Supplementary Information

Long-term ambient hydrocarbon exposure and incidence of urinary bladder cancer

Han-Wei Zhang, PhD, Zhi-Ren Tsai, PhD, Victor C. Kok, MD, PhD, FACP, Hsiao-Ching Peng, MSc, Yau-Hung Chen, PhD, Jeffrey J.P. Tsai, PhD, and Chun-Yi Hsu, PhD

Corresponding Author: Victor C. Kok, <u>vkok@alumni.harvard.edu</u>

Supplementary Figures: 2.

Supplementary Tables: 4.

Legends of Figures and Tables

Supplementary Figure S1. Population distribution of the daily average concentrations of air pollutants (SO₂, CO₂, CO₂, CO₃, O₃, PM₁₀, and PM_{2.5}) over a 10-year exposure period.

Supplementary Figure S2. Population distribution of the daily average concentrations of air pollutants (NO_X, NO, NO₂, THC, NMHC, and CH₄) over a 10-year exposure period.

Supplementary Table S1. Pearson's correlation analysis for air pollutants over a 10-year exposure period. CO₂, carbon dioxide; CO, carbon monoxide; CH₄ methane; NMHC, nonmethane hydrocarbons; NO, nitrogen monoxide; NO₂, nitrogen dioxide; NO_x, nitrogen oxides; O₃, ozone; PM₁₀, particulate matter <10 μ m in size; PM_{2.5}, particulate matter <2.5 μ m in size; SO₂, sulfur dioxide; THC, total hydrocarbons. [†]Correlation significant at the 0.01 level (two-tailed). Correlation coefficient values of <0.3 denote a low strength of correlation, which qualifies as the controlling pollutant in multiple-pollutant models of targeted pollutants.

Supplementary Table S2. Mean and distribution of air pollutants over a 10-year exposure period. SD, standard deviation; 5th, 5 percentile; 95th, 95 percentile; Min, minimum; Max, maximum; IQR, interquartile range; T₁, 33.33 percentile; T₂, 66.66 percentile; ppb, parts per billion; ppm, parts per million; μ g/m³, microgram/cubic meter; CO₂, carbon dioxide; CO, carbon monoxide; CH₄ methane; NMHC, nonmethane hydrocarbons; NO, nitrogen monoxide; NO₂, nitrogen dioxide; NOx, nitrogen oxides; O₃, ozone; PM₁₀, particulate matter <10 µm in size; PM_{2.5}, particulate matter <2.5 µm in size; SO₂, sulfur dioxide; THC, total hydrocarbons.

Supplementary Table S3. Sensitivity analysis showing adjusted hazard ratios of developing urinary bladder cancer stratified by sex during long-term THC or NMHC exposure at a standard deviation (SD) increment controlled for PM_{2.5}, and other air pollutants

Supplementary Table S4. Sensitivity analysis showing adjusted hazard ratios of the incidence of urinary bladder cancer stratified by diabetes mellitus status during long-term THC or NMHC exposure at a standard deviation (SD) increment controlled for PM_{2.5}, and other air pollutants.

.soo CO

.600

100,000

80,007

60,000

20,000

.000

20,000

40,000

Number 40,000

Supplementary Figure S1. Population distribution of the daily average concentrations of air pollutants (SO₂, CO₂, CO, O_3 , PM_{10} , and $PM_{2.5}$) over a 10-year exposure period.

Supplementary Figure S2. Population distribution of the daily average concentrations of air pollutants (NO_X, NO, NO₂, THC, NMHC, and CH₄) over a 10-year exposure period.

