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ABSTRACT

Mood disorders are severe and chronic mental conditions exacting high costs from society. The lack
of reliable biomarkers to aid clinicians in tailoring pharmacotherapy based on distinguishable patient-
specific traits means that the current prescribing paradigm is largely one of trial and error. Previous
studies showed that different biological signatures, such as patterns of heart rate variability or electro-
dermal reactivity, are associated with clinically meaningful outcomes. Against this backdrop, the
advances in machine learning and the spread of wearable devices capable of providing continuous and
ecological monitoring of patients may unlock great opportunities in mental healthcare. We herewith
present a pilot study on mania and depression where we moved beyond the simple disease state binary
classification but pursued the more informative and clinically meaningful task of differentiating
between levels of disease severity. While most previous similar endeavours used recording segments
extracted from the same subjects for both training and testing, we explicitly carried out model
development and evaluation on segments from different groups of patients, in order to have a fair
assessment of the model out-of-sample generalisation. This illustrated how individuals heterogeneity
and non-disease-related dimensions of variations (e.g. sex, age, physical fitness) may dominate the
signal so that in low sample size regimes a model might learn and overfit subject-specific patterns
rather than capturing disease-relevant traits generalisable across disorders. Lastly, we developed a
viable baseline for pre-processing raw data from wristband recordings and compared three classical
and two deep-learning models to identify levels of disease severity.

1 Introduction

Mood disorders, also referred to as affective disorders, are a group of diagnoses in the Diagnostic and Statistical Manual
5th edition (DSM5, American Psychiatric Association et al. 2) classification system where a disturbance in a person’s
mood stands out as the dominant psychopathological feature. Disturbances in thought, energy, and vegetative functions
are commonly described too. Mood disorders encompass two main diagnostic constructs, i.e. major depressive disorder
(MDD) and bipolar disorder (BD). Major depressive episodes (MDE), which are characterised by feelings of sadness
and loss of interest, are common in both MDD and BD, whereas BD is uniquely defined by occurrences of manic
episodes (MEs). These lie on the opposite end of the mood spectrum, being characterised by increased activity and
self-esteem, reduced need for sleep, expansive mood and behaviour [44]. With a lifetime prevalence of around 21% [24]
and a severe, relapsing-remitting course, mood disorders constitute one of the world’s greatest public health problems,
with significant direct and indirect costs, estimated at USD210.5 billion in 2010 in the United States alone [16].

Despite pharmacotherapy being generally quite effective, variability in response is poorly understood and, in the absence
of biomarkers for personalising pharmacotherapy, the current medical prescription paradigm is largely one of trial-and-
error [4]. In this context, and with the wide availability of wearable technology, digital biomarkers suitable to identify
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illness activity and provide real-time patient monitoring offer a promising approach to precision medicine in mood
disorders. In fact, wearables collecting highly detailed actigraphy, sleep and cardiovascular information have already
been shown to accurately capture rest-activity rhythms, illness activity and episodes in BD [14, 10, 11]. However, their
longitudinal potential on treatment response and outcomes remains poorly investigated [38]. Electrodermal activity
(EDA) hyporeactivity, denoting autonomic dysfunction, has long been recognized as a strong predictive biomarker for
both unipolar and bipolar depression as well as suicidal behaviour [19, 15, 36]. However, until recently, capturing EDA
was only possible with costly and complex laboratory equipment [13]. Novel research-grade wearables now allow
to continuously record EDA in addition to 3D acceleration and heart rate variability, which are also closely linked to
illness activity [40]. We herewith present a pilot machine learning implementation aimed at distinguishing the severity
of different affective states of mania and depression using data collected non-interventionally with a state-of-the-art
research-grade wearable in a university hospital.

In this work we investigated the potential of machine learning and wearable devices in precision medicine for mental
health. Our contributions can be summarised as follows:

– Rather than settle for a yes-or-no disease identification approach, in this work we advocate for differentiation
between levels of disease severity as a more clinically meaningful task in manic and depressive episodes.

