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Abstract 

Autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD) are 

two major neurodevelopmental disorders that frequently co-occur. However, the genetic 

mechanism of the co-occurrence remains unclear. The New Jersey Language and 

Autism Genetics Study (NJLAGS) collected more than 100 families with at least one 

member affected by ASD. NJLAGS families show a high prevalence of ADHD and 

provide a good opportunity to study shared genetic risk factors for ASD and ADHD. The 

linkage study of the NJLAGS families revealed regions on chromosomes 12 and 17 that 

are significantly associated with ADHD. Using whole genome sequencing data on 272 

samples from 73 NJLAGS families, we identified potential risk genes for ASD and 

ADHD. Within the linkage regions, we identified 36 genes that are associated with 

ADHD using a pedigree-based gene prioritization approach. KDM6B (Lysine 

Demethylase 6B) is the highest-ranking gene, which is a known risk gene for 

neurodevelopmental disorders, including ASD and ADHD. At the whole genome level, 

we identified 207 candidate genes from the analysis of both small variants and structure 

variants, including both known and novel genes. Using enrichment and protein-protein 

interaction network analyses, we identified gene ontology terms and pathways enriched 

for ASD and ADHD candidate genes, such as cilia function and cation channel activity. 

Candidate genes and pathways identified in our study provide a better understanding of 

the genetic etiology of ASD and ADHD and will lead to new diagnostic or therapeutic 

interventions for ASD and ADHD in the future. 
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Introduction 

Autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD) are 

two neurodevelopmental disorders (NDDs) of high prevalence and severity. ASD is 

characterized by deficits in social interaction and social communication, and by 

restricted, repetitive, and stereotyped patterns of behavior, interests, and activities (1). 

ADHD is characterized by inattention and hyperactive/ impulsive symptoms (1). The two 

disorders have shown a high comorbid frequency where 20-50% of children with ADHD 

meet the criteria for ASD and 30-80% of ASD children meet the criteria for ADHD (2). 

Both conditions can have a severe negative impact on patients’ quality of life, and only 

worsen when co-occurring.  

On the behavioral level, and especially regarding diagnosis and clinical care, it is 

often difficult to distinguish some of the behavioral characteristics that define ASD to 

those that define ADHD. Individual with ASD often suffer from symptoms consistent with 

ADHD. Lack of focus, impulsivity, and emotional outbursts may be present in both 

disorders yet the approach to intervention, both behaviorally and pharmacologically, can 

be substantially different. Clarifying the genetic relationship between these two 

disorders could inform future treatment decisions. If ASD and ADHD represent 

pleiotropic manifestations of the same disorder, a unified treatment approach might be 

effective to target the symptoms of both. If they stem from different etiologies, separate 

treatments for each might prove more effective. Therefore, a deep understanding of the 

genetic etiology of familial co-occurrence of ASD and ADHD is important to enhance 

treatment planning. 
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Extensive research has been conducted on both disorders and demonstrates 

overlapping genetic factors between the two conditions (1-7). For example, ADHD 

candidate causal genes DRD3 and MAOA are cautiously positively associated with ASD 

(2). In genome-wide association studies (GWAS), 16 single nucleotide variants (SNVs) 

related to ADHD were found to be possibly involved in ASD and 25 SNVs related to 

ASD are possibly involved in ADHD (2). In copy number variation (CNV) studies, CNVs 

segregated with ADHD were also found to be enriched for ASD candidate genes. 

Correspondingly, ASD patients’ family members also carry ADHD diagnosed CNVs (8, 

9). While the studies have suggested shared genetic risk factors as one possible reason 

for the co-occurrence of the two disorders, they either used microarray or whole exome 

sequencing data. In addition, those studies are based on the case-control study design 

and do not leverage the power of family studies. Therefore, the evidence of shared 

genetic risk factors between ASD and ADHD from these studies is mostly weak and 

inconclusive. 

To further explore the genetic etiology of ASD and ADHD co-occurrence, we 

aimed to use whole-genome sequencing (10) analysis to identify SNVs and structural 

variants (SVs) responsible for the ASD or ADHD phenotypes segregated in the New 

Jersey Language and Autism Genetics Study (NJLAGS) project (11). NJLAGS is a 

project studying the genetic etiology of ASD and related NDDs and has conducted WGS 

on 272 samples from 73 families, each with at least one ASD patient. All family 

members have been characterized by extensive behavioral assessments of language 

and social functioning, restrictive and repetitive behaviors, and other co-occurring 

behaviors (11). Despite the original study’s focus on ASD, these families exhibit 
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elevated rates of ADHD, with more than 40% of the ASD patients also diagnosed with 

ADHD. The co-occurrence of ASD and ADHD in the NJLAGS families provides an 

opportunity to identify genetic factors underlying the co-occurring ASD and ADHD. 
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Patients and Methods 

Sample collection and phenotype assessment 

The sample in this study includes 79 families from a previous NJLAGS study (11) 

(Wave 1) plus an additional 32 families collected after the 2014 publication (Wave 2). 

