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Abstract 

Background: Psychotic symptoms occur in a majority of schizophrenia patients, and in 

approximately 50% of all Parkinson´s disease (PD) patients. Altered grey matter (GM) structure 

within several brain areas and networks may contribute to their pathogenesis. Little, however, 

is known about transdiagnostic similarities when psychotic symptoms occur in different 

disorders, such as schizophrenia and PD. Methods: The present study investigated a large, 

multicenter sample containing 722 participants: 146 patients with first episode psychosis, FEP; 

106 individuals at-risk mental state for developing psychosis, ARMS; 145 healthy controls 

matching FEP and ARMS, Con-Psy; 92 PD patients with psychotic symptoms, PDP; 145 PD 

patients without psychotic symptoms, PDN; 88 healthy controls matching PDN and PDP, Con-

PD. We applied source-based morphometry in association with receiver operating curves 

(ROC) analyses to identify common GM structural covariance networks (SCN) and 

investigated their accuracy in identifying the different patient groups. We assessed group-

specific homogeneity and variability across the different networks and potential associations 

with clinical symptoms. Results: SCN-extracted GM values differed significantly between FEP 

and Con-Psy, PDP and Con-PD as well as PDN and Con-PD, indicating significant overall grey 

matter reductions in PD and early schizophrenia. ROC analyses showed that SCN-based 

classification algorithms allow good classification (AUC~0.80) of FEP and Con-Psy, and fair 

performance (AUC~0.72) when differentiating PDP from Con-PD. Importantly, best 

performance was found in partly overlapping networks including the precuneus. Finally, 

reduced GM volume in SCN with increased variability was linked to increased psychotic 

symptoms in both FEP and PDP. 

Conclusion: Alterations within selected SCNs seem to be related to the presence of psychotic 

symptoms in both early schizophrenia and PD psychosis, indicating some commonality of 

underlying mechanisms. Furthermore, results provide first evidence that GM volume within 

specific SCNs may serve as a biomarker for identifying FEP and PDP.  
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Introduction 

Psychotic symptoms, mostly occurring in the form of hallucinations or delusions, are highly 

debilitating; they may be treatment-resistant and often lead to poor functional outcomes 

(Lieberman et al., 2019). They become manifest in different psychiatric and neurological 

disorders. In schizophrenia, psychotic symptoms constitute one of the core symptoms occurring 

in a majority of patients, mainly in the form of auditory and visual hallucinations (McCutcheon 

et al., 2020; Schultz et al., 2007). Likewise, about 50 % of all Parkinson´s disease (PD) patients 

suffer from psychotic symptoms, mainly in terms of visual and minor hallucinations (Lenka et 

al., 2019) that become more prominent during later stages of treated illness (Ffytche et al., 2017; 

Pereira et al., 2017). There is a general consensus that altered structure and function of specific, 

often dopaminergic, brain areas play a relevant role in the pathogenesis of psychotic symptoms 

(Schultz et al., 2012), but little is known about the commonalities of the substrates underlying 

psychotic symptoms in schizophrenia and PD. Similarities in neurobiology have been suggested 

for example in areas of prediction error processing (Ermakova et al., 2018; Garofalo et al., 

2017) and salience processing (Knolle et al., 2020, 2018), both linked to alterations in the 

dopaminergic systems, as well as in mechanisms underlying visual hallucinations (Davies et 

al., 2018; Zarkali et al., 2019). However, even less is known regarding disease-specific 

alterations in whole brain grey matter (GM) pattern organization. In psychosis, alterations in 

GM structure have been studied intensively, with mainly surface-based methods (SBM) and 

voxel-based morphometry (VBM) (Meda et al., 2008; Schultz et al., 2013, 2010a, 2010b). 

