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ABSTRACT 

The lack of preparedness for detecting the highly infectious SARS-CoV-2 pathogen, the pathogen 
responsible for the COVID-19 disease, has caused enormous harm to public health and the 
economy. It took ~60 days for the first reverse transcription quantitative polymerase chain reaction 
(RT-qPCR) tests for SARS-CoV-2 infection developed by the United States Centers for Disease 
Control (CDC) to be made publicly available. It then took >270 days to deploy 800,000 of these 
tests at a time when the estimated actual testing needs required over 6 million tests per day. 
Testing was therefore limited to individuals with symptoms or in close contact with confirmed 
positive cases. Testing strategies deployed on a population scale at ‘Day Zero’ i.e., at the time of 
the first reported case, would be of significant value. Next Generation Sequencing (NGS) has 
such Day Zero capabilities with the potential for broad and large-scale testing. However, it has 
limited detection sensitivity for low copy numbers of pathogens which may be present. Here we 
demonstrate that by using CRISPR-Cas9 to remove abundant sequences that do not contribute 
to pathogen detection, NGS detection sensitivity of COVID-19 is comparable to RT-qPCR. In 
addition, we show that this assay can be used for variant strain typing, co-infection detection, and 
individual human host response assessment, all in a single workflow using existing open-source 
analysis pipelines. This NGS workflow is pathogen agnostic, and therefore has the potential to 
transform how both large-scale pandemic response and focused clinical infectious disease testing 
are pursued in the future. 
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SIGNIFICANCE STATEMENT 

 

The lack of preparedness for detecting infectious pathogens has had a devastating effect on the 

global economy and society. Thus, a ‘Day Zero’ testing strategy, that can be deployed at the first 

reported case and expanded to population scale, is required. Next generation sequencing enables 

Day Zero capabilities but is inadequate for detecting low levels of pathogen due to abundant 

sequences of little biological interest. By applying the CRISPR-Cas system to remove these 

sequences in vitro, we show sensitivity of pathogen detection equivalent to RT-qPCR. The 

workflow is pathogen agnostic, and enables detection of strain types, co-infections and human 

host response with a single workflow and open-source analysis tools. These results highlight the 

potential to transform future large-scale pandemic response. 

 

INTRODUCTION 

 

The current COVID-19 pandemic has exposed the threat of infectious diseases to human health 

and safety and the essential role that pandemic preparedness can play in combatting such 

threats(1). The deaths directly attributed to COVID-19 exceed 6.1M globally with over 927,000 

deaths in the United States (US), making COVID-19 the third most lethal viral pandemic in the 

past century, behind the Spanish Flu of 1918 and HIV (2). National and international pandemic 

preparedness plans are essential, as COVID-19 is likely not the last pandemic in our future. As 

an indication of why pandemic preparedness is so important, consider that the first confirmed 

case of SARS-CoV2, the cause of the COVID-19 pandemic, occurred around December 1, 2019 

(3). From that time, termed ‘Day Zero,‘ it took ~42 days before the SARS-CoV-2 viral genome 

sequence was publicly released (4). One month later, the CDC produced 90 initial testing kits, 

which unfortunately had documented contamination issues (5). Over the course of the next 6-8 

months, the US was able to produce approximately 800,000 tests per day, when the estimated 
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need at the time was an ability to test six million individuals per day (6). Because of limited 

capacity, testing was recommended only to those individuals with symptoms or in close contact 

with confirmed positive COVID-19 cases, leaving asymptomatic carriers as a major source of 

transmission. By July 2020, over 350,000 US residents had confirmed infections with over 4,500 

confirmed deaths (2).  

 

With these facts in mind, the US government has proposed a 10-year set of activities and $65B 

in funding for pandemic preparedness balanced with a belief of a strong return on investment 

given the ~$16-Trillion economic impact in the US of the COVID-19 pandemic over the past 24 

months (1). With a growing global population, increased access to global travel, encroachment 

on previously less populated locations, the increasing number of labs researching infectious 

disease, and the potential for nefarious intent to weaponize biological pathogens, this modest 

investment seems more than justified.  

 

What is necessary to enable the proposed vision of pandemic preparedness are testing and 

response strategies that are deployable at Day Zero to combat any future pathogen outbreak 

before it progresses to a pandemic. Such an approach, by necessity, needs to be pathogen 

agnostic and, ideally, would provide more detailed information about an individual’s reaction than 

the mere presence of a pathogen. NGS can fulfill those requirements. Shotgun NGS generates 

sequence information from every molecule in a sample (e.g., nasal swab, saliva, blood), and has 

shown to be applicable for human infectious disease diagnostic tests (7–9), respiratory infections 

(10), and universal pathogen detection (11–15). Prior to the pandemic, an NGS-based study 

involving a population of ~1,000 pangolins from a wet market in Wuhan China, identified 

coronavirus infections in over 70% of the pangolin samples tested (16). The authors sequenced 

total RNA from pangolin samples and achieved similar genome characterizations using de novo 

assembly and reference-based methods, ultimately showing that new viruses can be identified by 
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such an approach. Advances in sequencing technology, reductions in sequencing cost and 

increases in instrument throughput, the advent of portable instruments, and internet connectivity 

and cloud-based data analysis means that NGS technology has reached a point where it is 

capable of the speed and advanced data processing necessary for Day Zero deployment and of 

handling population-scale throughput in response to a pandemic.  