	SO_2	CO ₂	СО	O ₃	PM_{10}	PM _{2.5}	NO _X	NO	NO ₂	THC	NMHC	CH ₄
SO_2	1	0.098 [†]	0.186 [†]	0.059 [†]	0.621 [†]	0.613 [†]	0.272^{\dagger}	0.073 [†]	0.449^{\dagger}	0.089 [†]	0.156 [†]	- 0.050 [†]
CO_2		1	-0.328^{\dagger}	-0.006 [†]	0.527^{\dagger}	0.413^{\dagger}	-0.274 [†]	-0.377^{\dagger}	- 0.154 [†]	-0.545^{\dagger}	-0.474^{\dagger}	-0.372^{\dagger}
CO			1	-0.602^{\dagger}	-0.319 [†]	-0.231 [†]	0.945^{\dagger}	0.923^{\dagger}	0.867^{\dagger}	0.643^{\dagger}	0.870^{\dagger}	0.095 [†]
O_3				1	0.402^{\dagger}	0.358^{\dagger}	-0.494^{\dagger}	-0.460^{\dagger}	-0.478^{\dagger}	- 0.296 [†]	-0.481^{\dagger}	-0.019 [†]
PM_{10}					1	0.936^{\dagger}	-0.242 [†]	-0.427^{\dagger}	- 0.026 [†]	-0.223 [†]	-0.373†	0.020^\dagger
PM _{2.5}						1	-0.184 [†]	-0.387^{\dagger}	0.045^{\dagger}	-0.279 [†]	-0.349^{\dagger}	- 0.094 [†]
NO_X							1	0.949^{\dagger}	0.946^{\dagger}	0.679^{\dagger}	0.831^{\dagger}	0.154 [†]
NO								1	0.795^{\dagger}	0.752^{\dagger}	0.879^{\dagger}	0.231 [†]
NO_2									1	0.529^{\dagger}	0.692^{\dagger}	0.056 [†]
THC										1	0.750^{\dagger}	0.743^{\dagger}
NMHC											1	0.142 [†]
CH_4												1

Supplementary Table S1. Pearson's correlation analysis for air pollutants over a 10-year exposure period.

 CO_2 , carbon dioxide; CO, carbon monoxide; CH₄, methane; NMHC, nonmethane hydrocarbons; NO, nitrogen monoxide; NO₂, nitrogen dioxide; NO_x, nitrogen oxides; O₃, ozone; PM10, particulate matter < 10 µm in size; PM_{2.5}, particulate matter < 2.5 µm in size; SO₂, sulfur dioxide; THC, total hydrocarbons.

[†]Correlation significant at the 0.01 level (two-tailed).

Correlation coefficient values of < 0.3 denote a low strength of correlation, which qualifies as the controlling pollutant in multiple-pollutant models of targeted pollutants.

	Mean	SD	Median	5th	95th	Min	Max	IQR	T_1/T_2	T_2 / T_3
									cutoff	cutoff
SO ₂ (ppb)	4.17	1.29	3.85	2.69	7.63	12.10	0.50	0.58	3.54	4.04
CO ₂ (ppm)	402.75	9.55	398.96	388.45	418.07	463.65	343.47	8.61	398.96	404.31
CO (ppm)	0.54	0.12	0.53	0.37	0.69	1.32	0.25	0.20	0.47	0.61
O ₃ (ppb)	28.52	2.10	27.98	26.63	32.29	52.36	1.00	1.99	27.75	28.80
$PM_{10}(\mu g/m^3)$	54.47	10.02	54.54	40.02	70.75	85.20	1.00	14.03	46.72	57.50
PM _{2.5}	32.44	6.81	32.32	23.02	45.49	89.43	0.64	9.38	27.45	35.13
$(\mu g/m^3)$										
$NO_X(ppb)$	25.78	7.52	25.98	14.11	36.22	58.53	1.00	13.86	20.59	30.74
NO (ppb)	7.55	4.04	6.72	2.85	14.88	30.25	0.08	7.27	4.79	8.41
NO ₂ (ppb)	18.23	3.90	19.17	10.68	23.16	29.50	1.00	6.29	16.55	21.35
THC (ppm)	2.24	0.14	2.23	2.03	2.41	3.35	1.00	0.18	2.17	2.32
NMHC	0.29	0.09	0.27	0.15	0.45	1.09	0.06	0.10	0.24	0.33
(ppm)										
CH ₄ (ppm)	1.95	0.08	1.96	1.82	2.08	2.77	1.00	0.09	1.92	1.98

Supplementary Table S2. Mean and distribution of air pollutants over a 10-year exposure period.

SD, standard deviation; 5th, 5 percentile; 95th, 95 percentile; Min, minimum; Max, maximum; IQR, interquartile range; T₁, 33.33 percentile; T₂, 66.66 percentile; ppb, parts per billion; ppm, parts per million; μ g/m³, microgram/cubic meter; CO₂, carbon dioxide; CO, carbon monoxide; CH₄, methane; NMHC, nonmethane hydrocarbons; NO, nitrogen monoxide; NO₂, nitrogen dioxide; NOx, nitrogen oxides; O₃, ozone; PM₁₀, particulate matter < 10 µm in size; PM_{2.5}, particulate matter < 2.5 µm in size; SO₂, sulfur dioxide; THC, total hydrocarbons.