The original aim of the NJLAGS study was to identify genetic variation related to DSM-

IV autistic disorder, language impairment, as well as related disorders. Families were 

required to have at least one person with autistic disorder and one additional person 

with a language-learning impairment (11). During Wave 1, autism probands were 

required to have a strict diagnosis of autistic disorder based on the Autism Diagnostic 

Interview (ADI-R), Autism Diagnostic Observation Schedule (ADOS), and the 

Diagnostics and Statistical Manual-IV (DSM-IV). A second proband had to meet the 

criteria for Specific Language Impairment (SLI), a disorder where language 

development is delayed or deviant and cannot be explained by any other 

neurodevelopmental diagnosis. For Wave 2, NJLAGS sought to understand if the 

original strict autistic disorder diagnostic criteria were necessary, and therefore, the 

autism proband requirements were intentionally relaxed to become more in line with the 

less restrictive, newer DSM-5 criteria for Autism Spectrum Disorder (12). All subjects 

gave informed consent or assent conforming to the guidelines for treatment of human 

subjects from the Institutional Review Board at Rutgers, The State University of New 

Jersey (IRB number: 13-112Mc).  

For ASD probands, ADHD characteristics were identified during the intake 

interview by either a study child psychiatrist or a developmental pediatrician. In each 

case, the diagnosis was corroborated in detailed NJLAGS history questionnaires that 
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asked the parents if their child had ever received a diagnosis of attention deficit disorder 

(ADD) and/or ADHD: 1) Medical History Questionnaire, 2) Family History Questionnaire, 

and 3) Language Correlates Questionnaire. For all other family members, parents 

completed the same detailed Family History Questionnaire and Language Correlates 

Questionnaire regarding whether they or their children have received a diagnosis of 

several different neurodevelopmental or neuropsychiatric disorders, including 

ADD/ADHD. In all questionnaires ADD and ADHD were treated as one category and we 

used ADHD as a collective term for the affected individual. 

Genotyping and sequencing 

DNA extraction was performed by RUCDR (Piscataway, NJ), either from blood DNA 

(WB) or Lymphoblastoid cell lines (LCL). Wave 1 Affymetrix Axiom array genotyping 

experiments have been described previously (11). For Wave 2, single nucleotide 

polymorphism (SNP) data was generated with the Illumina Infinium PsychArray-24 v1 

array (Illumina, San Diego, CA), which includes 593,260 SNPs. SNP with a population 

minor allele frequency (MAF) >1% were selected. Quality control on SNP genotypes 

was conducted by array batch and by array type, as described previously (11). The 

quality control criteria include individual/SNP genotype completion, relationship 

checking, Mendelian errors checking, and ancestry inference. The linkage analysis only 

included samples that clustered with the CEU (Utah residents with Northern and 

Western European ancestry from the CEPH collection) samples from the HapMap 

reference data, as determined by EIGENSTRAT using the recommend parameters in 

the documentation (13).  
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Initially, a subset of 10,899 SNPs in common across the Wave 1 and 2 arrays 

was selected for the linkage analysis, which minimize marker-to-marker linkage 

disequilibrium while retaining a high MAF (>30%) to provide suitable genomic coverage 

of recombination events in the pedigrees. Overlap in some genomic regions was too low 

to retain acceptable information content as measured by MERLIN (14). In those regions, 

array-specific SNPs were included. This procedure did not pose an issue with missing 

data within families since every family was genotyped using only a single array type. 

The whole-genome sequencing was performed in four batches by three vendors 

(Table S1). All samples were sequenced using Illumina paired-end format with a spec of 

30x coverage of the human genome. Some samples were excluded in downstream 

analyses because of quality issues. A few were dropped because the subjects withdrew 

from the study. For samples that were sequenced in more than one batch, the best 

quality run was used for the analysis. The raw sequencing reads, variants, and 

genotypes for all samples are available in the National Institute of Mental Health Data 

Archive (NDA) under experiments C1932 and C2933. 

Linkage Analysis 

Linkage analyses were conducted with KELVIN (v2.3.3). KELVIN implements the 

posterior probability of linkage (PPL) metric to estimate the probability that a genetic 

location is linked with a tested trait (15). Primary linkage analysis of the phenotypes was 

conducted on each wave separately, and the linkage evidence was sequentially 

updated across the waves using Bayes' rule to provide a single metric for linkage 

evidence. A secondary linkage analysis was conducted using all families jointly in a 

single pooled analysis of each trait. By comparing the sequentially updated result to the 
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pooled result, the role of heterogeneity in the dataset can be inferred qualitatively. 

Because stratifying on an irrelevant trait will on average produce the same result as a 

pooled analysis (16), if the sequentially updated PPLs were appreciably higher than 

pooled results, heterogeneity demarcated by wave is likely to present in the data. 

Based on previous simulations of the null distribution in the NJLAGS sample 

when correcting for three phenotypes (11), a PPL of 0.32 or greater is consistent with a 

genome-wide error rate of p<0.001, a PPL of 0.26 corresponds to p<0.01, and a PPL of 

0.11 corresponds to p<0.05. These threshold values are similar to previous studies of 

the false positive rate of the PPL after correction for testing multiple phenotypes (17, 18). 

Small variant (SNV/indel) and SV calling 

Alignment of paired-end FASTQ files was performed using the BWA-MEM algorithm 

(v0.7.12) (19) to the Human Genome Reference Consortium Build 37 (hg19) using 

default parameters. The output was converted to BAM format using SAMtools view 

(v0.1.19) (20). BAM files from read alignment were then processed using the GATK 

v3.5.0 variant calling pipeline following the best practice recommendation for alignment 

processing and variant calling (21, 22). Starting from sorted and indexed individual BAM 

files, a series of GATK alignment processing procedures were conducted, including 

PCR duplicate removal and base quality score recalibration. SNVs and small 

insertion/deletions (indels) were called per individual using HaplotypeCaller before 

being jointly called by GenotypeGVCF. All samples from different sequencing batches 

were jointly called along with the 1000 Genomes project European ancestry samples 

(CEU, GBR, FIN) as controls to reduce the batch-effect for downstream analysis (23). 
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After variant call, we employed variant quality score recalibration using 

VariantRecalibrator and ApplyRecalibration as outlined in the GATK protocol.  