 

However, there are caveats to the use and deployment of NGS as part of a pandemic 

preparedness strategy. First, NGS has not been applied for routine clinical use for infectious 

disease diagnosis. This is because many sequencers have been housed for the most part in 

academic research institutions and private research organizations that lack the logistical 

infrastructure necessary for sample attainment, upstream processing, return of results and 

biosecurity level clearance to handle samples with active virus. However, with the acceptance of 

‘at home’ sample collection and telehealth consultation via the internet, spurred by the need to 

keep individuals distanced from others, particularly from overburdened hospitals, the logistical 

infrastructure is far better than it has been before. Second, there has been a reluctance to 

implement NGS in hospital settings because of the amount of data generated and the 

computational infrastructure required to run sequence data processing pipelines. However, 

complex computational analysis is only needed until the pathogen of interest is identified and a 

reference genome of that pathogen is assembled, since mapping reads to a reference for 

identification purposes is relatively straightforward. Third, traditional NGS-based metagenomic 

tests for COVID-19 are inefficient because of relatively large sample input requirements and lower 

sensitivity for the virus due to overabundant, uninformative nucleic acid molecules from the human 

host and/or common commensal microbes. 

 

Here we present a molecular enrichment strategy to overcome these limitations in the use of NGS 

protocols, by using a Clustered Regularly Interspersed Short Palindromic Repeats (CRISPR-
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Cas9) system to specifically target and remove abundant host and common human microbial 

sequences (17–19). This CRISPR-NGS technology has been patented and commercialize under 

the CRISPRclean® name by Jumpcode Genomics, Inc. The technology uses a multiplexed pool 

of single guide RNAs (sgRNA) in a ribo-nucleoprotein complex (RNP) formed with the Cas9 

enzyme. Double stranded cuts are generated in undesired NGS molecules, which is then followed 

by adapter specific PCR to enrich for un-cut NGS library molecules for enhanced sequencing. To 

evaluate the performance of the technology, we performed two critical assessment steps of 

COVID-19 clinical specimens (i.e., nasal swabs): (1) we defined the human and bacterial 

ribosomal RNA (rRNA) compositions to set baselines for the assessment of rRNA depletion 

efficiency, and (2) we established the pathogen-microbiome compositions, using orthogonal 

bioinformatics protocols to assess taxonomic classification confidence. We show that SARS-CoV-

2 detection sensitivity using this method is comparable to RT-qPCR based detection for samples 

with Ct values up to 35. We also demonstrate that the CRISPR-NGS strategy enables variant 

strain typing, detection of co-infecting agents, identification of antimicrobial resistance genes 

(AMR), and the reporting of human host responses to infection. Furthermore, using contrived 

samples containing viral nucleic acid, we show that the CRISPR-NGS approach can successfully 

detect other pathogens (e.g., Zika virus). A long-term vision is that the application of CRISPR-

NGS technology accelerates patient diagnosis and preventive strategies of existing and future 

pathogens. 

 

RESULTS 

 

Study design and samples used for sequencing studies 

 

Two types of samples were analyzed in this study: clinical specimens and contrived samples. For 

clinical specimens, human nasal swabs with COVID-19 infection status determined by RT-qPCR 
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were previously collected from two locations, one in California and one in Arizona (referred to as 

site A and site B, respectively), and then processed and sequenced at separate sites (Jumpcode 

Genomics, San Diego, CA for site A samples and TGen, Phoenix, AZ for site B samples). In total, 

56 patient specimens with confirmed positive COVID-19 status and 16 specimens with no 

detectable SARS-CoV-2 were analyzed in this study. 

 

The contrived samples were generated by combining known viral RNA pathogens with human 

RNA. A viral reference genome mix, consisting of four RNA viruses (Zika virus, mammalian 

orthoreovirus, influenza B virus, human orthopneumovirus (i.e., respiratory syncytial virus, RSV) 

and SARS-CoV-2) was spiked at various concentrations into human lung total RNA samples. The 

samples contained a 10-fold dilution series of the viral reference mix, with titers ranging from an 

estimated 20 copies of each viral RNA genome to 20,000 copies. Various negative controls were 

also prepared, including human lung total RNA only (a no-viral RNA control) and a water-only 

sample (no-template control). The latter was included to monitor background contaminants that 

may originate from molecular reagents and NGS workflows. An overview of the workflow is shown 

in Figure 1. 

 

Both mock depletions (depletion without Cas9 and guide RNA) and Cas9 depletions were 

performed with site A specimens. Mock-depletion was not performed with site B specimens. A 

summary of sequencing statistics is provided in Supporting Table 1. 