Supplementary Table S3. Sensitivity analysis showing adjusted hazard ratios of developing urinary bladder cancer stratified by sex during long-term THC or NMHC exposure at a standard deviation (SD) increment controlled for PM_{2.5}, and other air pollutants

Amhient nollutant	Controlling	Adjusted HR ^b (95% CI)					
category	nollutant ^a	Male	Female				
category	ponutant	(n = 305,071)	(n = 303,158)				
THC	-	1.72 (1.62–1.83)*	1.88 (1.72–2.05)*				
(0.14 ppm increase)	SO ₂	1.70 (1.60–1.81)‡	1.87 (1.71–2.04)‡				
	O ₃	1.57 (1.48–1.66)‡	1.72 (1.58–1.87)‡				
	PM ₁₀	1.96 (1.84–2.09)‡	2.10 (1.91–2.30) ‡				
	PM _{2.5}	2.07 (1.94–2.21)‡	2.26 (2.06–2.49)‡				
	SO ₂ , O ₃	1.53 (1.44–1.62)‡	1.75 (1.60–1.91)‡				
NMHC	-	1.33 (1.26–1.41)‡	1.47 (1.35–1.59)‡				
(0.09 ppm increase)	SO ₂	1.31 (1.24–1.39)‡	1.47 (1.36–1.59)‡				
	CH ₄	1.17 (1.11–1.23)‡	1.25 (1.16–1.35)‡				
	SO ₂ , CH ₄	1.12 (1.06–1.19)‡	1.23 (1.14–1.33)‡				

HR, hazard ratio; CI, confidence interval; SO₂, sulfur dioxide; O₃, ozone; PM₁₀, particulate matter $< 10 \ \mu m$ in size; PM_{2.5}, particulate matter $< 2.5 \ \mu m$ in size; CH₄, methane.

^a Additional pollutants were added into the pollutant models for multiple analysis only when |Pearson's correlation coefficient| < 0.3 (Suppl Table S1).

^b Cox regression models were adjusted for age, gender, essential hypertension, chronic cystitis, smoking-related diagnoses, alcohol use disorders, morbid obesity, spinal cord injury, chronic liver disease, diabetes mellitus, gout, chronic kidney disease, pesticide exposures, dyslipidemia, lag0-2, season, and ambient temperature, controlled pollutants (weak correlation with THC or NMHC).

 $^{\ddagger}p < 0.001.$

Supplementary Table S4. Sensitivity analysis showing adjusted hazard ratios of the incidence of urinary bladder cancer stratified by diabetes mellitus status during long-term THC or NMHC exposure at a standard deviation (SD) increment controlled for PM_{2.5}, and other air pollutants.

	Controlling	Adjusted HR ^b (95% CI)					
Air pollutant category	nollutant ^a	Diabetes mellitus	Non-diabetes mellitus				
	ponutant	(n = 103,317)	(n = 504,912)				
THC	-	2.03 (1.82–2.26)*	1.71 (1.61–1.81)‡				
(0.14 ppm increase)	SO_2	2.00 (1.79–2.23)*	1.69 (1.60–1.79)‡				
	O ₃	1.82 (1.64–2.02)*	1.56 (1.48–1.65)‡				
	PM ₁₀	2.34 (2.09–2.64) *	1.92 (1.81–2.04)‡				
	PM _{2.5}	2.55 (2.26–2.87)‡	2.02 (1.90–2.14)‡				
	SO ₂ , O ₃	1.80 (1.61–2.01)*	1.54 (1.46–1.63)‡				
NMHC	-	1.51 (1.37–1.67)*	1.34 (1.27–1.41)‡				
(0.09 ppm increase)	SO_2	1.49 (1.34–1.65)*	1.33 (1.26–1.40)‡				
	CH ₄	1.31 (1.19–1.44)*	1.16 (1.10–1.21)‡				
	SO ₂ , CH ₄	1.26 (1.14–1.39)*	1.12 (1.07–1.18)‡				

HR, hazard ratio; CI, confidence interval; SO₂, sulfur dioxide; O₃, ozone; PM₁₀, particulate matter $< 10 \mu m$ in size; PM_{2.5}, particulate matter $< 2.5 \mu m$ in size; CH₄, methane.

^aAdditional pollutants were added into the pollutant models for multiple analysis only when the absolute value of Pearson's correlation coefficient was < 0.3.

^bCox regression models were adjusted for age, gender, essential hypertension, chronic cystitis, smoking-related diagnoses, alcohol use disorders, morbid obesity, spinal cord injury, chronic liver disease, diabetes mellitus, gout, chronic kidney disease, pesticide exposures,

dyslipidemia, lag0-2, season, and ambient temperature, controlled pollutants (weak correlation with THC or NMHC).

 $^{\ddagger}p < 0.001.$