SV calling has been historically difficult for tools using a single algorithm (24). 

Therefore, an ensemble algorithm, MetaSV (25), along with its components (Breakseq2 

(26), breakdancer (27), CNVnator (28), and Pindel (29)) were used for SV discovery. 

Local realignment by SPAdes (30) and AGE (31) were carried out to further improve 

breakpoint resolution. MetaSV then combined all produced evidence into a single call 

set. The outputs of different chromosomes from the same individual were then merged 

back to one file using VCFtools (32). Basic statistics for the SV calls were calculated by 

SURVIVOR (33) for quality control. SVs were then filtered to select SVs that had 

consensus calls from at least two SV callers in MetaSV. 

Variant annotation and selection 

SNVs and indels were annotated by VAT in the VAAST package (v2.0.2) (34) and 

condensed into CDR files to represent one family per file by VST in the VAAST package. 

The variants were filtered to include those that have an MAF < 5% in the ExAC dataset 

excluding psychiatric cohorts (ExAC non-psych v0.3.1 

https://gnomad.broadinstitute.org/). For control samples, 635 GTEx WGS samples were 

obtained from the GTEx project (dbGaP accession number phs000424.v7.p2) (35) and 

condensed into a single group. SV calls were annotated by AnnotSV (v3.0.9) (36).  

Gene prioritization 

For SNVs and indels, the gene prioritization tool pVAAST (v0.02) was used to prioritize 

candidate genes (37). A pVAAST score was calculated for each gene from its variants’ 

linkage pattern, association evidence, MAF, and functional prediction. pVAAST 
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analyses were performed for the two ADHD linkage regions and the whole genome, 

under both dominant and recessive modes of inheritance. The linkage region analyses 

were performed at 106 permutations per gene and the whole-genome analyses were 

performed at 105 permutations per gene to determine the significance. For running 

pVAAST, the pedigrees were processed and trimmed to include individuals from one 

pair of ancestral parents per pedigree for the dominant mode, or a two-generation 

subset of the pedigree for the recessive mode. The individuals were selected to 

maximize the number of sequenced and affected samples in each family. 

Candidate genes expressed in at least one of the brain expression databases 

were selected for downstream analysis. For linkage regions, candidate genes that had a 

Bonferroni-corrected p-value < 0.05 were considered significant and selected. For 

whole-genome analyses, candidate genes that have a p-value <= 10-5 and a LOD 

score >= 1 in the pVAAST analysis were selected for downstream analysis. 

For SVs, AnnotSV annotation provides a ranking score for potential pathogenicity 

(36). SVs that are predicted to be likely pathogenic (class 4) or pathogenic (class 5) 

were selected. In each individual, the severity score of an SV in class 4 and 5 is 

calculated as: severity score = (class - 3) * number of SV copies, where the number of 

copies is set at 1 for heterozygous SVs, and 2 for homozygous SVs. A custom script 

was used to convert results from an SV-based report into a gene-based report. For 

each gene, the annotated severity scores of all SVs overlapping a given gene were 

aggregated for affected individuals and unaffected individuals separately. The genes 

were ranked based on the aggregated SV severity scores in affected individuals. Genes 

were selected for downstream analysis using the following criteria: 1. containing SV(s) 
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in more than one affected individual; 2. expressed in at least one of the brain expression 

databases; 3. SV(s) overlapping the exonic region; and 4. the aggregated score in 

affected individuals is higher than that in unaffected individuals. 

Gene annotation, pathway and enrichment analyses 

For gene function predictions, the pLI (probability of being loss-of-function intolerant) 

score was extracted from gnomAD (v3.0) for each gene (38). Brain developmental gene 

expression data were obtained from the GTEx project (v8) (35), the BrainSpan Atlas of 

the Developing Human Brain project (RNA-Seq GENCODE v10 summarized to genes, 

http://www.brainspan.org/static/download.html) (39), and the Human Developmental 

Biology Resource (https://www.ebi.ac.uk/gxa/experiments/E-MTAB-4840/Downloads) 

(40), as previously described (41). The genes’ association with specific cells or diseases 

are predicted by the HumanBase (https://hb.flatironinstitute.org) algorithm that learns 

from large genomics data collections (42). The gene knock-out mouse behavior was 

downloaded from the International Mouse Phenotyping Consortium (IMPC) 

(ftp://ftp.ebi.ac.uk/pub/databases/impc/latest/) (43). Candidate genes for several NDDs 

were collected from previous studies and the gene sets and genes are summarized in 

Table S2. 

The protein-protein interaction (PPI) networks were generated based on gene 

interactions from three databases, including STRING (v11.5) (44), GIANT (v2.0) (42) 

and ConsensusPathDB (v35) (45). The cutoff for the “combined score” for STRING was 

set to 700. For GIANT, interactions with score > 0.6 in tissues from brain and neuron 

system were used, including brain, astrocyte_of_the_cerebellum, 

astrocyte_of_the_cerebral_cortex, basal_ganglion, brainstem, central_nervous_system, 
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central_nervous_system_pericyte, cerebellar_cortex, cerebellum, cerebral_cortex, 

cerebral_hemisphere, corpus_striatum, forebrain, frontal_cortex, glial_cell, global, 

globus_pallidus, gray_matter, gray_matter_of_telencephalon, gyrus, hindbrain, 

hippocampal_formation, hypothalamus, lobe_of_cerebral_hemisphere, neocortex, 

nervous_system, neural_cell, neuron, nucleus_of_brain, pallium, parietal_lobe, 

peripheral_nervous_system, pituitary_gland, pons, spinal_cord, substantia_nigra, 

telencephalic_nucleus and telencephalon. The Python NetworkX package 

(https://networkx.org) was used to visualize the PPI network and the positions of genes 

in the network were saved for final plotting with R (v4.1.0) packages ggplot2 and 

scatterpie. Details of interaction data download and processing procedures were 

described previously (41, 46).  