 

Ribosomal RNA landscape in clinical specimens 

 

A key aspect of our NGS-based strategy is the use of CRISPR-Cas9 to remove ribosomal RNA 

sequences. To determine the effectiveness of rRNA removal, we set out to first establish the rRNA 

composition of the clinical nasal swab specimens by classifying sequence reads as bacterial, 
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viral, or eukaryotic, and rRNA or non-rRNA (presumably mRNA), using Kraken2. For site A clinical 

specimens, the average content of human and bacterial rRNA in non-depleted NGS libraries was 

63% and 0.85%, respectively, of total reads. After CRISPR-based rRNA depletion, human rRNA 

was detected at 0.74% and bacterial rRNA at 0.02% of total reads (Figure 2, Supporting Table 2). 

This indicates that 98% of bacterial rRNA and 99% of human rRNA were successfully depleted 

as a result of CRISPR-based depletion. Because of depletion, human non-rRNA, bacterial non-

rRNA, and viral sequences were enriched by an average of 3.6-fold, 3-fold, and 6-fold, 

respectively, across all CRISPR-depleted samples. Each of these enriched sequence categories 

is important because they contribute to the downstream genomic characterization of SARS-CoV-

2, co-infection pathogens, and host gene expression as discussed below. However, non-

ribosomal human RNA molecules that have little to do with the patient response to infection may 

be candidates for further depletion. 

 

Interestingly, the post-depletion human and bacterial rRNA profiles of site B samples were distinct 

from those of site A. The rRNA content of the non-depleted libraries from site B could not be 

determined because mock-depletions were not performed at site B. However, the library 

composition of human rRNA, bacterial rRNA, and virus after depletion was 4.8%, 16%, and 11%, 

respectively (Supporting Table 3). The reason for the higher proportion of bacterial rRNA after 

depletion in site B libraries relative to site A libraries is unclear but could be related to sample type 

or different methods of specimen collection, processing, and RNA extraction. Further investigation 

is warranted, for example, to determine whether the non-depleted bacterial rRNA sequences fall 

within or outside of the CRISPR guide RNA set of sequences used for rRNA depletion. In 

summary, the CRISPR-based rRNA depletion method presented here can achieve near-complete 

removal of human and bacterial rRNAs from clinical nasal swab specimens. 

 

Pathogen-microbiome landscape in clinical specimens and contrived samples 
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Next, we determined the pathogen-microbiome composition of the COVID-19 positive clinical 

specimens by focusing on the microbiome sequence read space of each specimen. Two 

independent and orthogonal bioinformatic approaches, the alignment/assembly-based Chan 

Zuckerberg ID (CZID) workflow (formerly known as IDSeq) (20) and the kmer-based Kraken2-

Bracken workflow (21–23), were used for taxonomic classifications. For this analysis, all 

sequence reads generated for each specimen were analyzed without subsampling. The 

concordance of taxonomic assignments by the two different bioinformatics methods were also 

determined to identify taxa with confidence. 

 

Analysis of the nasal swab clinical specimens using CZID showed that SARS-CoV-2 sequences 

were detected on average at 88,831 RPM and 192,582 RPM from site A and B, respectively (i.e., 

8.8% and 19% of the nasal microbiome; Supporting Table 4). The highest SARS-CoV-2 viral load 

was detected at 983,494 RPM (98% of the nasal microbiome). Several respiratory pathogens 

were detected in site A specimens, including rhinovirus and Gammapapillomavirus. Rhinovirus A 

(232,730 RPM; 23%), rhinovirus B (2,920 RPM; 0.3%), rhinovirus C (40,840 RPM, 4%) were 

detected in individual specimens, and Gammapapillomavirus 1 in 16 specimens (e.g., 4,081 RPM; 

0.4%). Respiratory tract commensals in descending order of abundance, as reported by the CZID 

workflow, from site A specimens include Cutibacterium acnes (226,086 RPM; 23%), 

Corynebacterium segmentosum (83,149 RPM; 8.3%), Dolosigranulum pigrum (29,396 RPM; 

2.9%), Staphylococcus epidermidis (5562 RPM; 0.6%), and Staphylococcus aureus (1455 RPM; 

0.15%). Among site B specimens, Prevotella melaninogenica (66,080 RPM; 6.6%), Rothia 

mucilaginosa (30,449 RPM; 3%), and Prevotella jejuni (19,838 RPM; 1.9%) were reported (Figure 

3, Supporting Table 4). A commensal bacterium shared between site A and B specimens and 

detected at a comparable proportion/abundance is Moraxella catarrhalis (site A: 6,529 RPM, 

0.7%; site B: 5,125 RPM, 0.5%). 
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A comparison of the RPM values reported by the two classification methods, CZID and Kraken2-

Bracken, showed concordance (within an absolute log2FC value of 2) for several bacterial 

residents of the respiratory tract and provided confidence regarding the taxonomic assignments 

(13 concordant – site A; 12 concordant – site B). For example, the log2FC of the CZID and 

Kraken2-Bracken RPM values of C. segmentosum and D. pigrum (site A specimens) are 1.14 

and 0.3, respectively, while the same values for P. melaninogenica, R. mucilaginosa and P. jejuni 

(site B specimens) are -0.24, -0.97 and -0.06, respectively. Analysis of contrived samples 

containing a mixture of viral pathogen reference genomes showed classification concordance for 

SARS-CoV-2 (log2FC = -0.75) and Zika virus (log2FC = 0.00). Three of the viral pathogens did not 

pass the concordance cutoff and, therefore, warrant further investigation. The viral pathogens 

with discordant read counts are mammalian orthoreovirus (log2FC = 16.19), influenza B virus 

(log2FC = 6.83); human orthopneumovirus (log2FC = -3.63). 