Although meta-analyses have failed to arrive at any conclusive summary, they do 

suggest that alterations in several frontal and temporal regions, as well as the cingulate cortex 

and a number of subcortical areas, such as the hippocampus and the thalamus are among the 

most consistent findings (Glahn et al., 2008; Meda et al., 2008; Tanskanen et al., 2010; van Erp 

et al., 2016; Vos et al., 2015). These alterations seem to already be present in help-seeking 

patients with an increased clinical risk of developing psychosis (i.e., individuals with at-risk-
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mental state for developing psychosis, ARMS) and seem to progress during the course of the 

illness (Fusar-Poli et al., 2011; Ho et al., 2017; Liloia et al., 2021; Merritt et al., 2021; 

Smieskova et al., 2010). 

Substantial efforts have been made to unravel GM structural alterations related to the presence 

of psychotic symptoms in PD (Bejr-kasem et al., 2021; Ffytche et al., 2017; Ibarretxe-Bilbao et 

al., 2010; Janzen et al., 2012; Lenka et al., 2018; Pagonabarraga et al., 2014; Pereira et al., 2017; 

Ramírez-Ruiz et al., 2007; Shin et al., 2012; Vignando et al., 2022). A recent large-scale mega-

analysis applying empirical Bayes harmonisation to identify structural alterations in PD patients 

with visual hallucinations compared to PD patients without visual hallucinations detected 

differences of cortical thickness and surface area in a wide-spread network comprising primary 

visual cortex and its surrounding areas, and the hippocampus (Vignando et al., 2022). The 

authors concluded that their findings pointed to the involvement of the attentional control 

networks in the pathogenesis of PD visual hallucinations, in keeping with the attentional 

network hypothesis as proposed by Shine et al. (2011). Findings from a comprehensive 

narrative review by Lenka et al. (2015) suggested GM alterations in multiple regions of the 

brain including, in addition to the primary visual cortex and hippocampus, frontoparietal 

regions, as well as the thalamus in PD patients with psychotic symptoms compared to those 

without. Those studies (Lenka et al., 2015; Shine et al., 2011; Vignando et al., 2022) suggest 

that the GM alterations might be closely associated with the pathogenesis of psychotic 

symptoms in PD; however, they also illustrate that the overall picture is still heterogeneous, 

partly due to methodological differences between studies, but most probably because PD is 

regarded as a multi-systemic brain disease with often diffuse alterations in multiple brain 

structures and function as well as treatment.  

In spite of all heterogeneity, there is a great overlap between those structures reported 

to be altered in psychosis patients and PD patients with psychotic symptoms, indicating that 

these alterations might represent a common underlying substrate of psychotic symptomatology. 
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One of the major challenges when relating GM alterations in PD psychosis to those in 

schizophrenia is the difference in age of disease onset, with 60-80 years in PD (Xiromerisiou 

et al., 2010) and early 20s in psychosis patients (Solmi et al., 2021). Given the well-known, 

strong association between GM changes and age which, in turn, is closely related to illness 

duration especially in elderly PD patients, age differences usually make it impossible to draw a 

clear conclusion on psychosis-related commonalities of structural alterations in these two 

disorders.  

Based on these considerations, in the present study we applied source-based 

morphometry (SBM) in association with receiver operating curves (ROC) analysis, to isolate 

common GM structural covariance networks (SCN) as a basis for a clinically valid 

classification of the different patient groups while controlling for the highly relevant influence 

of age. More specifically, by using this method we aimed to identify SCN-related network 

characteristics with a similarly good classification performance in ARMS (vs. controls) as well 

as first episode psychosis (FEP) patients (vs. controls) and PD patients with psychosis (vs. 

controls, vs. PD patients without psychosis). These network characteristics could then be 

assumed to be closely related to psychotic symptoms in both diseases and to be independent 

from age- and stage-of-disease, and overlap between regions may indicate commonality in 

underlying mechanisms. Of note, since SCN identified by SBM have been shown to overlap 

with functional brain networks subserving behavioral and cognitive functions they are gaining 

increasing importance as sensitive substrates for the investigation of brain network organization 

in neuropsychiatric diseases and are regarded as highly suitable for prediction or classification 

(Alexander-Bloch et al., 2013). Nonetheless, to the best of our knowledge, there are only a few 

single studies investigating SCN in patients with psychosis (Gupta et al., 2018; Kašpárek et al., 

