
Multi-ancestry genome-wide association study improves resolution of genes, 

pathways and pleiotropy for lung function and chronic obstructive pulmonary 

disease 

Methods 

GWAS in each cohort 
All GWAS included appropriate adjustments for covariates age, sex, height, smoking and ancestry principal 

components and relatedness was accounted for using appropriate association software (BOLT-LMM or SAIGE). All 

phenotypes were rank inverse-normal transformed after adjustment. Quality control of the imputation in each 

cohort and the returned association summary statistics was performed by the central analysis team (Supplementary 

Note). We assigned each cohort to one of the five 1000 Genomes super-populations European (EUR), African (AFR), 

Admixed American (AMR), East Asian (EAS) or South Asian (SAS) based on self-reported ancestry apart from UK 

Biobank (57.4% of total sample size) where we used ADMIXTURE v1.3.01 to determine ancestry (Supplementary 

Note, Supplementary Table 4). MR-MEGA requires effect estimates from cohorts to be meta-analysed to be on the 

same scale hence we also required lung function association results from each cohort using untransformed 

phenotypes. 

Meta-analysis 
Before meta-analysis, association statistics in each cohort were adjusted by the LD score regression intercept 

calculated in each cohort to adjust for any residual confounding (Supplementary Table 5); the appropriate ancestry-

specific LD reference was used for each cohort (10,000 UK Biobank samples for European cohorts and 1000 genomes 

project samples for African, Admixed American and South and East Asian cohorts). Before meta-analysis variants 

were excluded from each study with imputation INFO <0.5 or minor-allele count (MAC) <3. As transformed effect 

estimates were not on comparable scales we meta-analysed across cohorts using sample-size weighted, Z-score 

meta-analysis with METAL (released v2018-08-28)2. No genomic control was applied post-meta-analysis. After meta-

analysis variants with MAC <20 were excluded. 

Signal selection and conditional analysis 
We chose a genome-wide significance threshold of P <5×10-9 as recommended from sequencing studies3. We 

selected 2 Mb regions centred on the most significant variant for all regions containing a variant with P <5×10-9. 

Regions within 500 kb of each other were merged for conditional analysis. Stepwise conditional analysis was run in 

each region in each cohort using GCTA v1.93.2beta4 using an ancestry-specific LD reference for each cohort 

(Supplementary Note) and then conditional results were meta-analysed across cohorts and any new conditionally 

independent signals with P <5×10-9 were added to our list of signals. moloc v0.1.05 was used to colocalise signals 

across the 4 lung function traits to obtain a set of distinct signals which were then colocalised with previously 

reported signals to obtain a set of novel lung function signals (Supplementary Note). 

Exclusion of smoking signals from follow up 
We checked our sentinels for association with smoking quantitative traits “Age of Initiation" (N=262,990) and 

"Cigarettes Per Day" (N=263,954), and binary traits "Smoking Cessation" (N cases=139,453; N controls=407,766) and 

"Smoking Initiation” (N cases=557,337; N controls=674,754) in the GWAS and Sequencing Consortium of Alcohol and 

Nicotine use (GSCAN) consortium6 (proxies with r2 >0.8 were checked for sentinels not present in GSCAN). We 

excluded 8 lung function signals from further analysis that we determined to be primarily driven by smoking 

behaviour (Supplementary Table 7) by the following criteria: (i) P <4.86×10-5 (Bonferroni corrected 5% threshold for 

1028 signals) for association with any smoking trait; (ii) the same “risk” allele that increases smoking exposure 

behaviour and decreases lung function. 

Heritability estimate 
We calculated the proportion of variance explained by the sentinels reported for each trait using the formula: 
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where n is the number of variants, fi and βi are the frequency and effect estimate of the i’th variant from the UK 

Biobank European ancestry untransformed results, and V is the phenotypic variance (always 1 as our phenotypes 

were inverse-normal transformed). We assumed a heritability of 40%7,8 to estimate the proportion of additive 

polygenic variance. 