 

In summary, we have detected multiple microbial species, including viral pathogens and 

commensal bacteria, from the clinical nasal swabs analyzed in this study, with classification 

supported by two orthogonal methods. By generating contrived samples with mock communities 

of viral pathogens, we were able to detect additional viral pathogens of interest.  

 

CRISPR-NGS diagnostic assay performance and pathogen-host reporting 

 

We performed an assessment of the CRISPR-NGS approach by comparing diagnostic results of 

SARS-CoV-2 against RT-qPCR-derived Ct data and clade assignments for the virus. We also 

aimed to determine the potential of pathogen-host genetic information that can be extracted for 

reporting and downstream analysis, such as data regarding co-infections, the nasal microbiome 

profile, antimicrobial resistance (AMR), and host gene expression at the collection site (i.e., the 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 16, 2022. ; https://doi.org/10.1101/2022.05.12.22274799doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.12.22274799
http://creativecommons.org/licenses/by-nd/4.0/


 

10 
 

nasal cavity). This was undertaken by subsampling a predetermined number of sequencing reads 

(i.e., 40M read pairs) from each clinical specimen and contrived sample, re-mapping reads to the 

viral and bacterial genomes of interest and computing genome coverage breadth and depth 

metrics. For SARS-CoV-2, the analysis also included constructing a viral consensus genome for 

each sample for clade analysis. 

 

Detectable SARS-CoV-3 read counts (out of 40 M read pairs) were averaged across samples in 

three ranges of Ct values and on average a 6-fold increase in read counts was observed, 6.4-fold 

for Ct < 23, 7.1-fold of Ct 23 – 30, and 4.7-fold of Ct 30 - 39 (Figure 4). For SARS-CoV-2, the 

average genome breadth of coverage was 94% up to a Ct value of 30, 83% up to a Ct value of 

35, and 61% when including all samples for site A specimens. A summary of the genome 

coverage metrics for SARS-CoV-2, nasal microbiome species, and viral reference pathogens in 

the contrived samples is shown in Supporting Table 5. Sensitivity and specificity of the CRISPR-

NGS assay with respect to SARS-CoV-2 detection were measured using two genome coverage 

metrics (number of uniquely aligned reads and genome breadth). Thresholds for detection were 

determined empirically and defined as follows: genome breath coverage >=3%, and number of 

uniquely aligned reads >=20 per 40M read pairs sequenced. For site A specimens with Ct values 

up to 35 (93 libraries), the sensitivity and specificity of SARS-CoV-2 detection were 98.4% and 

100%, respectively (Table 1). For site B specimens with Ct values up to 32 (24 libraries), sensitivity 

of SARS-CoV-2 detection was 95% and specificity was 100%. To evaluate clade assignment 

accuracy, we compared our consensus genome-based NextClade approach against clade 

identification via an independent PCR-based method (Variant-seq, PerkinElmer) performed for 

site A specimens. We applied a 10% genome breadth cut-off as the minimum requirement for 

accepting clade assignments from Nextclade. Using this criterion, the clade assignment accuracy 

is 100% for all samples that met these criteria. (i.e., 56 out of 56 libraries). 
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We also investigated whether the proposed sequencing strategy could provide information on 

SARS-CoV-2 functional variants, AMR sequences, and host transcriptome responses. With 

respect to SARS-CoV-2, we identified the spike protein L452R mutation in one specimen. This is 

a mutation in the receptor-binding domain of the spike protein and is implicated in antibody 

resistance and immune escape (24, 25). We also identified AMR gene sequences amongst the 

assembled sequence contigs generated through the CZID workflow. Using AMRFinderPlus 

(NCBI), AMR genes were detected in a subset of the clinical specimens (n=15) from site A and B 

(Table 2). To identify differentially expressed (DE) host genes, we compared confirmed COVID-

19 negative specimens to COVID-19 positive specimens with moderate to high viral loads (i.e., 

Ct value < 21) from site A. We identified a total of 77 up-regulated genes and 5 down-regulated 

genes in COVID-19 positive specimens (abs(log2FC) >= 1.5, and adj P < 0.05) (Supporting Table 

6). Of the 82 DE genes, 19 genes overlapped with a previously identified blood-derived, 

interferon-stimulated gene (ISG) signature of SARS-CoV-2 infection consisting of 23 genes (26). 

Two interferon-inducible genes (IFI6, IFI27) from the 82 DEG list also overlapped with both the 

ISG signature and a blood-derived COVID-19 infection signature comprising 139 genes (26). 