Gene set enrichment analyses were performed using over-representation 

analysis provided by ConsensusPathDB (45). All pathway, Gene Ontology (GO), and 

protein complex-based enrichment analyses were enabled, with the minimum two 

genes from the input and p-value cutoff set to 1. Enrichment p-values for all genes were 

determined by ConsensusPathDB using a hypergeometric test and enrichment p-value 

for each gene list was calculated with Fisher’s exact test as described previously (41). 

An enriched term (i.e., GO, pathway, or protein complex) was selected for further 

analysis if: 1) the total number of genes belong to the term is ≤ 500; 2) the term includes 

more than three genes from all input genes (ADHD, ASD/ADHD, and NDD genes); 3) 

enrichment p-value < 0.01 for ADHD and/or ASD/ADHD gene lists.  
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Results 

Overall study design 

For samples in the NJLAGS cohort, we conducted the SNP genotyping microarray 

analysis and the WGS analysis in parallel (Figure 1). Genotypes from the genotyping 

microarray were used to perform linkage analysis and the WGS data were then used to 

prioritize genes based on SNVs/indels and SVs in both linkage regions and the whole 

genome. To account for the genetic heterogeneity of ASD and ADHD, candidate gene 

sets were subjected to enrichment and pathway analyses.  

Among the 73 families involved in WGS, 47 (64.3%) have individuals who are 

also affected by ADHD. For the 493 total individuals within the 73 families, 125 are 

affected by either ASD or ADHD (Table 1). Among the 98 individuals affected by ASD, 

41 (41.8%) are also affected by ADHD (Table 1). Males are more likely to be affected by 

both ASD and ADHD compared to females (male/female ratio: 2.73, T-test p = 0.03).  

Linkage analysis highlights linkage peaks for ADHD 

A total of 524 individuals from 111 families were genotyped for the linkage analysis. The 

fully constructed pedigrees contain 707 individuals, after adding missing individuals 

(e.g., grandparents) to link sibships of cousins. Families have an average of 5.7 

individuals (including ungenotyped individuals) and 4.2 genotyped individuals.  

We performed multipoint linkage analysis of the data for three phenotypes: 

“ADHD”, where individuals diagnosed with ADHD are considered affected; “ADHD or 

ASD” (referred to as “ASD/ADHD” in the following text), where both ADHD and ASD 

affected individuals are considered affected; and “ADHD and ASD”, where only 

individuals diagnosed with both ADHD and ASD are considered affected. The results 
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are summarized in Figure 2 with peaks summarized in Table S3. The ADHD phenotype 

was linked to 17p13.1-2, meeting the conventional standard for declaring linkage 

(PPL=0.38, p<0.001) as determined by a simulation study to estimate the empirical null 

distribution (Figure 2). Because the pooled PPL was larger than the sequentially 

updated PPL, we infer that the locus is largely homogenous and these results do not 

offer evidence that data from either of the two waves are inconsistent with linkage. As 

such, the ADHD locus did not depend on the strictness of the ASD criteria used in 

family ascertainment. The locus on 12q12-15 met the criteria for suggestive linkage to 

ADHD (PPL=0.27, p<0.01, Figure 2). Similar to the locus on 17p, the pooled PPL for 

12q was larger than the sequentially updated PPL, indicating that the linkage with 

ADHD did not differ across the two waves with different ASD recruitment criteria. 

Several additional loci met the criteria of nominal linkage. The ADHD phenotype is 

nominally linked to 3p13 (pooled PPL=0.11, sequential PPL=0.23) with evidence for 

heterogeneity across ASD criteria and 19q12-13.1 (pooled PPL=0.20, sequential 

PPL=0.14) with no evidence for heterogeneity. The phenotype ADHD/ASD had two 

nominal linkage peaks, both suggesting heterogeneity, on 19p13.3 (pooled PPL=0.11, 

sequential PPL=0.18) and 20q13.13-13.33 (pooled PPL=0.02, sequential PPL=0.19). 

The “ADHD and ASD” phenotype did not show evidence for linkage, likely due to the 

small sample size of the phenotype (Figure 2). 

Whole genome sequencing and variant discovery 

We selected 272 individuals from the recruited families to undergo WGS to ~30x 

coverage. The sequencing reads that passed quality filters were mapped to the human 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 16, 2022. ; https://doi.org/10.1101/2022.05.15.22275109doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.15.22275109
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 
 

genome reference hg19 and genomic variants are called jointly using GATK for small 

variants (SNVs and indels) and MetaSV for SVs.  

The number of small variants and SVs were consistent across samples. For 

small variants, around 4 million SNVs were identified for most of the samples, and the 

number of indels ranged from 700,000 to 1.2 million (Table S1). For SVs, an average of 

743,280 SVs (including unknown type) were discovered for each individual, ranging 

from 325,443 to 1,291,816 across samples. We selected SVs that were identified by at 

least two methods for the downstream analysis. An average 1,802 SVs passed the filter 

in each individual (see Methods for detail), ranging from 1,332 to 2,620 (Table S1). Most 

SVs are within the 50-1,000 bps range and the largest category is deletion (Figure S1).  