2010; Xu et al., 2009) and PD patients (Lee et al., 2018; Zhou et al., 2020). Only one of these 

employed SCN-based classification in PD patients without psychotic symptoms, and reported 

an overall moderate SCN-related classification accuracy (Lee et al., 2018). Thus, the present 
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study aimed at investigating SCN-related GM alterations in patients with first episode 

psychosis, ARMS as well as PD patients with and without psychotic symptoms to evaluate their 

suitability to identify psychosis-related characteristics taking into account age as a possible 

confounder. Finally, we aimed at exploring SCN-associated GM pattern organization with 

regard to disease-specific characteristics in whole brain GM patterns and their clinical 

relevance. 

 

Methods      

Participants 

In this study, we used a cross-sectional dataset to investigate early schizophrenia (i.e., and) and 

Parkinson’s disease, combining imaging data from six original projects: the Early Psychosis 

Human Connectome Project (EP-HCP, https://www.humanconnectome.org/study/human-

connectome-project-for-early-psychosis), an early schizophrenia dataset collected in 

Cambridge, UK (Ermakova et al., 2018; Knolle et al., 2018), an at-risk for psychosis dataset 

collected in Singapore (Dandash et al., 2014), and three PD psychosis datasets, from 

Cambridge, UK (Garofalo et al., 2017; Knolle et al., 2020), Sydney, Australia (Shine et al., 

2015) and Bangalore, India (Lenka et al., 2018). The final dataset included 722 participants, 

consisting of: individuals with an at-risk mental state for developing psychosis (ARMS), 

showing sub-threshold positive and negative symptoms of schizophrenia; individuals with a 

first episode of psychosis (FEP), consisting of first episode of schizophrenia and first episode 

of schizoaffective disorder; and healthy controls matching FEP and ARMS (Con-Psy), PD 

without psychosis (PDN), PD with psychosis (PDP), healthy controls matching PDN and PDP 

(CON-PD). Various clinical scores were recorded. Symptoms related to psychosis and 

schizophrenia were measured using the Comprehensive Assessment of At Risk Mental States 

(CAARMS) in ARMS (Yung et al., 2005), the Positive and Negative Syndrome Scale (PANSS) 

in FEP (Kay et al., 1987). In PD, the Hoehn and Yahr scale (Hoehn and Yahr, 1998) was used 
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to assess the disease stage, and the Unified Parkinson's Disease Rating Scale (UPDRS, (Forsaa 

et al., 2010)) item 2 to assess psychotic symptoms and hallucinations. In PD, both the Mini-

Mental State Examination (MMSE, (Folstein et al., 1983))  and the Montreal Cognitive 

Assessment (MoCA, (Nasreddine et al., 2005)) were used to assess cognitive decline. MoCA 

scores were converted to MMSE using a validated conversion table (Yang et al., 2021). 

Demographic and clinical details, as well as corresponding statistics are described in Table 1.  

Ethical approval was obtained from local ethical committees for each original studies: The 

studies were approved by the Cambridgeshire 3 National Health Service research ethics 

committee (Garofalo et al., 2017; Knolle et al., 2020); by the ethics review board of the 

Singaporean National Healthcare Group (Dandash et al., 2014);  by the ethical commitee of the 

University of Sydney (Shine et al., 2015);  and by the Institute Ethics Committee of NIMHANS, 

Bangalore (Lenka et al., 2018). Furthermore, freely available data was used from the Human 

Connectome Projects (https://www.humanconnectome.org/study/human-connectome-project-

for-early-psychosis), for which ethical approval was waived by the Ethical Commission Board 

of the Technical University Munich. All subjects gave written informed consent in accordance 

with the Declaration of Helsinki.
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Table 1. Group demographics and clinical scores of the final sample. 