– Unlike most previous works, we tested our models not only on recording samples collected from the same group
of patients used for model development but also on samples from a different group of subjects to which the
models have never been exposed to during training. This was to study model out-of-sample generalisation.

– We developed a viable pre-processing baseline strategy and compared the performance of different classical as
well as deep learning models on the task at hand.

2 Related work

Previous research endeavours pursued mood states classification in BD using data from wearable devices. Côté-Allard
et al. [7] introduced a deep learning-based ensemble method to distinguish manic from euthymic BD patients, which
leverage long (20h) and short (5 minutes) time intervals based on actigraphy and EDA. Their classification accuracy on
47 BD patients achieved an accuracy of 91.59% in euthymia/mania recognition. Another study from the same group
aimed to distinguish mania and remission in BD patients intra-individually using motor activity wearable digital data.
The motor activity of 16 manic BD patients was characterised by altered complexity and variability when compared
within-subject to euthymia [22]. Regarding depression versus healthy controls (HCs) identification, one study reached
an accuracy of 84.00% on a sample of 23 patients with depression (both unipolar and bipolar) and 32 HCs, using motor
activity data and leveraging deep neural networks and SMOTE during training for class imbalance [21]. Another study
investigated differences in motor activity between 18 manic and 12 depressive inpatients with BD, and 28 HC. They
reported distinctive activity patterns between inpatients with BD on a manic or depressive episode and HCs [28]. In
contrast to previous works, we aim at distinguishing the severity of mania and depression, as measured at different
phases. We believe that not just the mere identification but the severity quantification of mood episodes may enable
better management and treatment of patients. Furthermore, while to the best of our knowledge previous studies failed to
test for generalisation on samples from subjects other than the ones used for model development, we explicitly pursued
this research question and showed how this can reveal a model’s shortcoming in clinical applications.

3 Methods

3.1 Study population & assessment

Four patients, two with an acute manic episode and two with an acute depressive episode, were included in this pilot.
Specifically, two patients had a major depressive episode (MDE) and two patients had a manic episode (ME) in the
context of BD according to the Diagnostic and Statistical Manual 5th edition (DSM5, American Psychiatric Association
et al. 2. The diagnosis was confirmed with a semi-structured clinical interview (SCID-5-RV. First et al. 12). Exclusion
criteria included co-morbidity with another psychiatric or neurological disorder or current drug abuse. Furthermore,
acute episodes of mood alterations can sometimes include symptoms of both polarities, that is to say, depressive and
manic symptoms alternate or are intertwined within the same episode. Such occurrences are referred to as mixed
episodes in the psychiatric nosography. We excluded any patient with mixed symptoms from this investigation as we
wanted to model just the two extremes of the mood disorders spectrum, i.e. depression and mania, hypothesising that
they map to distinguishable physiological patterns detectable with a wearable device. Patients were recruited at the
moment of admittance to the inpatient unit of the Psychiatry ward. Over the disease course, patients were evaluated at
three points in time by the same consultant psychiatrist administering the Young Mania Rating Scale (YMRS, Young
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et al. 47) and Hamilton Depression Rating Scale-17 (HAMD, Hamilton 17) questionnaires. YMRS and HAMD are
among the most widely used scales to assess manic and depressive symptoms respectively, with a total score ranging
from 0 to 60 for YMRS and from 0 to 52 from HAMD.

