
Supplemental Materials: A Comparative Effectiveness Study on
Opioid Use Disorder Prediction Using Artificial Intelligence and
Existing Risk Models

Sajjad Fouladvand1,2,10, PhD; Jeffery Talbert1,3, PhD; Linda P. Dwoskin4, PhD; Heather Bush5,
PhD; Amy L. Meadows6, MD; Lars E. Peterson7,8, MD, PhD; Yash R. Mishra1,2, MSc; Steven	K.	
Roggenkamp1,	MSc;	Fei Wang9, PhD; Ramakanth Kavuluru1, PhD; Jin Chen, PhD

1Institute for Biomedical Informatics; 2Department of Computer Science; 3Department of

Internal Medicine; 4Department of Pharmaceutical Sciences; 5Department of Biostatistics;

6Department of Psychiatry; 7Department of Family and Community Medicine, University of

Kentucky, Lexington, KY, USA; 8American Board of Family Medicine, Lexington, KY, USA;

9Department of Population Health Sciences, Weill Cornell Medicine, Cornell University, New

York, NY, USA; 10Stanford Center for Biomedical Informatics Research, Stanford University,

Stanford, CA, USA.

S1. Data format

For each of the enrollees in the case and control cohorts, their medications, diagnoses, procedure

and demographic records between 2009 to 2020 were extracted. The original format in IBM

MarketScan data is a table where each row is a visit and columns are enrollee ID, date of visit,

and prescription/diagnosis/procedure details. Each data stream was converted into an enrollee-

time matrix including tuples (𝑃, 𝑇, 𝑋) where 𝑃 is the enrollees set in our cohorts, 𝑇 is a set of

monthly time points from January 2009 to June 2020 (138 time steps in total), and 𝑋 is the

feature set for each data stream. For medications stream, 𝑋 includes 50 high level medication

codes. For diagnoses, 𝑋 is a set of 138 diagnoses CCS codes. Procedures includes 79 procedures

CCS codes. This dynamic data was used to train the LSTM, transformer and MUPOD. Further,

we created a static data to train classical machine learning models including logistic regression,

random forest and XGBoost as these models are more effective when trained using static data

rather than sparse and high dimensional temporal data. Therefore, longitudinal data 𝑋(𝑃, 𝑇, 𝑋)

were converted to a new format including tuples (𝑃, 𝐹), where 𝑃 is the complete list of enrollees,

and 𝐹 includes frequency values for all medication, diagnosis, and procedures across the time

steps concatenated with demographic features age and sex.

S2. Anchor based cohort matching

Cases and controls were matched based on age, sex, monthly opioid prescription use and

longitudinal data availability using an anchor-based method. For each sex group in the case

cohort, patients were first clustered into multiple groups using k-means clustering algorithm.

Age, sex, monthly opioid prescription use and longitudinal data availability were used for

clustering the cases. The number of clusters were tuned using elbow method1 (10 cluster for

males and 11 clusters for females; Figure S1). These cluster centers combined with one percent

of randomly selected samples from each cluster formed a set of 1,032 and 1,360 anchors for male

and female cohorts, respectively. Cases and controls were then matched based on their average

distance to these anchors. In fact, for each case 𝑥 with average distance of 𝑑 from the

corresponding (males or female) anchors, a control sample 𝑦 with an average distance of 𝑑 ± 𝑒

to the anchors was selected where 𝑒 is the minimum value across all non-matched control

samples.

(a) Male patients

(b) Female patients

Figure S1. Distortion score vs number of clusters for both female and male cases. The dashed
black line shows the optimum number of clusters for each cohort.

Figure S2 shows the effect of this matching on case and control cohorts. Note, this figure is

created using 2K randomly selected samples for clarity and visualization purpose. In Figure S2.a,

the longitudinal medications, diagnoses and procedures data were first converted to a static data.

Dimensionality of this static data was then reduced to 2D using tSNE algorithm2. This figure

shows that cases (red dots) and controls (blue dots) distributions are well matched in the feature

space. Together cases and controls can train a machine learning model efficiently to discriminate

between cases and controls. Figure S2.b shows the distributions of opioid use frequencies for

cases (red bars) and controls (blue bars). X-axis in this figure shows the frequency of opioid use

and y-axis is the number of patients with the relevant opioid use frequency. As opioid use

increases (toward the tail of the histogram), the number of cases (red bar) increases in

comparison to controls (Figure S2.b).