Psychosis  
Con-Psy ARMS FEP Group 

compar
ison  

Cambri
dge 

HCP Singa
pore 

Total Cambri
dge 

Singapore Total Cambri
dge 

HCP Total KW-
X2/P-
X2, 

X2(df), 
p-value 

n  49 57 (2x*) 39 
(***
*) 

145 32 74 (****) 106 23 123 146 n/a 

Age, 
mean/SD 
(range)  

23.18/3
.37 

(18-33) 

24.88-
4.08 (17-

36) 

22.51
-3.96 
(14-
29) 

23.67/
3.93 
(14-
36) 

21.44/3.
29 (18-

29) 

21.46/3.43 (14-
29) 

21.45/
3.38 
(14-
29) 

22.78/5.
18 (17-

32) 

22.84/3.86 (17-35) 22.83-
4.07 (17-

35) 

22.15(2
), 

<0.001 

Sex, 
female 

23 20 16 59 13 22 35 10 48 58 1.72(2), 
0.4 

CAARM
S 

n/a 16.56/7.
57 (4-

29) 

16.05/7.47 (3-38) 16.21/
7.47 

(3-38) 

- - - n/a 

PANSS n/a 20.13/5.
46 (14-

38) 

- 20.13/
5.46 
(14-
38) 

25.62/7.
67 (16-

51) 

49.91/11.04 (30-78) 46.10/13
.78 (16-

78) 

n/a 

Medicate
d(any 
current 
antipsych
otic 
treatment)
, yes (N)  

 0 (1 
missing

) 

2 2 1 (1 
missing

) 

90 (2 missing) 91 n/a 

Parkinson's Disease 
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Con-PD PDP PDN   

Cambri
dge 

Bangalor
e 

Sydn
ey 

Total Cambri
dge 

Bangalo
re 

Sydne
y 

Total Cambri
dge 

Bangalore Sydney Total  

n  25 
(***) 

41 22 88 15 42 35 
(**,**

*) 

92 28 49 (*) 68 
(2x*,**

**) 

145 n/a 

Age  62.2/5.
92 (46-

72) 

55.42/5.2
3 (44-66) 

67.73
/8.17 
(52-
87) 

60.42/
8.03 
(44-
87) 

61.93/7.
47 (44-

73) 

58.43/8.
54 (38-

69) 

65.83/
7.02 
(52-
82) 

61.82/
8.45 
(38-
82) 

63.07/9.
58 (43-

74) 

57.87/6.8
4 (42-70) 

66.84/8.
66 (45-

87) 

63.08/9.
14 (42-

87) 

7.27(2), 
0.03 

Sex, 
female 

13 10 12 35 7 8 12 27 10 3 16 29 10.74 
(2), 

0.005 
Hoehn&

Yahr  
mean/SD 
(range) 

n/a 1.71/0.9
1(1-3) 

2.35/0.2
5(2-3) 

2.09/0.
46 (1-

3) 

2.16/0.
53 (1-

3) 

1.48/0.9
0(1-5) 

2.32/0.30(
1.5-3) 

2.11/0.7
6(1-5) 

2.08/0.7
2(1-5) 

n/a 

UPDRS, 
modified 
Psychosis 
Severity 
Scale,  

mean/SD 
(range)  

n/a 1.53/0.7
8 (1-3) 

2.21/1.2
2 (1-4) 

1.37/0.
65 (1-

3) 

1.78/1.
04 (1-

4)  

n/a n/a 

MMSE, 
mean/SD 
(range) 

29.5/07
9 (27-

30) 

29.15/
0.91 
(27-
30) 

29.74/0
.56 (28-

30) 

29.37/
0.84 

(27-30 

28.00/1.
75 (24-

30) 

28.32/1.
47 (26-

30) 

28.74/
1.28 

(7-30) 

28.37/
1.49 
(24-
30) 

28.74/1.66 
(25-30) 

28.06/1.
30 (25-

30) 

29.40/1.05 
(27-30) 

28.70/
1.42 
(25-
30) 

19.38 
(2), 

<0.001 

Medicate
d 

(Levodop
a / 

n/a 15/0 42/0 34/0 91/0 28 49 63 140 n/a 
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antipsych
otic), yes 

(N)  
Exclusion criteria from original data: * Missing files; ** faulty scan; *** listed multiple times; **** excluded during segmentation; 
KW-X2 = Kruskal-Wallis rank sum test, P-X2=Pearson’s Chi-squared test; bold=significant 
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MRI acquisition 

T1-weighted structural images were acquired for all individuals, at a field strength of 3T. The 

different MRI sequences are detailed in Supplementary Table 1. 