The three-time points corresponded to 1) T0 acute phase (beginning of hospital admission), 2) T1 clinically observable
response onset (mid-admission), and 3) T2 remission (soon after the patient was deemed dischargeable from hospital).
Around each of the three clinical assessments, patients were provided with an E4 Empatica wristband1 which they
were required to wear for ∼48 hours. Note that this was a non-interventional study; as such, hospital management
and treatment were not informed in any way by the data collected with E4 Empatica nor was patients’ behaviour
externally altered in any manner further to the requirement of wearing the wristband throughout hospitalisation. As
it is the standard practice with such acute patients, they were not allowed to leave the hospital at any point of their
hospitalisation. E4 devices have sensors collecting the following physiological data sampled at different sampling
rates: 3D acceleration (ACC, 32Hz), intra-beat intervals (IBI, this is the time between two consecutive heart ventricular
contractions), temperature (TEMP, 1Hz), blood volume pressure (BVP, 64Hz), electrodermal activity (EDA, 4Hz) and
heart rate (HR, 1Hz). Note that E4 Empatica directly provides IBI as part of its output and computes it by detecting
peaks (beats) of the BVP and computing the lengths of the intervals between adjacent beats. Similarly, HR is computed
from IBI with a proprietary algorithm. The study was conducted in compliance with the ethical principles of medical
research involving humans (WMA, Declaration of Helsinki). The assessment protocol was approved by the relevant
ethical review board. All data were collected anonymously.

3.2 Pre-processing

The raw data from an E4 Empatica recording session comes as a collection of as many 2D arrays as there are recorded
channels: ACC, BVP, EDA, HR, IBI, and TEMP. In each 2D array, columns are the device channels and rows are the
recorded measurements.

Given the naturalistic setting of this investigation, despite patients being instructed to wear the wristband throughout the
recording session, we noticed during exploratory data visualisation that there were instances where all measurements
go to zero, i.e. the device was not detecting any physiological activity. As we were interested in physiological markers
(and not potential correlations among patients’ compliance to instructions and disease state), we decided to discard
instances where all channels went and stayed to zero for at least 30 consecutive seconds, as these likely resulted from
patients removing the device. Removing zero-value sequences from a recording introduces gaps within it; thus, the
resulting sub-recordings were handled independently during the further pre-processing steps described below.

Since sampling rate varies across different E4 Empatica channels, the raw recordings were time-aligned using the
following approach. A time unit µ was set to one of the following values across all channels: 1, 1/2, 1/4, 1/32 and
1/64 second. If a channel’s sampling rate was higher than µ−1Hz, that channel was downsampled by taking the average
value across samples within µ. On the other hand, if a channel’s sampling rate was lower than µ−1Hz, that channel was
upsampled by padding the channel with the average value across the last sampling cycle. If a channel’s sampling rate
was equal to µ−1Hz, no manipulation was applied to that channel. Furthermore, as the E4 Empatica algorithm for HR
estimation needs the first 10 seconds of the signal for initialisation, HR starts being recorded with a 10-second delay
relatively to other channels. Thus, in order to have all channels start at the same point in time, the first 10 seconds of
channels other than HR were cropped by default.

IBI by its own definition does not lend itself to be time-aligned (this is indeed the interval between the start of consecutive
ventricular contractions), furthermore, it is not usually used directly but as a stepping stone to heart rate variability
(HRV) computation [39]. HRV, as the name suggests, reflects the oscillation in the time intervals between consecutive
heartbeats and is a measure of the balance in the activity of the autonomic nervous system. While wrist-worn wearable
devices, such as E4 Empatica, make it possible to continuously and ecologically record IBI, inconsistent IBI intervals,
produced not only by ectopic beats but mainly by motion and mechanical artefacts, are well-documented phenomena
with this new technology relatively to the gold standard (i.e. electrocardiography, Karlsson et al. 23). Furthermore,
upon preliminary data exploration, we noticed that there were multiple instances of variable length where IBI was
missing while all other channels were recording biologically plausible values. Thus, outlier (< 30 milliseconds (ms) or
> 2000 ms) and ectopic (not generated within the sinoatrial node) beats were detected and marked as invalid values.
Subsequently, missing values (if any) appearing at the edges of the recording (i.e. not surrounded by non-missing
IBI values) were removed from the analysis and the corresponding seconds were cropped from all other channels,
whereas other IBI missing values were interpolated with quadratic interpolation, which was found to be more reliable in
time-series, and IBI specifically, relatively to other methods [32]. The so-pre-processed IBI was then used to derive
HRV. There are several approaches to evaluate variation in heart rate, usually grouped as time domain, frequency