 

DISCUSSION 

 

Novel technologies and strategies are sorely needed to combat infectious disease outbreaks. We 

believe strongly that NGS-based strategies not only have Day Zero deployment capabilities but 

are essential for a robust public health response at Day Zero and beyond because of the 

comprehensive nature of the data generated by such approaches. The issue with a NGS 

approach focused on RNA content is that human host derived RNA molecules, including 

ribosomal RNA, dominates the sequencer output and must be removed prior to sequencing. Our 

strategy is based on the in vitro application of CRISPR technology, which, because of the 

programmability of the CRISPR-Cas9 system, can be used to remove any known abundant and 
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uninformative molecules from NGS libraries. The workflow involved is fast, robust, and compatible 

with low biomass inputs. The programmability of the CRISPR system also means that new 

CRISPR targets can be easily added to remove different or additional molecules and increase 

sensitivity. This could have considerable benefit to clinical assay development because new 

targets can be added with minimal alteration to the assay. In the context of infectious disease, 

removal of additional known human host and common bacterial sequences or contaminants 

should continue to improve performance up until molecular diversity is exhausted or the impact 

on sensitivity becomes minimal. 

 

Although detection of the SARS-CoV-2 genome can be accomplished with legacy technology 

such as RT-qPCR, it is our assertion that generating many independent sequencing reads across 

the breadth of a pathogen genome provides more confident detection than a 100-bp amplified 

fragment using, for example, a fluorescent signal as output. Actual sequence information to 

characterize strains, clinically relevant sequence variants, co-infections, or host responses is 

unobtainable with focused RT-qPCR testing alone. Furthermore, although both RT-qPCR and 

amplicon-based targeted sequencing technologies are essential tools for detecting and tracking 

pathogens as they evolve, neither can meet the Day Zero requirement for a novel zoonotic 

pathogen. 

 

As emphasized throughout, the mNGS strategy we have outlined in this study can be used to 

rapidly identify novel pathogen strains, co-infections, and host response. Several of the non-

SARS-CoV-2 viruses we identified in our samples are associated with respiratory illness. One 

report suggests that rhinovirus will block or inhibit SARS-CoV-2 replication in lung epithelial cells 

by triggering an interferon response (27). This information could be critical to predict outcome or 

severity of disease. Mycobacterium phage was also highly prevalent in COVID-19 positive 

samples. Several reports suggest that severity of infection with SARS-CoV-2 could be influenced 
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by phage therapy or stimulate trained immunity from previous mycobacterium infections and the 

interactions with mycobacterium phage influenced tuberculosis (28, 29). In a recently published 

study on co-infections and superinfections based on a literature review of papers published 

between October 2019 and February 2021, COVID-19 positive patients with co-infections (viral, 

bacterial, or fungal) had higher odds of mortality than those with COVID-19 alone (30). Many of 

the identified co-infections had effective treatments available.  

 

There is still a need to validate our proposed CRISPR-NGS strategy across multiple laboratories, 

in multiple geographical regions, and in urban, rural, and remote settings. In this study, using 

samples collected and processed across multiple sites, human and bacterial RNA profiles differed 

between sites. These differences could be related to different methods of specimen collection, 

processing, and RNA extraction. To mitigate these effects, standardized methods and protocols 

need to be employed across labs and regions to generate comparable data. Also, if it is to be 

considered as deployable at scale, relevant databases harboring pathogen sequences and 

analysis pipelines will need to be standardized and validated. Ultimately, however, the ability of 

the CRISPR-NGS approach to provide a more comprehensive exploration of an individual’s 

infection status provides benefits that no other single approach can. We see at least six crucially 

important capabilities enabled as a result of this approach. First, mNGS can generate whole 

genome information from an RNA virus and whole transcriptome information from an active DNA 

viral, bacterial, or fungal infection which provides advantages over a metagenomics approach. 

Whole genome information enables one to track the origin and the spread of any outbreak, 

regardless of the sequence similarity (or lack thereof) of the target pathogen to other pathogens. 

Second, it can be used to detect co-infections that have the potential to increase morbidity or 

mortality. This includes other viral pathogens, as well as bacterial and fungal pathogens. Third, 

the host immune profile could be used to predict a patient’s ability to overcome infection 

(tolerance) or the risk of lethality from infection. Fourth, it could enable more rapid and effective 
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identification of targets for therapeutic development. Fifth, it leverages existing and established 

technology with proven performance and available high throughput processing protocols. Sixth, 

since it has Day Zero capabilities, it will have utility immediately after the first reported case of 

infection and potentially mitigate the effects of the next pandemic without the need to scramble 

national public and private resources to meet the demands of a panicked population. 

 

MATERIALS AND METHODS 

 

Samples Used to Compare PCR and NGS Detection  

 

For site A specimens, RNA samples were obtained from a clinical testing laboratory in California 

managed by PerkinElmer Scientific. Nasopharyngeal samples were extracted and tested using 

the PerkinElmer® SARS-CoV-2 Nucleic Acid Detection Kit. The sample set consisted of 57 

COVID-positive samples with a Ct value for the N Gene ranging from 15.56 to 39.27 and 15 

COVID-negative samples. Each sample was sequenced without CRISPR based depletion and 

compared to two technical replicates with CRISPR based depletion performed with approximately 

13,000 single guide RNAs designed against the most abundant sequences from human and 

bacterial species. The final pooled library sample was quantified using the Thermo Fisher® 

Scientific Qubit™ HS dsDNA kit and then run on the LabChip® GX Touch™ for fragment size 

analysis. Samples were sequenced on an Illumina NovaSeq at 2x150bp. An 8 µL aliquot of the 

remaining extracted nucleic acid material from the COVID-positive samples were used as input 

for the NEXTFLEX® Variant-Seq™ SARS-CoV-2 v2 kit (PerkinElmer), regardless of their Ct 

value. Amplicon sequencing was completed on an Illumina® MiSeq® instrument at 2x36bp. 