Candidate genes associated with ADHD and ASD/ADHD in linkage regions 

To identify the risk genes for ADHD, we first examined SNVs and indels within the 

chromosome 12 and 17 significant ADHD linkage regions using the pVAAST workflow. 

pVAAST prioritizes genes by integrating segregation information, population allele 

frequency, and functional impact of variants in a gene (37). After Bonferroni correction 

of the p-values (1,299 genes for chromosome 12 and 563 for chromosome 17 linkage 

regions) and selecting genes express in brain, we identified 34 genes that met the 

significance criteria (Bonferroni-corrected p<0.05) for the dominant mode and 3 genes 

for the recessive mode (Table 2). Proline glutamate and leucine rich protein 1 (PELP1) 

is present in both lists. Among the 36 unique genes, 18 are located in the chromosome 

12 linkage region and 18 in the chromosome 17 linkage region, respectively. Four 

genes (KDM6B, COL2A1, PTPRB, PER1) were reported in one or more NDD disease 

gene databases (Table 2). In addition to SNVs and indels, we also identified SVs using 
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the WGS data. Within the linkage regions, an average of 83 SVs were identified per 

individual, with a minimum of 32 and a maximum of 157 across the cohort. None of the 

genes passed our SV gene filtering criteria (see whole-genome SV analysis below for 

filtering detail). 

The highest-ranking gene is Lysine Demethylase 6B (KDM6B) on chromosome 

17. KDM6B has two missense variants segregating in two families. One mutation (17-

7751888-C-G, p.Thr761Ser) is predicted to be possibly damaging by PolyPhen2. The 

other (17-7749972-G-T, p.Val209Leu) is predicted to be benign by PolyPhen2. Three 

additional missense variants are also present in patients but do not follow strict 

segregation patterns (Table S4). KDM6B is expressed in the brain and it is intolerant to 

mutations (pLI=1). The KDM6B protein demethylates trimethylated lysine-27 on histone 

H3. Pathogenic alterations in histone lysine methylation and demethylation genes have 

been associated with multiple NDDs (47), including ADHD (48, 49). KDM6B is also 

annotated in NDD databases such as SFARI and iPSYCH, and it is identified as one of 

the 102 risk genes in a recent large ASD study (50).  

The highest-ranking gene in the chromosome 12 linkage region is lysine 

methyltransferase 2D (KMT2D), which is also involved in lysine methylation, similar to 

KDM6B. Two missense variants segregate in two families (12-49428694-T-C, 

p.Asp3419Gly; 12-49436073-C-T, p.Asp1970Asn), both are predicted to be damaging 

by both SIFT and PolyPhen2. Nine additional missense variants are present in patients 

but do not follow strict segregation patterns (Table S4). KMT2D is expressed in the 

brain and intolerant to mutations (pLI=1).  
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Another candidate gene from the chromosome 17 linkage region, Neuralized E3 

Ubiquitin Protein Ligase 4 (NEURL4), has a missense variant (17-7224433-C-T, 

p.Gly1120Arg) segregating in one family and four additional missense variants in other 

affected individuals. NEURL4 is expressed in the brain and intolerant to mutations 

(pLI~1). NEURL4 protein is a scaffold protein, which maintains normal centriolar 

homeostasis and prevents formation of ectopic microtubule organizing centers (51). 

Although no publication directly links NEURL4 with NDDs, evidence has shown that 

microtubule related genes are related to neuronal migration and dendritic functioning 

(52). Knockout of NEURL4 in mice causes neurological phenotypes such as decreased 

prepulse inhibition (43).  

In the chromosome 12 linkage region, we also identified the circadian rhythm 

controller gene Timeless Circadian Regulator (TIMELESS) with a missense mutation 

(12-56827209-C-A, p.Ala129Ser). The mutation is segregated in two families and is 

predicted to be deleterious by SIFT, suggesting its potential role in ADHD etiology. 

Sleep disorders are common in both ASD and ADHD patients (53). A previous study 

found mutations in circadian-relevant genes, including TIMELESS, are more frequent in 

ASD affected individuals than controls (54). 

Novel and known risk genes associated with ADHD and ASD/ADHD in the whole 

genome analysis 

Because ASD and ADHD are highly heterogeneous and multiple variants/genes could 

contribute to their genetic etiology, next we performed pVAAST analysis on SNVs/indels 

for the whole genome. After selecting genes with evidence of inheritance (LOD 

score>=1) and express in the brain (see Methods for detail), we identified 16, 25, 70, 
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and 29 candidate genes for ADHD dominant model, ADHD recessive model, 

ASD/ADHD dominant model, and ASD/ADHD recessive model, respectively (Table S5). 

From SVs, we identified 209 and 227 genes that contain exonic SVs in at least 

one affected individual for ADHD and ASD/ADHD, respectively (Table S6). To further 

prioritize genes affected by SVs, we calculated the combined severity scores of SVs 

within each gene and determined their brain expression levels. We then selected genes 

whose combined severity scores were larger in affected individuals than in unaffected 

ones and were expressed in the brain. A total of 43 and 44 genes passed our SV gene 

filtering criteria for ADHD and ASD/ADHD, respectively (Table S6). 