 

Image preprocessing 

T1-weighted structural images were segmented into grey matter, white matter, and CSF using 

Statistical Parametric Mapping (SPM12, http://www.fil.ion.ucl.ac.uk/spm/software/spm12/), 

running on MATLAB version 2018b. Diffeomorphic Anatomical Registration through 

Exponentiated Lie Algebra toolbox (DARTEL) (Ashburner, 2007) was applied to grey matter 

images. This procedure created a sample-specific template representative of all 722 subjects by 

iterative alignment of all images. Subsequently, the template underwent non-linear registration 

with modulation for linear and non-linear deformations to the MNI-ICBM152 template. Each 

participant’s grey matter map was then registered to the group template and smoothed with an 

8 mm3 isotropic Gaussian kernel. 

 

Independent component analysis 

As a first step, all individually modulated and smoothed grey matter maps were concatenated 

to create a 4D file, which served as the basis for the independent component analysis (ICA). To 

ensure that only grey matter voxels were retained for the ICA, an absolute grey matter threshold 

of 0.1 was applied to all images. ICA was performed using the Multivariate Exploratory Linear 

Optimized Decomposition into Independent Components (MELODIC) method 

(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/MELODIC) as implemented in the FSL analysis package 

(Jenkinson et al., 2012) version 6.0. To derive data-driven population-based networks of grey 

matter covariance, the ICA was performed on all subjects (n=722) thus identifying common 

spatial components based on the covariation of grey matter patterns across all participants. In 

line with previous work which employed similar methods, we chose 30 components (Koch et 
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al., 2021; Pichet Binette et al., 2020; Zeighami et al., 2015) which allows for the investigation 

of a relatively detailed organization and represents one of the most frequent choices in resting 

state ICA analyses. To avoid spurious results, each of the 30 components or 30 morphometric 

networks was thresholded at z = 3.5 and binarized (Beckmann et al., 2009; Koch et al., 2021; 

Pichet Binette et al., 2020). Finally, each participant’s grey matter volume was extracted from 

each of the 30 morphometric networks. 

 

Statistical analyses 

Grey matter volume 

To investigate group differences in GM volume across brain networks, we used repeated-

measures ANCOVA with grey matter volume in the 30 networks as within-subjects factor and 

group as between-subjects factor. Separate repeated-measures ANCOVAs with GM volume in 

the 30 networks as within-subjects factor and group as between-subjects factor were performed 

to compare Con-Psy with FEP, Con-Psy with ARMS, FEP with ARMS, Con-PD with PDN, 

Con-PD with PDP, and PDN with PDP. To investigate age-related changes in GM volume, an 

additional repeated-measures ANCOVA with grey matter volume in the 30 networks, as a 

within-subjects factor and group as between-subjects factor, was performed to compare young 

(i.e., Con-Psy) with elderly (i.e., Con-PD) controls. Given a significant positive correlation 

between GM volume and total intracranial volume (TIV) (Pearson´s r=0.50, p<0.001), a 

significant negative correlation between GM volume and age (Pearson´s r=-0.72, p<0.001), as 

well as significant GM differences between males and females (t(720)=3.62, p<0.001) and scan 

sites (F(4,717=122.92, p<0.001), we entered age, TIV, gender and scan site as covariates in all 

repeated-measures ANCOVAs. As a prove of principle analysis, we compared young against 

elderly healthy controls. The young healthy controls are represented by Con-Psy and the elderly 

healthy controls are reflected by Con-PD. For this comparison age was removed as a covariate.  
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We applied binary logistic regression models to examine the classification performance of the 

morphometric networks for those groups showing a significant group difference in the 

ANCOVA. Previous studies showed that highly non-linear algorithms do not improve 

predictive performance when building a classifier based on image-derived brain data and for 

data sets in the size of the current one (Schulz et al., 2020). Therefore, a logistic regression 

model was used. The logistic regression models were controlled for age, gender, TIV and scan-

site for all group comparisons, except for young versus elderly healthy controls (Con-Psy vs. 