FastQ files were uploaded to the CosmosID® SARS-CoV-2 Strain Typing Analysis Portal for 

analysis. SARS-CoV-2 genome coverage was also reviewed with the Integrative Genomics 

Viewer software (IGV). For site B specimens, nasal swabs for COVID-19 testing were collected 
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in Arizona by TGen’s infectious disease testing facility in Flagstaff (31, 32). The remaining unused 

specimens were used for this study. The Ct values of the samples were between 14.17 and 32.02. 

Total RNA extraction from the nasal swab specimen was performed using the Quick-DNA/RNA 

MagBead kit (Zymo Research). A summary of the site A and B specimens is provided in Figure 1 

and Supporting Table 1. 

 

Exploiting CRISPR for depletion of unwanted sequences 

 

CRISPR-based depletion of abundant nucleic acids was performed using CRISPRclean Plus Kit 

(Jumpcode Genomics, Inc., San Diego) following the manufacturer’s protocols. The human rRNA 

CRISPR guide RNA set was designed to deplete the human mitochondrial 12S and 16S genes 

and human nuclear 5S, 5.8S, 18S and 28S rRNA genes, as well as the 45S precursor rRNA 

transcripts. The accompanying pan-bacterial rRNA CRISPR guide RNA was designed to the 5S, 

16S and 23S rRNA sequences of 212 bacterial species.  

 

Library Construction and CRISPRclean™ depletion 

 

For site A specimens, 10ng of each RNA sample was used as input in the PerkinElmer 

NEXTFLEX Rapid Directional RNA-Seq v2.0 library prep. Key steps in the library prep include 

first strand synthesis using random priming, second strand synthesis with uracil incorporation, 

fragment end-repair, adapter ligation and PCR. Prior to PCR amplification, the library is treated 

with Cas9 pre-complexed with guide RNA targeted to bacterial rRNA for 1 hour at 37oC followed 

immediately by a similar treatment with Cas9 and guide RNA targeted to human rRNA. The 

treatments result in the cleavage of library fragments containing rRNA sequences. A subsequent 

Ampure XP bead-based size selection step removes cleaved fragments and excess adapter 

sequences. This is followed by the standard library prep PCR to amplify the remaining (uncleaved) 
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library. Due to material constraints, only two CRISPR-treated libraries and one mock-treated 

library were generated from each sample. A total of 180 libraries were produced from 60 samples. 

Libraries were combined into pools and loaded on 4 lanes of an Illumina NovaSeq S4 flow cell. 

Sequencing was performed with 2 x 150 cycles.  

 

As for site B clinical specimens, due to limitations on RNA availability 1ng was used for library 

construction following the same procedure as described for site A specimens using NEXTFLEX 

Rapid Directional RNA-Seq Kit 2 (PerkinElmer) for cDNA library construction, and CRISPRClean 

kits (Jumpcode) for human and bacterial rRNA depletion. For site B contrived samples, a 

premixed of viral pathogen nucleic acids (ATCC virome MSA-1008) [which comprised of 4 RNA 

viruses; Human respiratory syncytial virus, Influenza B virus B/Florida/4/2006, Reovirus 3, and 

DNA viruses Human mastadenovirus F, and Human herpesvirus 5] and two SARS-CoV-2 strains 

(VR-1986D, VR-1992D) were purchased from ATCC. A 10-fold serial dilution was performed to 

span approximately 20 to 20,000 copies of the pathogens in each of the contrived sample, and in 

a background of 1 ng or 10 ng of human lung total RNA (Takara). 

 

Sequencing 

 

For site A libraries, the concentrations were assessed through fluorometric quantification using 

the Qubit 4.0 (Thermo Fisher, Inc.) and the high sensitivity dsDNA assay. Library sizes were 

evaluated using the Agilent BioAnalyzer 2100 and the high sensitivity dsDNA kit. Libraries were 

normalized to 1.5 nM and were combined into 4 in the dependent pools, e.g., 45 libraries per pool, 

to be loaded on 4 independent lanes of an Illumina NovaSeq 6000 S4 flow cell (using a NovaSeq 

XP 4-Lane Kit v1.5). Sequencing was performed to produce 150 bp paired-end reads (2 x 150 

bp). For site B clinical specimens and contrived samples, all libraries were sequenced on one 

lane of a NovaSeq 6000 S4 flow cell (2 x 150 cycles). 
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Sequence Data Analysis and Interpretation Pipelines 

 

Illumina reads generated from site A and B specimens and samples were analyzed using a unified 

workflow described as follows.  