1www.empatica.com/en-int/research/e4
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domain and non-linear domain features. In this pilot, we extracted 1) the standard deviation of IBI (SDNN), 2) the root
mean square of successive differences between normal heartbeats (RMSSD), and 3) the proportion of adjacent intervals
that differ from each other by more than 50 ms (pNN50), all computed over non-overlapping consecutive 5-minute
time spans; the computed value for these features was set constant on each time unit µ contained in the corresponding
5-minute time spans. The SDNN is predominantly (but not exclusively) indicative of sympathetic activity, while the
RMSSD and pNN50 are indicative of parasympathetic activity [3]. These are popular time-domain measures and have
previously been reported to be associated with mood disorders [34]. We relied on the open-source Python package
hrv-analysis2 [6] to pre-process IBI. An illustration of the time-alignment pre-processing step is shown in Figure 1.

Upon time-alignment following the procedure described above, each recording was then segmented into a pre-defined
number of segments using a window of length w seconds and taking equally spaced segments with as minimal overlap
between consecutive segments as possible. We explored three different powers of 2 for the window length w, i.e.
29, 210, and 211 seconds (the choice of powers of 2 was motivated by computational convenience). In order to obtain an
equal number of segments from each class for model evaluation, we randomly select 30 segments from each session
and store them as a held-out test set to which the model is never exposed during training. We then randomly assign the
remaining segments to the train and validation sets with a ratio of 80% and 20%. Each segment was finally normalised
(scaled to [0, 1]) using the per-channel global (across all segments) minimum and maximum values derived from the
train set. Figure A.3 shows examples of pre-processed segments (before per-channel normalisation) from the subject
with MDE at different phases.

3.3 Experimental design

In this pilot study, we are interested in Q1) exploring to what extent a machine learning system can recognise different
depressive and manic severity states using physiological data collected in a naturalistic setting with a wristband.
The recording segments produced with the pre-processing steps described above were therefore used in supervised
learning experiments as input to a model which was trained to classify these as belonging to one of the following
states: T0 (acute phase, at the beginning of hospital admission), T1 (clinically observable treatment response, typically
mid-admission), and T2 (remission of the episode, last days of admission). This amounted to a six-class classification
task (i.e. depression T0, T1, T2 and manic T0, T1, T2). Segments from each class were extracted in the same number in
order to have perfectly balanced classes. Related to the previous question, our second interest is Q2) evaluate to the
model out-of-sample generalisation performance. Indeed, in a real-world deployment, we would deem a model of any
value if it is able to generalise to segments drawn from unseen patients that share the same clinical condition with the
subjects used for model development but that may vary widely in other respects. To this end, we divided the recruited
subjects into two groups, both spanning the full spectrum of BD; that is to say, each group included one subject with
MDE and one with ME. Model development was carried out with segments from one group only, while at test time
we used both holdout segments from this group and segments from the other group the model had never seen during
training. Generalisation estimates were computed separately for the segments from the two groups. Figure 2 illustrates
the evaluation pipeline of the two groups of patients. As oppose to the train and validation sets, the proportions of
segments per class and per patient were set to be perfectly balanced in the test set. Thus, accuracy was elected as the
performance metric.