However, cases and controls are still well matched as the distributions are similar across x-axis.

 (a) Overall distribution. (b) Opioid use duration.

Figure S2. Effect of case and control matching.

S3. Feature filtering

Original feature set includes 619 predictors (94 medications, 283 diagnoses and 242 procedure

high level codes). However, many of these features are rare events causing a high level of

sparsity in the data, which can significantly reduce the efficacy of the AI models3. Figure S3.a, b

and c show the sparsity distributions for medications, diagnoses and procedures, respectively. X-

axis shows features (each bar is associated with one feature) and y-axis shows the number of

patients for whom that predictor value is non-zero at least during one visit. Assuming the

distributions are half-bell, we excluded features that were more than two standard deviation from

mean of the full bell shape distribution. As a result, the final predictor set includes 269 variables

(50 medications, 138 diagnoses, 79 procedures plus 2 demographic features).

(a) Medications (b) Diagnoses (c) Procedures

Figure S3. Sparsity distribution of medications, diagnoses and procedures variables.

S5. Multi-stream transformer model architecture

Data representation

Multi-stream transformer for opioid use disorder prediction (MUPOD) is a transformer-based

deep learning model that we have designed to analyze 𝑛 highly correlated healthcare data

streams simultaneously. To minimize ambiguity, the algorithm is described for a single patient

and for 𝑛	 = 	3. Each patient can be represented by 𝑝 = (𝑆, 𝑦) in which 𝑆 is a set of input

streams and 𝑦 is the target variable. Herein, three input streams are considered: 1) medication

tuples (𝑇,𝑀) in which 𝑡! is the 𝑖"# time step and 𝑀 is a list of 50 medication codes represented

as a multi-hot encoding vector at time 𝑡!, 2), diagnoses tuples (𝑇, 𝐷) where 𝑡! is the 𝑖"# time step

and 𝐷 is a list of 138 diagnoses CCS codes represented as a multi-hot encoding vector for patient

𝑃 at time 𝑡!, 3) procedures tuples (𝑇, 𝑃) in which 𝑡! is the 𝑖"# time step and 𝑃 is a set of 79

procedure codes represented as a multi-hot encoding vector for the patient 𝑃 at 𝑡!. These data

streams, (𝑇,𝑀) and (𝑇, 𝐷) and (𝑇, 𝑃), are represented using LSTM models to address sparsity

and high dimensionality in the raw data.

The goal of data representation is to learn a function: 𝑓$: 𝑋 → ℝ% where 𝑑 shows the dimension

of the representation to which each input stream is mapped, 𝑋 ∈ {𝑀,𝐷, 𝑃}, and 𝑀, 𝐷 and 𝑃 are

medication, diagnosis, and procedure streams, respectively. To train 𝑓$, three LSTM were

separately trained using medications (𝑇,𝑀), diagnosis (𝑇, 𝐷) and procedure (𝑇, 𝑃) streams. The

intermediate outputs from the trained LSTM hidden states were used to represent case and

control cohorts. The general schema of the data pre-processing and representation is shown in

Figure S4.

Figure S4. Data representation. Data is first converted to an enrollee-time matrix 𝑋(𝑃, 𝑇, 𝐹).
Then, each stream of data is fed to a different LSTM model to produce the represented data.

Multi-stream self-attention layer

The represented input streams, 𝑀, 𝐷, and 𝑃, are first fed into the self-attention layer to generate

query, key, and value matrices for each input stream. For example, medications 𝑀 are fed to a set

of fully connected layers to generate 𝑀&, 𝑀', and 𝑀(, representing the query, key, and value

matrices for the represented medication stream for patient 𝑃. Let 𝑋, 𝑌 ∈ {𝑀,𝐷, 𝑃}, the query,

key, and value matrices are used to find the attentions across these three input streams:

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛A𝑋& , 𝑌' , 𝑌(B = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥()!*"
#

+%$
)𝑌((1)

Note, the 𝑑, is the same as the original transformer. Figure S5 shows the general architecture of

MUPOD and a detailed description of MUPOD’s self-attention layer. The raw medication and

diagnose streams are first represented in the representation layer (the intermediate outputs of the

LSTMS models in Figure S4). The temporal information is then encoded into the represented

streams using the original position encoding in transformer. The encoded streams are processed

in the MUPOD’s multi-stream encoder layer. This novel multi-attention layer is further

described in more details in Figure 5.b. In the figure, 𝑋&, 𝑋', and 𝑋(represent query, key, and

value matrices for stream 𝑋(𝑋 ∈ {𝑀,𝐷, 𝑃}). All possible combinations of the data streams are

used to determine the attention weights between different time points and across streams.