Next, we created two high-confidence candidate gene sets for ADHD and 

ASD/ADHD. For ADHD, we combined significant linkage-region candidate genes, high-

confidence candidate genes from the whole-genome pVAAST analyses, and the SV 

analysis. For ASD/ADHD, we combined candidate genes from whole-genome pVAAST 

and SV analyses. A total of 207 unique genes were included in these two confidence 

gene sets, including 113 genes for ADHD and 138 for ASD/ADHD (Table 3). We 

annotated these genes using public resources, including gene association databases, 

literature search databases, tolerance to loss of function mutation scores, mouse knock-

out experiments, and expression databases (Table S7, see Methods for detail). A total 

of 31 genes (15%) were described by previous studies or existing NDD gene databases 

(Table S2), including 22 genes from the SFARI database. Three genes (ANKRD11, 

KDM6B, COL2A1) overlap risk genes in the iPSYCH study of ASD and ADHD (55).  

In addition to genes overlapping known NDD genes, many other candidate genes 

showed functional relevance to neurodevelopmental processes or have been reported 
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to be associated with NDDs. For example, we identified Protein disulfide-isomerase A2 

(PDIA2) in the whole-genome pVAAST analysis. With the ADHD dominant model, 

PDIA2 had a missense mutation (16-334899-G-A, p.Ala188Thr) segregating in two 

families and was predicted as damaging by SIFT. It had additional 27 variants 

segregating in 13 families. PDIA2 encodes a member of disulfide isomerase family of 

endoplasmic reticulum (ER) proteins that catalyze protein folding and thiol-disulfide 

interchange reactions and is highly expressed in the cerebellar cortex. HumanBase 

predicted a strong association of PDIA2 to ASD (rank 1) and a study investigating the 

role of ER stress in autism identified PDIA2 upregulation in autistic subjects (56). 

In whole-genome SV analysis, we discovered a novel candidate gene Calcium 

Voltage-Gated Channel Auxiliary Subunit Alpha2delta 4 (CACNA2D4). CACNA2D4 is 

one of the genes that encode the alpha-2/delta subunit of the voltage-dependent 

calcium channel, among three other genes (CACNA2D1, CACNA2D2, CACNA2D3) 

(57). While a dozen genes encoding the alpha1 and beta subunits of the calcium 

channel are previously identified in the SFARI database (Table S2), CACNA2D4 was 

absent. In our study, CACNA2D4 was found to contain SVs in affected individuals in five 

families in the ASD/ADHD analysis (one SV overlaps intron 16 to intron 26 and other 

SVs within intron 26). The SV overlapping intron 16 to intron 26 is a 36 kb deletion 

(chr12:1948911-1985036) that is rare in general populations (<0.16% in European 

populations in gnomAD, 

https://gnomad.broadinstitute.org/variant/DEL_12_124891?dataset=gnomad_sv_r2_1). 

Two previous ASD studies identified CACNA2D4 deletions in ASD patients and support 

our finding (58, 59). 
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Candidate genes participate in pathways related to neurological disorders 

To explore relationships among the candidate genes and to identify potential shared 

mechanisms between ASD, ADHD, and other NDDs, we performed enrichment analysis 

for the 207 candidate genes with 1,629 known NDD genes (Table S2) and determined 

the significance of enrichment for each gene list (Table S8). ADHD and ASD/ADHD 

showed strong enrichment in GO terms and pathways related to cilium and microtubule, 

suggesting that many genes in this group are involved in brain development (Table S8). 

For example, pathway “Ciliopathy” (WP4803) is significantly enriched in both ADHD and 

ASD/ADHD gene sets, overlapping five and seven genes in the two sets, respectively. 

“cilium or flagellum-dependent cell motility” (GO:0001539) is one of the top enriched GO 

term in ADHD gene list, and overlap four genes in the candidate genes (BBS4, 

CCDC65, TEKT1, TEKT5).  

Other processes that are known to relate to NDDs are also present. For example, 

“cation channel activity” (GO:0005261) is enriched in both ADHD and ASD/ADHD gene 

sets, overlapping seven and eight genes in the two sets, respectively. Besides shared 

enriched terms and pathways, each gene set also contains phenotype-specific 

enrichments. For example, striatum development (GO:0021756) and cerebral cortex 

development (GO:0021987) are significantly enriched in the ASD/ADHD gene set, 

overlapping two and four candidate genes, respectively. On the other hand, “sensory 

perception of light stimulus” is only significantly enriched in ADHD gene set 

(GO:0050953), overlapping seven genes in the set. 

Protein-protein interaction network of candidate genes  
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To further examine the relationship among the candidate genes, we constructed PPI 

networks using our candidate genes and known NDD genes (Figure 3, Table S9). Of 

the 113 ADHD genes, 23 were connected with known NDD genes into a single PPI 

network with interactions supported by at least 2 databases (Figure 3A, 45 genes in 

total), and 50 of the remaining genes were connected with known NDD genes with 

interactions supported by at least one database (Figure 3B, 150 genes). Similarly, for 

the 138 ASD/ADHD genes, 44 were connected after adding NDD genes with 

interactions supported by ≥ 2 databases (Figure 3C, 71 genes in total), and 31 of the 

remaining genes were connected after adding NDD genes with interactions in ≥ 1 

database (Figure 3D, 83 genes). Several enriched terms, such as histone 

methyltransferase complex and cation channel activity, showed extensive connection 

with known genes for ASD, ADHD, and other NDDs, supporting the shared genetic 

etiology of ADHD and ASD. 
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Discussion 

ASD and ADHD co-occur at a high frequency and studies suggested shared genetic risk 

factors between the two disorders (1-7). Given the worsened negative impact on 

patients’ quality of life when the two conditions co-occur, it is crucial to understand the 

underlying genetic risk factors for each disorder and the co-occurrence. In the NJLAGS 

cohort, ADHD occurs in 41.8% of ASD patients, consistent with previous studies 

(reviewed in (60)). The family design of the NJLAGS study provides a unique 

opportunity to identify inherent and de novo genetic factors underlying both ASD and 

ADHD.  