We compared three popular classic classification algorithms, i.e. 1) Elastic Net Regression (ENET), 2) Support
Vector Machine (SVM) and 3) Random Forest (RF), as well as two deep neural network (DNN) models, i.e. 4) a
fully-connected neural network (MLP) model and 5) a bidirectional Long Short-Term Memory (BiLSTM) model.
ENET is an extension to the standard classification algorithm logistic regression adding penalties to the loss function
during training with the aim of encouraging simpler models with smaller coefficient values. ENET was chosen as it is
a popular method in the biomedical literature performing robustly in a wide range of applications; however, without
basis functions and feature engineering, it can only fit a linear decision boundary in feature space and cannot account
for interactions [30, 25]. SVM is a discriminative classifier fitting a separating hyper-plane found by maximising the
separating margin between classes. It is among the most robust prediction methods, being based on statistical learning
frameworks, and can efficiently perform a non-linear classification thanks to the so-called ’kernel trick’, implicitly
mapping input data into a high-dimensional feature space [8]. RF is an ensemble of classification (or regression) trees,
where each tree is constructed based on the principle of recursive partitioning (that is, feature space is recursively
divided into regions comprising observations with similar response values). RF can learn complex, non-linear decision
boundaries while still generalising well to unseen data [5]. Both SVM and RF have previously been used in similar
classification tasks with data from wearable devices (e.g. Tazawa et al. 43). These non-deep-learning algorithms take as
input a vector, whereas upon pre-processing our base unit of analysis was a 2D array (w× 1

µ by the number of channels).
So, the 2D array was flattened in order to accommodate it as an input to the aforementioned models. With the recent

2https://github.com/Aura-healthcare/hrv-analysis
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Figure 1: Illustration of the time-alignment pre-processing procedure. A number of variations of the pre-processing
pipeline were experimented and the simplest version is illustrated here in this figure. Note that the sampling rates in the
figure are made-up for illustration purposes, the actual sampling rates are specified in Section 3.1. The vertical dashed
lines indicate one-second worth of recordings. The number next to each arrow indicate the order of preprocess step.
Refer to the text for a fuller description of the pre-processing strategy.

advancement in deep learning, DNNs have seen rapid adoption in medical research and healthcare application [31, 9].
We, therefore, also include two common DNN models in the classification experiments. The MLP model, which is fairly
simplistic, consists of 3 fully-connected layers, each with Leaky ReLU (LReLU, Maas et al. 29) activation and followed
by a dropout [41] layer. LSTM [18] model, on the other hand, can model recurrency in the input and is better suited for
time-series and sequential data [20]. Here, we use a BiLSTM [37] model, which consists of two LSTMs, one taking the
input in a forward direction, and the other in a backward direction, thereby improving the representation of temporal
information in the model. DNNs can directly take 2D arrays as input data so no preliminary flattening was required
here. Both DNN models were trained with Adam optimiser [26] for 400 epochs to minimise the cross-entropy between
the probability distribution of belonging to any of six classes outputted by the last DNN layer and the ground-truth
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distribution over classes. The choice of these five popular classification models should provide a general indication of
how distinguishable the severity levels are when given the pre-processed recordings.

At this stage of our project, we were interested in exploring the impact of different values of time unit µ and window
length w rather than finding the optimal hyperparameters configuration for each individual model, as our focus was
indeed more on the pre-processing pipeline. Thus, for each model, we evaluated a set of combinations of µ and w (15
in total), while keeping the exploration of algorithm-specific hyperparameters to a minimum, using a random search
with only five draws for each model hyper-parameters configuration, the final configuration of each model is available
in Table A.1.
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Figure 2: Illustration of evaluation pipeline. Two subjects with MDE (in blue, subject 1 and 3) and two with a ME (in
orange, subject 2 and 4) patients were separated into two groups (subject 1 and 2 in Group 1; subject 3 and 4 in Group
2). We trained and validated the classifiers on shuffled and pre-processed segments (pink boxes, not drawn to scale) and
we evaluated the trained models on the held-out test set from group 1. In addition, to evaluate the out-of-distribution
performance of the models, we also test the models on pre-processed segments obtained from group 2 patients. Note
that the number of segments for train and validation among different disease severity stages are not the same.

3.4 Software codebase

The codebase3 used in this work was predominantly written in Python 3.8, where the non-deep-learning models and
deep learning models were implemented using scikit-learn [33] and TensorFlow [1], respectively. In addition, all deep
learning models were trained on a single NVIDIA A100 80GB.

