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Supplementary Discussion 

However, complete real time margin assessment is currently bottlenecked by tumor size 

and complexity, which impacts the application of this technique beyond the MMS 

setting. Technologies which optimize surgical care efficiency in this setting may 

ameliorate these constraints and are thus worthwhile investments. ArcticAI uses 3D 

reconstruction, graph neural networks, tissue mapping and workflow automation 

techniques to improve the efficiency and completeness of intraoperative surgical tumor 

resection to reduce the potential for costly repeat procedures and/or tumor recurrence. 

We expect this platform to improve communication between the surgeon, 

histotechnician and pathologist in the intraoperative setting, driving efficiency and 

completeness of intraoperative histological assessments. In turn, AI augmented real-

time intraoperative margin assessments may yield significant fiscal savings for hospitals 

and reduce patient morbidity and mortality. Artificial intelligence has the potential to 

improve tumor removal through coupling the speed and accuracy neural networks with 

expert domain knowledge, which can increase the efficiency of healthcare delivery at 

multiple levels. 

 

The ArcticAI platform is a margin analysis tool that addresses pragmatic surgical 

workflow considerations by targeting known bottlenecks of real-time surgical excision; 

from histological preprocessing to frozen section completeness, to tumor orientation and 

mapping. Furthermore, histological assessment results are on par with existing state-of-

the-art results for BCC frozen sections. This is largely due to the incorporation of graph 



neural networks, which can integrate spatial information across the tissue, improving 

predictions while requiring less data. This platform is the first to employ graph neural 

networks for margin assessment on frozen tissue sections. Laboratory automation tools 

such as ArcticAI are well positioned to expand real-time margin analysis to more 

complex tumors given additional validation and testing while alleviating staffing issues 

by automating time consuming, low skill tasks.  

 

Future algorithmic improvements. Given the myriad of workflow steps being optimized, 

the input parameters pertaining to the gross specimen (e.g., number of subsampled 

images, outlier point removal), tissue preprocessing (e.g., alpha shape construction) 

and histological assessment (e.g., learning rate) were coarsely assessed using sensible 

search grids to determine the optimal configuration. As such, we are planning to replace 

and improve some of the segmentation and reconstruction algorithms using deep 

learning approaches (e.g., low resolution tissue detection with detection network) which 

may circumvent tissue processing assumptions (such as background color threshold). 

The reconstruction process can also be sped up either by using a faster turntable (since 

only one-tenth of frames were utilized for this study) or through further subsampling of 

image frames (depending on the smartphone’s capture speed). Gross specimen 

reconstruction can be further optimized using state-of-the-art multi-view stereo 

frameworks (MVS) such as Neural Radiance Fields (NERF), which can display the 

gross specimen at any input orientation. The image features learned through the CNN-

GNN approach may be further refined through state-of-the-art deep learning models 

such as Vision Transformers, training methods such as self-supervision, and through 



pretraining the model (i.e., initializing or transferring the knowledge) based on training a 

model on similar frozen histological specimens.  

 

The completeness assessment algorithm did remarkably well in separating holes/tears 

from other similar structures, such as fat, wispy dermis, and gaps introduced from large 

follicles, though there were some instances where the algorithm had erroneously 

predicted these structures. We also noticed instances where the presence of follicles and 

sebaceous/eccrine glands may have confounded tumor detection and completeness 

assessment respectively. But, for the most part, hair follicles were not conflated with 

tumor prediction since the AUC remained unchanged after accounting for follicles and 

through qualitative assessment (e.g., follicular structures in Figures 4-5). While we 

attempted to control for follicles as a confounder through detection and downweighting of 

patches containing follicles, we acknowledge that this approach may be further improved 

in follow up works which allow for simultaneous prediction of follicle and tumor without 

conflating the two.  

 

Prediction of tumor was highly accurate, much of which can be attributed to the inclusion 

of inflammatory foci in the prediction algorithm as a separate class. This allowed for 

inflammation to be detected and excluded from tumor consideration. However, this left 

open the very real possibility of tumor cells surrounded by inflammation failing to be 

detected. So, as an added layer of security, we prototyped a neural network algorithm to 

predict nuclei within pockets of inflammation to rule out tumor, which was annotated for 

both inflammation and tumor. However, there does not yet exist large datasets of millions 



of nuclei across many slides for nuclei prediction across frozen sections, as compared to 

permanent sections for specific cell types (e.g., follicle nuclei, basal cell, epidermal 

keratinocytes, malignant, dermal fibroblasts, etc.). Detecting and separating individual 

benign from malignant cells may require millions of tedious cell annotations to achieve 

the consistency required for clinical use. We plan to investigate methods which can 

rapidly expand our annotation set with minimal cost: 1) expert-in-the-loop, where neural 

network generates annotations for pathologists to accept or reject 1; 2) developing 

annotation efficient methods (e.g. point annotations) instead of complete nuclear contours 

or are weakly supervised or self-supervised 2,3; 3) virtual immunohistochemical staining, 

which can be used to label malignant cells4, and 4) other data efficient approaches 

whereby certain types of annotations may no longer be required to improve the test set 

prediction. Finally, the web application may benefit from additional mobile application 

development for maximal usability. 

 

External applicability. While two dermatopathologists curated annotations for this dataset, 

expert annotation is not always guaranteed to agree and can potentially serve as a source 

of measurement error/uncertainty which may change the accuracy of the model results. 

Avoiding issues of measurement variability/uncertainty may potentially distort study 

outcomes. In future studies, we will recruit a team of expert annotators and measure 

interrater reliability to ascertain the degree of certainty for tumor mapping. We also 

acknowledge that data collection was limited to a single site and an MMS laboratory  and 

future studies are required to create and test additional external cohorts. For instance, 

the study cohort is predominantly comprised of older Caucasian males based on 



demographics of the service region. While in line with the known epidemiology 

surrounding disease risk groups 5,6, it is essential to consider other diverse groups to 

ensure external applicability and to control for such variables as race and sex. Differences 

in sectioning quality, staining, and imaging may also pose additional sources of variability 

and necessitate a multi-center clinical trial. Finally, while the role of the Mohs surgeon 

may vary depending on the hospital or health care system (e.g., surgeon also performs 

histological assessment, overlapping expertise and workspaces), real time intraoperative 

settings for excision of more complex tumor types may more clearly delineate these roles. 

 

Next steps. Pending additional algorithmic finetuning, real-world testing through clinical 

trials, and assessments of adoptability, there are ample opportunities to apply this 

technology to studying additional solid tumor types. In skin, Squamous Cell Carcinoma 

and Melanoma present opportunities to further evaluate the proposed workflow, though 

each would require additional data collection and algorithmic finetuning. Melanoma is 

particularly challenging as ancillary immunohistochemistry is often required for 

identification of positive margins. Other more challenging solid tumor types include head 

and neck, breast, lung, colon, and urinary bladder cancers, which require more significant 

changes to the surgical workflow to test and implement real-time margin assessment 

technologies 7,8. Processing time will vary by tissue size and number of sections, though 

using an AI-augmented surgical workflow, it is expected that there will be significant 

reductions in margin assessment time while maintaining or improving accuracy and 

completeness. 
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