Ancestry-adjusted trans-ethnic meta-analysis with MR-MEGA 
To improve fine-mapping resolution using LD differences between ancestries and to estimate heterogeneity of 

variant associations attributable to ancestry, we undertook multi-ancestry meta-regression with MR-MEGA v0.29, 

which incorporates axes of genetic ancestry as covariates. MR-MEGA uses multidimensional scaling (MDS) of allele 

frequencies across cohorts to derive principal axes of genetic variation to use for ancestry adjustment 

(Supplementary Note). The location of the cohorts on the first two MDS-derived principal components, plotted in 

Supplementary Figure 4, show clustering in accordance with the assigned ancestry groups. We used 4 principal 

components for ancestry adjustment, as this captured most of the variance in ancestry and meant that we could 

meta-analyse the subset of 960 signals with results from at least 7 cohorts (MR-MEGA requires at least the number 

of principal components + 3 cohorts). MR-MEGA implements genomic control at study level, therefore, no further 

genomic control was applied. We ran MR-MEGA at each locus containing one or more signals; in the loci with 

multiple signals we ran MR-MEGA multiple times each time conditioning on all except 1 signal at the locus to obtain 

the conditional results for each signal. For each sentinel, we obtained an estimated ancestry-associated (P-

value_ancestry_het) and residual (P-value_residual_het) heterogeneity. Additionally, MR-MEGA reports the log of 

Bayes factor, which can be used for the construction of credible sets. 

Effects in children 
We meta-analysed associations for the top signals (972 out of 1020 available in at least one children cohort) with the 

lung function traits in three European-ancestry children’s cohorts: USC children’s study, ALSPAC and Raine Study (Age 

13-15) (i.e. FEV1, FVC and FEV1/FVC signals were meta-analysed from the three cohorts but PEF signals were meta-

analysed from ALSPAC and Raine Study). To investigate the age-dependent effects of genetic variants on lung function, 

we compared the effect sizes estimated from untransformed phenotypes in children of the top signals with adults in 

the European-specific meta-analysis (N = 35 cohorts for FEV1 and FVC; 34 for FEV1/FVC; 16 for PEF) by Welch’s t test. 

Bonferroni significance threshold for 972 tests was applied (P <5.14x10-5). 

Cell-type and functional specificity 

Stratified LD score regression 
We tested for enrichment of regulatory features at variants overlapping four histone marks (H3K27ac, H3K9ac, 

H3K4me3, H3K4me1) that are specific to lung, fetal lung and smooth muscle containing cell lines (colon and 

stomach) using stratified LD-score regression10. In this study, we only considered European specific meta-analysis 

with 39 cohorts for FVC, FEV1 and FEV1/FVC (17 cohorts for PEF). For the analysis of cell-type-specific annotations, 

we assessed statistical significance at the 0.05 level after Bonferroni correction for 48 hypotheses tested. Since these 

annotations are not independent, a Bonferroni correction is conservative. We also report results with false discovery 

rate (FDR) <0.05 using the Benjamini-Hochberg method. 

Regulatory and functional enrichment using GARFIELD 
We tested enrichment of SNPs at different types of functional annotation regions (DNase I hypersensitivity hotspots 

(DHS), open chromatin peaks, transcription factor footprints and FAIRE, histone modifications, chromatin 

segmentation states, genic annotations and transcription factor binding sites) using GARFIELD11. We used the 

European ancestry meta-analysis with 17 European cohorts for PEF and 39 European cohorts for FVC, FEV1 and 

FEV1/FVC. We applied GARFIELD to DHS annotation in 424 cell lines and primary cell types from ENCODE and 

Roadmap Epigenomics and derived enrichment estimates at trait-genotype association P-value thresholds at 

P <5x10-5 and P <5x10-9. 

Enrichment of annotations in respiratory relevant cell types and tissues 
We curated annotations from the following assays of respiratory relevant cells and tissues (i) Single-cell genome 

ATAC-seq data12 from 19 cell types: Myofibroblast, Pericyte, Ciliated, T_cell, Club, Capillary_endothelial_1/2, Basal, 



Matrix_fibroblast_1/2, Arterial_endothelial, Pulmonary_neuroendocrine, Natural_killer_cell, Macrophage, B_cell, 

Erythrocyte, Lymphatic_endothelial, Alveolar Type 1/2 (downloaded from https://www.lungepigenome.org/); (ii) 

ATAC-seq data for 5 human primary lung-cell types implicated in COPD pathobiology13; cell types: large and small 

airway epithelial cells, alveolar type II, pneumocytes and lung fibroblasts (downloaded from 

http://www.copdconsortium.org/); (iii) tissue-specific transcription factor binding sites from DNase-seq footprinting 

of 589 human transcription factors in lung and bronchus14. We tested for cell and tissue specific enrichment of these 

annotations at our lung function signals using fGWAS15 (Supplementary Note). 