3The software codebase will be made publicly available upon publication.
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3.5 Data exploration

A clinical-demographic overview of the study sample is shown in Table 1. Note that segments from the two subjects
(group 2) were used at test time only, to check the model’s ability to generalise to clinically similar patients, unseen
during training. While both HDRS and YMRS total scores are continuous variables, it is the usual clinical practice to
bin the total score into semi-quantitative estimates of disease severity. Accordingly, the transition from T0 (acute phase)
to T2 (remission) can therefore also be interpreted in terms of changes from severe to moderate and finally mild illness
activity. Table 2 shows the number of segments per train, validation and test set used for model development (subjects
in group 1). Note that this varies based on the choice of window length w but not time-unit µ.

In order to get a sense of the behaviour of our data upon pre-processing, we plotted and herewith report the channel
pairwise normalised mutual information (NMI, Ross 35), and distribution across the entirety of the recordings used for
model development. Figure 3a shows the feature distributions after per-channel normalisation. Overall, ACC, TEMP
and RMSSD exhibit a relatively high level of variance, whereas the distributions of EDA, HR and SDNN sharply
peaked around a single value across most recordings. Interestingly, the variance of EDA increases, and conversely,
decreases in pNN50, as the condition of the subject improves (see Figure A.1a and Figure A.1c). High NMI values
were found among IBI-derived HRV features, which are indeed all derived through simple transformations from IBI.
High values were also recorded for ACC, TEMP and HR, which are in fact physiologically related. BVP had near-zero
NMI with other channels. On a visual inspection (see Figure 3b), no major differences could be appreciated in either
pairwise NMI or distribution across recordings from different classes. The feature distributions and pairwise NMI for
the manic patient in group 1 are available in Figure A.2, which follow similar trends. In addition, we are also interested
in knowing how informative each channel is in identifying their respective disease states. We observed that, out of
the 10 features, the IBI derived features are most informative with respect to the predictive task, whereas BVP is the
least informative, despite the fact that E4 Empatica derives IBI from BVP. Such result also coincides with the channel
pairwise NMI. The pairwise channel-class NMI is available in Table 3.

Table 1: Overview of the study sample. The recording segments extracted from the subjects in the last 2 rows
(group 2) were used for testing only. The recording duration shown is rounded to the closest hour. HDRS: Hamilton
Depression Rating Scale total score; MDE: Major Depressive Episode; ME: Manic Episode; YMRS: Young Mania
Rating Scale total score; T0 (acute phase, at beginning of hospital admission), T1 (clinically observable treatment
response, mid-admission) and T2 (remission of the episode, last days of admission).

Age range (years) Sex Diagnosis Hours registered HDRS YMRS
T0 T1 T2 T0 T1 T2 T0 T1 T2

56 - 60 M MDE 41 41 42 33 13 7 7 2 0
26 - 30 F ME 44 42 42 7 4 4 30 20 5
41 - 45 M MDE 41 45 45 27 11 7 4 1 1
21 - 25 M ME 48 45 44 3 5 4 23 15 1

Table 2: The number of train, validation and test segments extracted from recordings obtained from group 1 with
different window length w. Note that we randomly select 30 segments from each recording session for the test set in the
six-class classification task such that each class have an equal number of inputs in testing.

window length w train validation test

512 1280 316 180
1024 567 139 180
2048 213 49 180

Table 3: The normalised mutual information between time-aligned channels and disease states (depressive T0 to T2 and
manic T0 to T2). Note that the values below are normalised based on the maximum mutual information obtained across
all channels.

ACCx ACCy ACCz BVP EDA HR TEMP RMSSD SDNN pNN50

0.2527 0.2545 0.2250 0.01223 0.8665 0.1432 0.2343 0.9998 1.0000 0.8437
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Figure 3: The (a) channels distributions after per-channel normalisation and (b) channel pairwise normalised mutual
information of time-aligned recordings obtained from the subject on a major depression episode from group 1 at T0.
Note that RMSSD, SDNN and pNN50 features are derived from IBI. Plots for T1 and T2 in the same subject as well as
plots for T0-T2 in the subject on a manic episode from group 1 are available in Figure A.1.