In this study, we identified two linkage peaks (12q12-15, 17p13.1-2) for the 

ADHD phenotype from 111 families. Using WGS data from 272 selected samples, we 

discovered 36 significant genes within the linkage regions and explored their gene 

functions. Expanding the analysis to the whole genome revealed more risk genes for 

both ADHD and ASD/ADHD phenotypes. Notably, both top candidate genes in the two 

linkage regions (KDM6B, KMT2D) are involved in the histone lysine methylation process. 

Histone modification is a central process regulating gene expression during 

neurodevelopment and mutations in KDM6B have been linked to multiple NDDs (47), 

including ADHD (48, 49). At the whole genome level, 31 of the high-confidence 

candidate genes were identified in previous studies or NDD gene databases. In addition, 

we observed multiple NDD-related pathways overrepresented in the high-confidence 

ADHD and ASD/ADHD gene sets (Table S8). Taken together, the results demonstrate 

the power of combining linkage analysis, rare variant analysis, and SV analyses to 

uncover risk genes.  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 16, 2022. ; https://doi.org/10.1101/2022.05.15.22275109doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.15.22275109
http://creativecommons.org/licenses/by-nc-nd/4.0/


24 
 

By studying ADHD affected patients in families with ASD probands, we identified 

genetic risk factors underlying ASD and ADHD co-occurrence. Three candidate genes 

(ANKRD11, KDM6B, COL2A1) were reported in a previous study of ASD and ADHD 

comorbidity in Danish cohorts (55). In the Danish cohorts, all three genes contain 

multiple protein-truncating variants or missense variants in ASD or ADHD patients, and 

ANKRD11 (Ankyrin Repeat Domain Containing 11) is one of the top candidate genes 

with a significant excess of constrained rare protein-truncating variants (crPTVs) (55). In 

addition, several genes (KDM6B, PTPRB, PER1) that are significant within the ADHD 

linkage region are described in previous ASD studies (61-63). Pathways we discovered 

that are important in ADHD etiology are also vital in ASD etiology. By providing an 

extensive candidate gene set, we are not only reaffirming the linkage between ASD and 

ADHD, but also suggesting novel potential risk pathways for further investigation.  

Several important GO terms and pathways recurred in both gene sets in our 

enrichment analysis, namely cilium/microtubule, ion channel, histone methylation, and 

chromatin remodeling. These pathways revealed interesting aspects of mechanisms in 

ASD and ADHD etiology as an interconnected network of hundreds of genes and 

pathways (64) and underlined the complexity of genetic casualties of NDDs. A recent 

article argued that several NDDs share common genetic risk factors and there might not 

be "Autism-specific" genes (65). Our results support this view. We also identified some 

important but underappreciated processes such as the circadian rhythm (GO:0007623), 

which has phenotypic effects in cognition, mood, and reward-related behaviors. 

Research documented that the prevalence of insomnia ranges from 50% to 80% in ASD 

patients, compared to 9–50% in age-matched typically developing children (66). 
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However, the underlying mechanism of association and genes involved remain to be 

determined. The genes related to circadian rhythm we identified in this study 

(MYBBP1A, PER1, TIMELESS) could shed light on the genetic etiology of sleep 

disorders in ASD and ADHD patients. 

Our study has a few limitations. The limited sequencing capacity led to the 

sequencing of only a selected number of ADHD affected individuals, as the NJLAGS 

dataset was collected primarily to identify ASD and language-impaired probands. 

However, recently we sent out follow-up questionnaires to all NJLAGS families 

requesting an update on ADHD diagnoses. We specifically asked who had received a 

diagnosis from a medical professional (i.e., psychiatrist, developmental pediatrician, 

neurologist, psychologist). Of the 34 families who responded to our questionnaire, 15 

were families who had some sequencing data and whose data are included in this 

manuscript. From these 15 families, 28 individuals had received a formal diagnosis of 

ADD/ADHD by a medical professional. Importantly, only 13 of these family members 

had been initially identified as having a diagnosis of ADD/ADHD. In some cases these 

were younger family members who were too young at the time of data collection to be 

identified as affected while in other cases, we did not have this diagnostic information 

available. These updated findings will be included in future ADHD in genetic analyses. 

Moving forward, we anticipate extensive sequencing efforts to continue for the NJLAGS 

project resulting in the sequencing of all NJLAGS families. As more ADHD affected 

individuals are identified and sequenced, this more complete pedigree information and 

stronger statistical power will allow us to further discover potential common risk factors 

underlying the ASD and ADHD etiology.  
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Another limitation of this study is we focused mainly on variants affecting protein 

coding sequences. Non-coding regulatory variants are known to play an important role 

in NDDs, although predicting their functional impact is still difficult (67). With the rapid 

development of functional prediction algorithms for non-coding variants, we will identify 

additional candidate genes affected by regulatory variants using the cohort’s WGS data 

in the near future. 

In conclusion, using linkage analysis and WGS-based variant analysis, we 

examined the genetic etiology of ASD and ADHD in the NJLAGS cohort. The family-

based design of the cohort allows us to leverage the power of variant segregation while 

taking into account the phenotype heterogeneity of ASD and ADHD. By examining both 

small variants and large SVs, we identified genes and pathways, previously known or 

novel, that could contribute to ASD or ADHD etiology. Because of the difficulty of 

distinguishing some of the ASD and ADHD behavioral characteristics, understanding 

the genetic risk factors for the disorders can provide guidance to clinical intervention 

approaches, both behaviorally and pharmacologically. Future studies, especially 

functional assessment of these candidate genes, will elucidate their roles in ASD and 

ADHD and improve the diagnosis and treatment of these disorders. 
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Figure legend 

Figure 1. Project overview and overall analysis flow. 