 

Microbiome taxonomy abundance. The 150bp paired reads were demultiplexed according to 

sample barcodes. The Illumina sequencing adapters were removed, and low-quality bases were 

trimmed using AdapterRemoval (v2.3.1). After the trimming, any reads shorter than 75bp were 

discarded along with their mate reads. Prior to running Kraken2-Bracken for microbial taxonomy 

classification, a human genome reference was built by combining GRCh38 with alternate contigs, 

CHM13 T2T genome (GCA_009914755.3), and the non-reference unique insertions (NUIs) 

identified in Wong et al (33). All trimmed reads were mapped to the human genome reference to 

pre-filter host reads with 95% sequence identity and 50% read length coverage as the mapping 

criteria. All remaining reads after host filtering were assigned taxonomy using Kraken2 (v2.1.1) 

with PlusPF database (release date: 1/27/2021). The domain-level and species-level taxonomic 

abundance values were estimated using Bracken (v2.6.0 (22)) based on the read counts from 

Kraken2 (21). For calculating the relative abundances among the microbial species (i.e., the 

microbiome space) via Kraken2-Bracken, the reads assigned to “human” were excluded from the 

denominator. For rRNA content estimation using Kraken2, a Kraken database (containing rRNA 

sequences from prokaryotes and eukaryotes) was built from the rRNA sequences collected from 

NCBI Nucleotide database using the following query: “biomol_rrna[PROP]” (as of March 17, 

2021). For CZID-based taxonomy classification, the raw reads were uploaded to the CZID public 

server (pipeline v6.8), which includes its own read quality control steps. The CZID workflow 

performs read mapping to the NCBI non-redundant protein and nucleotide sequence databases 

NR and NT, respectively (the NT read mapping results were used in this analysis) and read 
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assembly to build assembled contigs. Both sets of information were used to assign taxonomy to 

the input sequence read (20). The identification of microbial taxa that are likely contaminants (e.g., 

molecular reagents) was guided by the water blank control included in this study. A few 

environmental species such as Achromobacter sp. and others were considered as contaminants. 

 

Genome breadth and depth coverage. Genome sequences were collected from NCBI Genbank 

for the top 20 species from each of the two sites based on the Kraken2-Bracken approach and 

the expected ATCC viral pathogen references from the contrived samples. The 40M subsampled 

read pairs were mapped to the combined genome sequences using BWA-MEM (v0.7.17). Only 

the reads with high mapping quality were kept for the downstream analysis (i.e., 95% sequence 

identity and 80% read length coverage). For each species, the number of mapped reads and the 

number of total bases mapped were collected using Bedtools (v1.9) “multicov” and Samtools 

(v1.9) “depth” commands, respectively, with optional parameters “-d 0 -aa” being used for 

Samtools “depth” command to accurately report the depths in deeply covered regions. The 

genome breadth coverage was calculated by the number of genome positions covered by at least 

one read by the total genome size. The genome depth coverage was calculated by averaging 

read depths across the genome. 

 

SARS-CoV-2 clade identification. For the samples with 10% or higher SARS-CoV-2 genome 

breadth coverage, the nucleotide variants were identified, and the genome sequence was built 

using Bcftools (v1.9) based on the identified variants having N’s for the regions not covered by 

reads. The reconstructed genome sequence was used to identify SARS-CoV-2 clades using 

Nextclade (v1.9.0) with the downloaded dataset (tag: 2022-01-05T19:54:31Z). 

 

AMR gene identification. The assembled contigs from the CZID workflow with 40M subsampled 

read pairs were retrieved and searched against AMR genes using NCBI AMRFinderPlus 
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(v3.10.21). 

 

Host transcriptome response. The differential gene expression and ontology enrichment analysis 

between COVID-19 positive (Ct value below 21) and confirmed negative samples from site A was 

done using DEGenR, an interactive Shiny app that provides integrated tools for performing 

differential gene expression, ranked-based ontological gene set and pathway enrichment analysis 

(34). Within DEGenR, the raw read counts were imported, filtered, normalized using edgeR R-

package to filter out any low-expressed genes. This was followed by differential gene expression 

analysis using the Empirical Bayes method (eBayes) (35). 

 

Functional enrichment analysis of human host response genes. To identify significant biological 

processes associated with the COVID-19 positive samples, we use Gene Ontology (GO) 

databases to assess the coherence of Differentially Expressed Genes (DEGs) (36). The Enrichr 

R package (37) was used to rank enriched terms among DEGs using different databases and 

resources, including GO biological processes. We used the Enrichr overrepresentation analysis 

(ORA) test incorporated (37) within DEGenR to associate biological functions to DEGs. 
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Figure 1. Study workflow and design. (A) From clinical specimens to reporting. (B) CRISPclean 

workflow. (C) Data analysis workflow: i. Estimating rRNA composition, ii. Reporting taxonomic 

classification and the abundance of pathogens and coinfections as percentage of microbiome 

(non-human) reads, iii. Reporting pathogen genome coverage metrics, iv. Reporting AMR, and v. 