4 Results

During model development with segments from subjects in the first two rows of Table 1, both MLP and BiLSTM
reached high accuracy in the six-class classification task on hold-out segments from the same two subjects, 68.33% and
72.78% respectively. All classical models lagged behind, with RF scoring best in this category of models (50.25%)
and SVC performing worst (44.44%). However, when the trained models were deployed on segments from the two
new subjects (group 2), accuracy sharply dropped across the board, with BiLSTM, the best model, at 17.78% being
only slightly better than randomly guessing. Interestingly, the margin in test performance between DNNs and other
algorithms significantly reduced here with ENET (the best and simplest model in its category) even outperforming MLP
(see Table 4). A more fine-grained visualisation of the group 1 test performance of the two DNN models is provided
by the confusion matrices in Figure A.4. For both DNN models, they were able to achieve better classification results
by distinguishing the 3 depressive states (MLP: 76.13%; BiLSTM: 82.02%) as compared to the manic states (MLP:
62.92%; BiLSTM: 65.17%).

Table 4: The severity levels classification accuracy of the 5 models on the (group 1) two seen patients and (group 2) two
unseen patients on the held-out test set (µ = 1/2 and w = 512).

Model Group 1 Group 2

ENET 46.11 14.45
SVC 44.44 12.33
RF 50.25 11.67

MLP 68.33 13.33
BiLSTM 72.78 17.78

The exploration of the impact of varying w and µ on validation set accuracy showed a trend, consistent across models,
whereby shorter window length w and, conversely, longer time unit µ for time alignment would, in general, be associated
with an increase in validation accuracy, shown in Figure 4. By increasing the time-unit, where interpolation is needed
for some channels, artificial information was introduced into the segments, hence potentially harming the models’
ability to extract relevant features. In addition, the models should be able to identify similar features in segments with
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longer window lengths as do in short window lengths (e.g. by ignoring the addition time-steps), though this also limits
the number of training segments (see Table 2 for the dataset size) which data-hungry models such as DNNs require.
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Figure 4: The validation accuracy of (Left) MLP and (Right) BiLSTM models trained on data with varying window
size w and time-unit µ.

5 Discussion

As mental health has been lagging behind other areas of healthcare in the adoption of biomarkers to support clinical
decision making, despite an urgent need thereof, the fortunate conjuncture of advances in machine learning and the wider
availability of wearable devices and their improved precision to continuously and ecologically collect physiological
data from patients holds great potential for the field. We herewith presented a pilot study in mood disorders and made
the case that mood episode severity classification is a harder but clinically more relevant task in affective disorders (and
mental health at large) than mere disease presence detection. We showcased a viable baseline for pre-processing raw
data from the E4 Empatica, a popular research-grade wristband, for use in a machine learning pipeline and compared
several algorithms, comprising both classical and deep-learning models, on mania and depression severity. Furthermore,
when assessing model generalisation performance we set up two groups, one including segments from the same
subjects used for model development and one of the segments from subjects the model had never seen during training.
Overall, all models reached reasonable test performance in the former group, with DNNs leading by a comfortable
margin over non-deep-learning models. However, when tested on the latter group, performance plunged for all models,
the best one (BiLSTM) barely hovering above the random guessing threshold. Of note, DNNs were not any better
here, with ENET (a very simple linear model) coming up on top of MLP. The poor performance of group 2, i.e.
out-of-sample segments, can be expected considering the high inter-subjects heterogeneity: group 1 and group 2 patients
were not exactly matched with each other for non-mood-disorders related (e.g. age, sex, level of physical fitness) or
even some mood-disorders-related (e.g. administered treatment) variables. More to the point, this result also spells
a well-described phenomenon in other applications of machine learning to mental health, e.g. neuro-imaging [46].
Non-disease-related dimensions of inter-patient variability, e.g. age, sex, physical health/fitness, tend to drown the
disease-relevant signal so that, in our case, it can be fairly said that the model accurately picked up on individual-level
patterns, as indicated by the high accuracy on hold-out samples from the same patients used for model development,
but failed to learn affective-state-related patterns, generalisable across different individuals. Further to an obvious
increase in the sample size for model development, so that the train set encompasses more heterogeneity and is more
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representative of the population we aim to model, this calls for ad-hoc techniques to disentangle inter-patient clinically
irrelevant heterogeneity from the state-related signal.

