” in Stata-MP v16. This produced 51,628 age 66 

matched case/control pairs for ever used HRT, 44,431 for used HRT before 2002 and 5,615 for used 67 

HRT after 2002. Effect estimates were generated for the genetic variants of interest using case-68 

control matched logistic regression (“clogit”) in Stata including the covariates genotyping chip and 69 

release of genotype data, recruitment centre, age and the first five genetic principal components.   70 
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Exome-wide analyses 71 

We carried out gene burden association testing of rare variants using exome sequencing data 72 

available in ~200,000 people from UK Biobank 1. Detailed sequencing methodology is provided by 73 

Szustakowski et al.1 Briefly, exomes were captured with the IDT xGen Exome Research Panel v1.0 74 

which targeted 39Mbp of the human genome with coverage exceeding on average 20x on 95.6% of 75 

sites. The OQFE protocol was used for mapping and variant calling to the GRCh38 reference. 76 

Variants included in our analyses had individual and variant missingness <10%, Hardy Weinberg 77 

Equilibrium p-value >10-15, minimum read depth of 7 for SNPs and 10 for indels, and at least one 78 

sample per site passed the allele balance threshold > 15% for SNPs and 20% for indels.   79 
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Supplementary Results 80 

In silico functional and expression analyses 81 

Two variants in strong LD with rs34867104 (r2>0.8) were expression quantitative trait loci (eQTLs) for 82 

TACR3 in brain in PsychENCODE; alleles raising TACR3 expression were associated with lower odds 83 

of HRT use (FDR=3×10-2; Supplementary Table 9), an apparently opposite effect to that expected 84 

from the clinical studies of NK3R antagonism. However, these variants were not the top eQTL for 85 

TACR3 in the region and the strongest eQTL for TACR3 in brain (rs3846440, chr4:104840863, 86 

FDR=8×10-24) was only weakly correlated with the lead GWAS signal for VMS (LD r2<0.01 with 87 

rs34867104), and is likely to represent a distinct causal variant  for gene expression. The VMS 88 

lowering allele of the lead variant for VMS (rs34867104) was associated with lower levels of 89 

methylation at a probe overlapping the promoter region of TACR3 (P=2×10-118) in goDMC suggesting 90 

higher expression, though this was not the top variant associated with methylation of this probe (top 91 

variant P<1×10-300). The contradictory expression, methylation and clinical study evidence suggests a 92 

complex biological mechanism resulting in VMS. 93 

GWAS associations with VMS and age at menarche at TACR3 94 

Known genetic signals for age at menarche in/near the TACR3 gene were not associated with VMS 95 

(P>0.02 for all) and showed little correlation with the VMS signal, rs34867104 (LD r2≤0.12 for all) 96 

(Figure 1). The VMS signal rs34867104 was associated with age at menarche at P<5×10-8  in the 97 

most recent published GWAS (0.07 years per AT allele, P=1.2×10-10) (Figure 1).2 However, in our UK 98 

Biobank analyses, conditioning on the genotypes of the menarche signals attenuated the association 99 

of rs34867104 with age at menarche (P=7.5×10-16 in single variant analyses; P=2.9×10-6 in 100 

conditional analyses) but not VMS (P=3.6×10-16 in single variant analyses; P=2.3×10-16 in conditional 101 

analyses) (Supplementary Table 5), suggesting that the association of rs34867104 with age at 102 

menarche is being driven by residual linkage disequilibrium. Taken together with the LOF analyses, 103 

our results suggest that age at menarche and VMS have a different underlying genetic architecture at 104 

the TACR3 locus.  105 

Genome-wide analyses of HRT phenotypes  106 

We carried out genome-wide analyses of HRT use in UK Biobank as a proxy phenotype for VMS. Our 107 

GWAS included up to 153,152 women for the binary phenotype “Ever taken HRT”, derived to include 108 

postmenopausal women only (Supplementary Methods and Supplementary Table 2). In addition, we 109 

analysed the quantitative traits  “Age started HRT”, “Age ended HRT” and “Time taken HRT”. In total 110 

we observed 21 signal−trait pairs at P<5×10-8 across the four phenotypes that following confirmation 111 

by Fisher’s exact test (binary traits; Supplementary Methods), resolved to 15 independent genetic 112 

signals across phenotypes on the basis of distance and linkage disequilibrium (Supplementary Table 113 

6, Supplementary Figure 2).114 
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Supplementary Figures 

Supplementary Figure 1. Quantile-quantile and Manhattan plots for the GWAS of VMS in UK 
Biobank. The plots include all variants with imputation quality>0.3 and MAF>0.001 
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Supplementary Figure 2. Quantile-quantile and Manhattan plots of the GWASs of HRT use. The 

plots include all variants with imputation quality>0.3 and MAF>0.001.  (a) HRT ever. Of the five 

signals identified as P<5E-08 in our GWAS, only the top SNP (rs34867104) on chromosome 4 had 

Fisher’s exact P<5E-08; (b) HRT start age; (c) HRT end age; (d) Time taken HRT 

(a) 

Lambda-GC=1.09. 
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Lambda-GC=1.05 
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Lambda-GC=1.05 

 

 

 

 

 

(d) Lambda-GC=1.00 

 

 

 

 