Attentions are then passed through a set of dense layers to generate outputs. Given three data

streams 𝑀, 𝐷 and 𝑃, six combinations can be generated i.e., 𝑀𝑀, 𝑀𝐷, 𝑀𝑃, 𝐷𝐷, 𝐷𝑃 and 𝑃𝑃.

(a) General architecture of MUPOD (b) Multis-stream self

Figure S5. MUPOD architecture. 𝑋&, 𝑋', and 𝑋(represent query, key, and value matrices for the
input stream 𝑋, where 𝑋 ∈ {𝑀,𝐷, 𝑃}. 𝐴𝑡𝑡)* represents the attention weights between different
records across input streams 𝑋 and 𝑌, where 𝑋, 𝑌	 ∈ {𝑀,𝐷, 𝑃}. 𝑂)* represents the outputs, which
capture the associations between the input streams 𝑋 and 𝑌. The demographic information is
plugged into the system before the last layer and in the classification layer.

The reconstruction layer receives the relevant outputs and maps them to appropriate format for

the next layer as described in Equation 2. For example, only the outputs relevant to the

medications (𝑀) including 𝑀𝑀, 𝑀𝐷 and 𝑀𝑃 are used to reconstruct the medication stream:

𝑓: 𝑂)) , 𝑂)* → 𝑋G 	

𝑋G = [𝑐𝑜𝑛𝑐𝑎𝑡(𝑂)) , 𝑂)*)]𝑊- + 𝑏- (2)

where 𝑂)) , 𝑂)* ⊂	 {𝑂.. , 𝑂./ , 𝑂/0 , 𝑂// , 𝑂00}, 𝑋G ∈ {𝑀O, 𝐷O, 𝑃G}, 𝑋, 𝑌 ∈ {𝑀,𝐷, 𝑃}, 𝑊- and 𝑏- are

trainable reconstruction weight and bias matrices. The two reconstructed matrices generated by

the last encoder layer are fed to classification layer to make the final decision for the current

patient	𝑝	as 𝑆𝑜𝑓𝑡𝑚𝑎𝑥([𝑐𝑜𝑛𝑐𝑎𝑡(𝑀O, 𝐷O, 𝑃G)]𝑊 + 𝑏).

S6. Settings

The data set include 474,208 patients, which was randomly grouped into 426,812 training

samples and 100 randomly selected testing sets each with 1% of the test cohort of 47,396

patients in total. Note, none of the test sets overlap with the train set. Logistic regression, random

forest and XGboost models were trained using the train set and optimized using a randomized

search 3-fold cross validation. The optimum logistic regression has a sag as its solver with no

penalty and 𝐶 = 0.0001. The optimum random forest model includes 1800 estimators with

maximum depth of 60. The optimum values for the number of estimators, maximum depth,

learning rate and gamma for the XGBoost model used in Tables 2 and 3 are 2000, 64, 0.01, and

0.1, respectively. Note, for the risk identification results presented in Figure 1, we used a smaller

XGBoost model due to high complexity of the creating SHAP trees using our big data. This

smaller XGBoost model was trained using randomly selected five percent of the data (23,711

samples) and top-10 frequently used medications, diagnoses and procedures variables plus the

demographic information including age and sex. The accuracy, precision, recall, F1-score and

AUC for this smaller XGBoost model are 0.598, 0.595, 0.611, 0.603 and 0.643, respectively.

Deep learning models were trained using pre-defined hyper-parameters due to the high time

complexity of the training process. The learning rate, regularization factor, number of hidden

neurons, number of epochs and batch size for the LSTM model are equal to 0.01, 1012, 48, 1 and

256, respectively. The transformer model includes 4 layers trained with a learning rate, dropout

rate, number of epochs, number of heads, and batch size of 0.001, 0.3, 5, 4 and 256, respectively.

The number of layers, learning rate, dropout rate, number of epochs, number of heads and batch

size for MUPOD were 4, 0.001, 0.3, 5, 4 and 256, respectively. All models were trained on a

server machine equipped with eight GeForce GTX 1080 GPUs.