5.1 Limitations

We acknowledge several limitations in our work. Most importantly, while the purpose of this work, as indeed a pilot,
was exploratory, the small sample size available for model development did not allow us to make any strong claim
about a machine learning system performance on new patients with manic or depressive episodes, unseen during model
development. However, the recordings were all longer than 40 hours each, with fine-grained time-series collection of
physiological variables ranging from 1 to 64Hz. Secondly, while converging evidence from other fields points to deep
learning with raw (or minimally pre-processed) data as state of the art in time-series analysis, we will differ to future
work on the investigation of performance with pre-defined features, extracted with human-designed tool-kits across all
channels (in this study we only extracted features for IBI, since it does not lend itself to be time-aligned in its original
format). Lastly, we appreciate that, while dealing with minimally pre-processed data, our pipeline can be improved in
terms of artefacts detection and denoising (e.g. Kleckner et al. [27] and Taylor et al. [42]).

5.2 Future work

The pilot we herewith presented is the starting point of a broader project were, in general terms, we aim to harness
machine learning and data from wearable devices to aid clinical decision making, empower patients, and advance the
understanding of BD. We aim to collect data from over 60 patients with BD over the course of the first year.

Since psychiatry nosography almost entirely relies on clinical phenomenology and is not backed up by objective
measures, the whole concept of ground truth in mental health diagnosis is brittle, with previous works indeed pointing
to fairly low rates of inter-specialists agreement [45]. Thus, further to supervised learning in the context of disease
detection and severity differentiation, a future line of research will be an unsupervised learning attempt at identifying
disease groups based on data from E4 Empatica and validating such groups with respect to a clinically meaningful
outcome. Secondly, as we are collecting detailed data on administered treatment, another future direction will be to
find biomarkers from E4 Empatica data to predict treatment response or liability to side effects. All in all, to improve
diagnosis and treatment in mental health from a precision psychiatry perspective.
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Figure A.1: The (first column) per-channel normalised feature distributions and (second column) channel pairwise
normalised mutual information of time-aligned recordings obtained from the subject on a major depression episode
from group 1 at (first row) T1 and (second row) T2.
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Table A.1: The best model hyper-parameters after a random search on the dataset with window length w = 512 and
time-unit µ = 1/2. α and l1ratio denote the penalty term and mixing parameter in ENet. C is the regularisation
parameter in SVC. The Gini impurity is being used as the criterion function in RF.

Model Configuration

ENET α = 0.40049 l1ratio = 0.00935

SVC C = 0.00409 kernel = polynomial

RF num. estimators = 560 criterion = Gini

MLP num. layers = 3 layer size = 128
activation = LReLU dropout = 0.25

optimiser = Adam learning rate = 0.001

BiLSTM num. layers = 1 layer size = 128
activation = Tanh recurrent activation = sigmoid

dropout = 0 recurrent dropout = 0
optimiser = Adam learning rate = 0.001
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Figure A.2: The (first column) per-channel normalised feature distributions and (second column) channel pairwise
normalised mutual information of time-aligned recordings obtained from the subject on a manic episode from group 1
at (first row) T0, (second row) T1 and (third row) T2.
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Figure A.3: Randomly selected pre-processed segments of subject 1 (depressive) from Group 1 in (Left) T0, (Middle)
T1 and (Right) T2 states (window length w = 512 and time-unit µ = 1/2). Note that the segments shown here have not
been normalised and are in their original scale.
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Figure A.4: The classification confusion matrix of (a) MLP and (b) BiLSTM models on the group 1 test set (window
length w = 512 and time-unit µ = 1/2).
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