Figure 2. Linkage analysis for ASD and ADHD. Sequential and pooled analysis 

results are shown in blue and red lines, respectively. The red dotted line indicates the 

PPL=0.26, which corresponds to p=0.01.  

Figure 3. Protein-protein interaction (PPI) networks of candidate genes. Candidate 

genes were ADHD risk genes in (A, B) and ASD/ADHD risk genes in (C, D). (A, C): PPI 

networks of the candidate genes. Other known NDD genes were added as intermediate 

nodes if they interact with more than one candidate gene supported by PPI evidence 

from ≥ 2 databases. (B, D): PPI network of candidate genes that are not in (A) and (C), 

respectively. Known genes were added as intermediate nodes if they interact with more 

than one candidate gene with PPI evidence from any PPI database. PPI networks were 

defined by three databases, ConsensusPathDB, STRING, and GIANT_v2. Genes were 

colored by gene lists. ASD/ADHD genes were used to color genes in (A, B) and ADHD 

genes were used to color genes in (C, D). To simplify the network, PPIs between non-

candidate genes were removed. Genes belonging to two GO terms, methylation and 

cation channel activity, were highlighted in A, C, respectively. 
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Tables 

Table 1. Summary of families and their phenotypes. 

 All Male Female Male/Fem
ale ratio 

Families 

ASD 98 77 21 3.67 73 

ADHD 68 46 22 2.09 47 

ASD and ADHD 41 30 11 2.73 36 

ASD or ADHD 125 93 32 2.91 73 

All samples 493 281 212 1.33 73 
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Table 2. Candidate genes in linkage regions 

Gene Chr Inheritance Pvalue pLI Database 

KDM6B chr17 Dominant 5.63E-04 1 SFARI, iPSYCH 

MYH13 chr17 Dominant 5.63E-04 0  

USP6 chr17 Dominant 5.63E-04 0  

MYBBP1A chr17 Dominant 5.63E-04 0  

KMT2D chr12 Dominant 1.30E-03 1  

MYO1A chr12 Dominant 1.30E-03 0  

COL2A1 chr12 Dominant 1.30E-03 1 iPSYCH 

PTPRB chr12 Dominant 1.30E-03 0.94 SFARI 

ITGA7 chr12 Dominant 1.30E-03 0  

STAT2 chr12 Dominant 1.30E-03 0.04  

NEURL4 chr17 Dominant 5.63E-04 1  

TIMELESS chr12 Dominant 1.30E-03 0  

CCDC65 chr12 Dominant 1.30E-03 0  

PFAS chr17 Dominant 5.63E-04 0  

NLRP1 chr17 Dominant 5.63E-04 0  

EIF4B chr12 Dominant 1.30E-03 1  

NELL2 chr12 Dominant 1.30E-03 1  

WNT10B chr12 Dominant 1.30E-03 0  

ALG10B chr12 Dominant 2.60E-03 0  

PELP1 chr17 Dominant 1.69E-03 1  

CHRNE chr17 Dominant 1.69E-03 0  

GRASP chr12 Dominant 3.90E-03 0.93  

ARHGEF15 chr17 Dominant 2.82E-03 0  

TROAP chr12 Dominant 6.50E-03 0  

TRPV3 chr17 Dominant 4.50E-03 0  

P2RX5 chr17 Dominant 4.50E-03 NA  

DNAJC22 chr12 Dominant 1.04E-02 0  

ACADVL chr17 Dominant 1.13E-02 0  

ZZEF1 chr17 Dominant 1.13E-02 1  

TEKT1 chr17 Dominant 1.13E-02 0  

ANKRD33 chr12 Dominant 2.60E-02 1  

PER1 chr17 Dominant 1.13E-02 0.88 SFARI, ADHDgene 

LYZ chr12 Dominant 2.60E-02 0  

USP43 chr17 Dominant 1.69E-02 0.01  

PELP1 chr17 Recessive 5.63E-04 1  

SHPK chr17 Recessive 1.13E-03 0  

ESPL1 chr12 Recessive 3.90E-03 1  
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Table 3. Candidate gene summary 

 SNV/Indel  SV  
Total 
(unique)  

 Genes Families* Genes Families* Genes Families* 

ADHD       

Linkage 36 19 0 0 36 19 

WGS 40 47 43 42 83 47 

Total (Unique) 70 47 43 42 113 47 

ASD/ADHD       

WGS 94 73 44 73 138 73 

Total (Unique) 140 73 61 73 207 73 
*For SNV/indel, families with segregating variants in a given gene were counted. For SV, families with at 

least one affected individual with an exonic SV were counted 
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SNP microarray genotyping 
524 individuals, 111 families

Whole genome sequencing 
272 individuals, 73 families

Genotype 
calling/merging

SNV/indel calling
GATK (Table S1) 

SV-based gene 
prioritization 

AnnotSV (Table S6)

Gene annotation (Table S7), enrichment analysis (Table S8), PPI network (Figure 3, Table S9)

Linkage region gene 
prioritization 

pVAAST (Table 2, Table S4) 

SNV/indel-based gene 
prioritization 

pVAAST (Table S5)

Linkage analysis 
KELVIN (Figure 2, Table S3)
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