Identification of putative causal genes and variants 

eQTL/pQTL colocalisation 
Three eQTL resources were used for colocalisation of lung function signals with gene expression signals: (i) GTEx V8 

(downloaded from https://www.gtexportal.org/ July 2020, tissues: Stomach, Small Intestine Terminal Ileum, Lung, 

Esophagus Muscularis, Esophagus Gastroesophageal Junction, Colon Transverse, Colon Sigmoid, Artery Tibial, Artery 

Coronary, Artery Aorta); (ii) eQTLgen16 blood eQTLs; (iii) UBC lung eQTL17. Two blood pQTL resources were used to 

colocalise with associations with protein levels: (i) INTERVAL pQTL18 and (ii) SCALLOP pQTL (http://scallop-

consortium.com/). eQTL and pQTL colocalisation was tested with coloc_susie method19 (Supplementary Note). 

Rare variants from exome sequencing 
We checked for rare (MAF <1%) exonic associations near (±500 kb) our lung function sentinels using both single-

variant and gene-based collapsing tests from (i) single variant and gene-based associations in 281,104 UK Biobank 

exomes from the AstraZeneca PheWAS Portal20 (https://azphewas.com/), (ii) single variant and gene-based tests of 

loss-of-function and missense variants in 454,787 UK Biobank participants21, (iii) gene-based tests on whole-exome 

imputation in 500,000 UK Biobank participants22. We used a threshold of P <5x10-6 for both single-variant and gene-

based tests. 

Nearby mendelian respiratory disease genes 
We selected rare mendelian-disease genes from ORPHANET (https://www.orpha.net/) within ±500kb of a lung 

function sentinel that were associated with respiratory terms matching regular expression: respir, lung, pulm, 

asthma, COPD, pneum, eosin, immunodef, cili, autoimm, leukopenia, neutropenia, Alagille syndrome. We implicated 

the gene if it has a corresponding respiratory term match in the disease name or if it appears frequently in human 

phenotype ontology (HPO) terms for that disease. 

Nearby mouse knockout orthologs with a respiratory phenotype 
We selected human orthologs of mouse knockout genes with phenotypes in the “respiratory” category, as listed in 

the International Mouse Phenotyping consortium (https://www.mousephenotype.org/) within ±500kb of a lung 

function sentinel. 

Polygenic priority score 
We used a similarity-based method to calculate a gene-level Polygenic Priority Score (PoPS)23 based on the 

assumption that causal genes share functional characteristics. PoPS assumes that if the associations enriched in 

genes share functional characteristics with a gene nearby a lung function signal, then that gene is more likely to be 

causal. The full set of gene features used in the analysis included 57,543 total features – 40,546 derived from gene 

expression data, 8,718 extracted from a protein-protein interaction network, and 8,479 based on pathway 

membership. In this study, we prioritized genes for all autosomal lung function signals within a 500kb (±250kb) 

window of the sentinel and reported the top prioritised genes in the region. For the signals that did not have 

prioritized genes within the 500kb window, we looked for prioritized genes using a 1Mb (±500kb) window 

(Supplementary Note). 

Annotation-informed credible sets 
We used the enriched annotations in respiratory relevant cell types and tissues and enriched genic annotations to 

create annotation-informed 95% credible sets with fGWAS, based on the MR-MEGA ancestry-adjusted meta-

regression results (Supplementary Note). We implicated a putative causal missense variant if it accounted for >50% 

of the posterior probability in the credible set and annotated these with Ensembl Variant Effect Predictor24, to check 

for a deleterious effect by the SIFT, PolyPhen or CADD metrics. 

https://www.lungepigenome.org/
http://www.copdconsortium.org/
https://www.gtexportal.org/
https://azphewas.com/
https://www.orpha.net/
https://www.mousephenotype.org/


Allocation of genes prioritised with 3 or more variant-to-gene to lung function biology categories 
We allocated prioritised genes with 3 or more criteria to different lung function roles (epithelial, 

inflammatory, peripheral lung (including alveolus and endothelial),lung remodelling (including connective tissue), 

chest wall movement and lung development – Figure 3) based on literature review, including GeneCards 

(https://www.genecards.org) and PubMed (https://pubmed.ncbi.nlm.nih.gov). Eighteen of the genes were difficult 

to assign to a specific category on this basis, mainly because they were involved in generic processes such as 

transcriptional control in a wide variety of cell types, these are not shown in Figure 3 but are included in 

Supplementary Table 14. 