Reporting host gene expression. 
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Figure 2. Ribosomal RNA composition before and after CRISPRClean depletion at Site A. The 

average percent of ribosomal aligned reads (y-axis) was determined for bacterial (blue) and 

eukaryotic ribosomal (purple) in all sample libraries from site A (n=180). Percent of aligned reads 

is shown with and without CRISPRclean depletion. CRISPRclean depletion removes nearly all 

bacterial and eukaryotic RNA. 
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Figure 3. Heatmap of top 20 non-human species identified at Site A and B. The average log2 

reads per million sequences (RPM) were calculated for non-human species in clinical samples 

from both sites and the top 20 species were identified from Site A (left column) and Site B (right 

column). Log2 RPM values are shown in each cell. Red represents higher and green represent 

lower log2 RPM values. Species not identified are in white (nd). 
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12.44 9.21 Staphylococcus epidermidis
12.43 1.50 Pseudoxanthomonas mexicana
11.92 nd Rhinovirus A
11.40 1.33 Acinetobacter schindleri
11.22 8.10 Pseudomonas aeruginosa
10.89 nd Stenotrophomonas acidaminiphila
10.56 5.90 Stenotrophomonas sp. LM091
10.51 5.58 Staphylococcus aureus
10.22 16.01 Prevotella melaninogenica
10.18 14.89 Rothia mucilaginosa
9.91 13.19 Haemophilus parainfluenzae
9.32 nd Rhinovirus C
9.06 12.37 Fusobacterium nucleatum
8.81 13.60 Schaalia odontolytica
8.63 14.28 Prevotella jejuni
8.49 13.72 Streptococcus salivarius
8.10 6.16 Micrococcus luteus
8.03 13.58 Leptotrichia wadei
7.92 nd Gammapapillomavirus 1
7.65 13.35 Veillonella atypica
6.40 14.22 Fusobacterium pseudoperiodonticum
5.25 nd Rhinovirus B
3.33 12.01 Campylobacter concisus
nd 9.21 Candidatus Nanosynbacter lyticus
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Figure 4. Sequencing read counts for SARS-CoV-2 in clinical specimens across Ct values. The 

sequencing read counts, shown on the y-axis, from Kraken2 workflow were calculated for non-

depleted (blue) and depleted (purple) samples. Box and whisker plots were generated for three 

cycle threshold (Ct) bins. A. Ct <23 (non-depleted - n = 17, depleted – n = 34). B. Ct 23-30 (non-

depleted – n = 11, depleted – n = 22). C. Ct 30 – 39 (non-depleted – n = 17, depleted – n = 34). 

Values for the two depleted sample replicates were averaged and compared to single non-

depleted samples to provide paired values for Wilcoxon Singed-Rank test. The Wilcoxon Signed-

Rank Test indicated that sequence read counts to SARS-CoV-2 genome were statistically 

significantly higher with CRISPRclean depletion than without depletion. The z value (z), median 

of non-depleted (Mdn ND) and depleted (Mdn Depl) samples are shown in the upper left of the 

graph for each Ct bin. 
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Table 1. Contingency tables comparing the performance of CRISPRclean NGS and RT-qPCR for 

Site A and Site B. Samples with Ct < 35 were processed with the CRISPRclean NGS assay and 

positive/negative results compared to RT-qPCR results from the same samples. Sensitivity, 

specificity, positive predictive value (PPV) and negative predictive value (NPV) were calculated 

for both Site A and B. CRISPRclean results are comparable those seen from RT-qPCR. 

  

Site A
(n = 93) Positive Negative Total

Positive 63 0 63 100.% PPV

Negative 1 29 30 96.7% NPV

Total 64 29 93

98.4% 100%

Sensitivity Specificity

Site B
(n = 24) Positive Negative Total

Positive 20 0 20 100% PPV

Negative 1 3 4 75% NPV

Total 21 3 24

95% 100%

Sensitivity Specificity
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Table 2. Antimicrobial resistance (AMR) genes identified in clinical samples from Site A and B. 

AMR genes (Gene Symbol and Sequence Name) were identified in the assembled contigs from 

CZID output. The antibiotic class of each gene was determined and the number of specimens 

exhibiting the gene was calculated. The average percent sequence coverage and identity is 

shown in columns 5 and 6. 

 

Gene 
Symbol Sequence Name Antibiotic 

Class
Specimen 

Counts
Avg. Coverage of 
AMR Gene (%)

Avg. Identity AMR 
Gene (%)

aph(3')-Ia 23S rRNA (adenine(2058)-N(6))-methyltransferase Erm(X) Kanamycin 6 70.97 99.43

aph(3')-IIIa aminoglycoside O-phosphotransferase APH(3')-Ia Amikacin/
Kanamycin 2 52.77 88.34

cfxA3 aminoglycoside O-phosphotransferase APH(3')-IIIa Beta-lactam 1 85.98 100.00

erm(X) class A extended-spectrum beta-lactamase CfxA3 Macrolide 1 60.44 100.00

tet(37) tetracycline efflux ABC transporter Tet(46) subunit B Tetracycline 1 55.19 98.75

tet(W) tetracycline resistance NADPH-dependent oxidoreductase 
Tet(37) Tetracycline 3 68.52 94.14

tetB(46) tetracycline resistance ribosomal protection protein Tet(W) Tetracycline 1 66.51 99.76

Total 15 67.00 98.41