Summary of lung function biology  
To provide an illustration of the biology of genes relating to lung function, we undertook a literature review using 

GeneCards (https://www.genecards.org) and PubMed (https://pubmed.ncbi.nlm.nih.gov) for genes implicated by 3 

or more variant-to-gene criteria. We then allocated genes to one or more of the following: epithelial, inflammatory, 

peripheral lung (including alveolus and endothelial), lung remodelling (including connective tissue), chest wall 

movement, and lung development. Genes involved in generic processes such as transcriptional control in a wide 

variety of cell types were not assigned to the above categories and were omitted from the figure. 

Interaction with smoking 
Association testing for lung function traits (FEV1, FVC, FEV1/FVC and PEF) was calculated separately in ever and never 

smokers subgroups and meta-analysed across European ancestry cohorts. We included untransformed phenotypes 

from which we had individual ever and never smoking summary statistics (N=28 cohorts), comprising 206,162 ever 

smokers and 229,046 never smokers. A z-test was used to compare genetic effect between ever and never smokers 

untransformed association results: 
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We considered as significant evidence of interaction any signal with a P <4.9x10-5 (5% Bonferroni corrected for 1,020 

signals tested). 

Genetic risk score 
We selected four ancestry groups in UK Biobank as test data sets (SAS was excluded from GRS analyses because 

UKB_SAS was the only cohort in the multi-ancestry analysis for South Asian): UKB_EUR, UKB_AMR, UKB_EAS, 

UKB_AFR. All the other cohorts except UKB_SAS and QBB were used as discovery datasets. 

We repeated the multi-ancestry meta-regression (MR-MEGA), after excluding the four test GWAS, incorporating the 

same four axes of genetic variation as covariates to account for ancestry. Autosomal signals identified in the signal 

selection process for each lung function trait and reported in the target ancestry population were included in 

downstream analysis for each ancestry. For ancestry j (j=EUR, AMR, EAS or AFR), we estimated ancestry-specific 

predicted allelic effects for ith SNP to be used as weights in the multi-ancestry GRS by 

𝑏̂𝑖𝑗 = 𝛼0𝑖 +∑ 𝛼𝑘𝑖𝑥̅𝑘𝑗
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where 𝑥̅𝑘𝑗 is the averaged position of discovery studies with ancestry j on the kth axis of genetic variation from multi-

ancestry meta-regression, and 𝛼0𝑖 and 𝛼𝑘𝑖 denote the intercept and effect of the kth axis of genetic variation for the 

ith SNP from the multi-ancestry meta-regression. 

We ran each of the ancestry-specific fixed-effect meta-analyses after excluding the test GWAS from the ancestry 

group using METAL with inverse-variance weighting method. For comparison, SNPs used as weights in multi-ancestry 

GRS were selected to build ancestry-specific GRS for each ancestry. 

Testing genetic risk score in independent COPD case-control cohorts 
We tested association of multi-ancestry GRS with COPD susceptibility in five European-ancestry COPD case-control 

studies: COPDGene (Non-Hispanic White) (2,811 cases, 2,534 controls), ECLIPSE (1,764 cases, 178 controls), GenKOLS 

(864 cases, 808 controls), NETT/NAS (376 cases, 435 controls) and SPIROMICS (Non-Hispanic White) (931 cases, 373 

https://eur03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.genecards.org%2F&data=05%7C01%7Cagib1%40leicester.ac.uk%7C937ad1d1e7324a022fda08da31d75eaf%7Caebecd6a31d44b0195ce8274afe853d9%7C0%7C0%7C637877098352538029%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=o4Xe92vAJzGYTMo64TvzNNidCBDqpkSpe6jb0mzNso0%3D&reserved=0
https://eur03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fpubmed.ncbi.nlm.nih.gov%2F&data=05%7C01%7Cagib1%40leicester.ac.uk%7C937ad1d1e7324a022fda08da31d75eaf%7Caebecd6a31d44b0195ce8274afe853d9%7C0%7C0%7C637877098352538029%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=vRKht%2Fh8D8R4MXrBFwLxi%2B%2B8vlyOoEQ%2B9foQnFNPgo8%3D&reserved=0


control) (Supplementary Table 19). We also tested the association in two African-ancestry COPD case-control 

studies: COPDGene (African-American) (821 cases, 1,749 controls) and SPIROMICS (African-American) (174 cases, 

142 controls) (Supplementary Table 19). Associations were tested using logistic regression models, adjusted for age, 

age2, sex, height and principal components. In each COPD case-control study, we divided individuals into deciles 

according to their values of the weighted GRS. For each decile, logistic models were fitted to compare the risk of 

COPD for members of the decile compared to those with lowest decile (i.e. those with lowest genetic risk). Results 

were meta-analysed by ancestry-specific study groups using the fixed effect model. 

PheWAS 
We used Deep-PheWAS25, which addresses both phenotype matrix generation and efficient association testing while 

incorporating the following developments that are not yet available in current platforms and online resources: (i) 

clinically-curated composite phenotypes for selected health conditions that integrate different data types (including 

primary and secondary care data) to study phenotypes not well captured by current classification trees; (ii) 

Integrationi of quantitative phenotypes from primary care data, such as pathology records and clinical measures; (iii) 

clinically-curated phenotype selection for traits that are extremely highly correlated; (iv) genetic risk scores. The 

platform includes 2421 phenotypes in UK Biobank, with a subset of 2243 recommended for association testing: some 

phenotypes that are generated are used solely in the definition of other phenotypes and do not have utility by 

themselves. We removed the four measures of lung function and added seven phenotypes defined in-house (P4002-

6 see Supplementary Table 22) to give 2246 as our final maximum number of phenotypes for association 

(Supplementary Table 22). Deep-PheWAS then filters these, requiring a minimum case number; we chose to keep 

the default settings of 50 -case minimum for binary phenotypes and a 100-case minimum for quantitative 

phenotypes. After limiting to European ancestry and filtering for case numbers this left 1909 phenotypes for 

association analysis. No additional phenotypes were removed when removing pairs related up to 2nd degree (KING 

kinship coefficient >=0.0884). 

There are five types of phenotypes within Deep-PheWAS categorised according to the data and methods used to 

create them. Composite phenotypes are made using linked hospital and primary care data including in some cases 

primary care prescription data, alongside any of the UK Biobank field-IDs including self-reported non-cancer 

diagnosis and self-reported operations. Phecodes are defined using only linked hospital data 

(https://phewascatalog.org/phecodes_icd10). Formula phenotypes combine available data using bespoke R code per 

phenotype rather than using the inbuilt functions of phenotype development available in Deep-PheWAS. Added 

phenotypes are lists of cases and controls that have been added to the PheWAS and not developed by the Deep-

PheWAS phenotype matrix generation pipeline. More complete definitions for all none-added phenotypes can be 

found in the Deep-PheWAS description25. 

Single variant PheWAS 
We ran 27 single-variant PheWAS across 1909 traits (Supplementary Table 22) in UK Biobank in up to 430,402 

unrelated European individuals. For 20 genes with 4 or more lines of evidence for being causal (Supplementary 

Table 14) we selected for each gene the variant with the most significant P value that implicates the gene. A further 

7 variants were included in single-variant PheWAS that were putatively causal (accounted for >50% posterior 

probability in the credible set and had a deleterious annotation; Supplementary Table 15) but within a gene that 

was implicated by fewer than 4 lines of evidence. We also included 4 variants implicating the gene CACNA1D, one of 

several genes prioritised encoding calcium voltage-gated channel subunits and the genes MECOM, CCDC91 and 

MAPT where a different effect was observed in adults and children. The single variant PheWAS was aligned to the 

lung function trait decreasing allele. Where we noted associations with testosterone and sex hormone binding 

globulin, we also undertook sex-stratified PheWAS. 

Association with trait-specific genetic risk score 
We created 4 genetic risk scores (GRS) for UK Biobank European samples, one for each trait FEV1, FVC, FEV1/FVC and 

PEF including all conditionally independent sentinel variants for the trait that were associated with P <5×10-9, giving 

425, 372, 442 and 194 variants in each trait-specific GRS respectively. Each of the 4 GRS were weighted by the effect 

sizes from the multi-ancestry meta-regression for the relevant trait and then checked for association with 1909 traits 

in the PheWAS. 

https://phewascatalog.org/phecodes_icd10


Association with pathway-specific genetic risk score 
We selected 29 pathways that were enriched at FDR <10-5 for our 559 genes implicated by 2 or more lines of 

evidence (Supplementary Table 25). We created a weighted GRS (weights estimated from multi-ancestry meta-

regression for FEV1/FVC) for each of the 29 pathways by including for each gene in the pathway, as for the single-

variant PheWAS above, the variant with the most significant P value for the trait that implicates the gene in our 

variant-to-gene mapping (Supplementary Table 25). Each of the 29 GRS were then checked for association with 

1909 traits in the PheWAS. 
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