Con-PD), which excluded age as a covariate. We then performed receiver operating 

characteristic (ROC) analyses, and assessed the area under the curve (AUC) to evaluate the 

classification performance of each network. Logistic regressions, AUC and ROC analysis were 

computed using the glm and roc functions of  the r-packages ‘stats’ and pROC (Robin et al., 

2011) respectively. We split the data in a training and in a validation-dataset using a 60:40 ratio, 

to account for the different group sizes and to avoid overfitting in the model evaluation. We 

generated the logistic regression model using the training data, and tested the model using the 

validation data. AUC thresholds for classification were defined as follows: excellent = 0.90–1, 

good = 0.80–0.89, fair = 0.70–0.79, poor = 0.60–0.69, or fail = 0.50–0.59 (Safari et al., 2016). 

 

Whole-brain grey matter pattern 

To investigate potential group differences in grey matter pattern similarity (i.e., homogeneity) 

for those groups showing a significant group difference in the ANCOVAs, we correlated the 

grey matter volume in the 30 morphometric networks of each individual to the grey matter 

volume in the 30 brain networks of every other subject of the respective group (Koch et al., 

2021; Pichet Binette et al., 2020). Homogeneity indicates the similarity or correlation of the 

whole-brain network profile from one subject with the whole-brain network profile of all other 

subjects in the group. To investigate whether groups differed in grey matter pattern similarity, 
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we computed the Fligner-Killeen test of homogeneity of variances, using the fligner.test 

function of the r package ‘stats’. 

 

Intra-network variability 

Finally, for those groups showing a significant group difference in the ANCOVAs, we 

investigated potential differences in the intra-network variability of grey matter volume 

between the groups by calculating the coefficient of variation (i.e., standard deviation divided 

by mean of grey matter volume) in each of the 30 networks. Thus, this parameter indicates the 

similarity or variability of the grey matter volume of each network between subjects. We 

calculated the modified signed-likelihood ratio (MSLR) test using the mslr function of the R-

package ‘cvequality’ (https://cran.r-project.org/web/packages/cvequality/index.html) version 

0.1.3 (Marwick and Krishnamoorthy, 2019) with 100000 simulations to test for significant 

differences in the coefficients of variation of grey matter volume between groups.  

 

Correlations with clinical scores 

We computed Pearson correlations between grey matter volume of individual NWs (which 

showed significant differences in variability in group comparisons) and clinical scores, PANSS 

total and MMSE for FEP and PDP, respectively. We furthermore investigated associations 

between grey matter volume with the MDS-UPDRS Item 2 “Hallucination and Psychosis” score 

in PDP, which is a categorical score, using the Kruskal-Wallis test. 

   

Results 

The 30 morphometric networks are shown in Figure 1 and their anatomical description as 

determined by the probability maps implemented in the JuBrain Anatomy toolbox (Eickhoff et 

al., 2005) can be found in the Supplementary Materials. The majority of morphometric 

networks showed a bilateral, mainly homotopic distribution. The 30 networks described clearly 
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involve separate areas consisting of a large part of subcortical regions. Mean GM values 

extracted from each network and group are plotted in Figure 1. 

 

 

Figure 1. Mean GM values extracted from the 30 networks presented by group. Violin 

plots represent the median (black dot), the interquartile range (white bar in the center), the lower 

and upper adjacent values, and the sample distribution for each NW and group.  

 

Grey matter volume differences between groups 

Results of the repeated-measures ANCOVA, with GM volume of the 30 networks as the within-

subject factor, group as the between-subject factor and age, TIV, gender and scan site as 

covariates, showed a significant main effect of group (F(1, 712)=11.55, p<0.001), significant 

main effect of network-related GM volume (F(8, 5826)=33.87, p<0.001), and significant 

interactions of network-related GM volume with age (F(8, 5826)=12.79, p<0.001), TIV (F(8, 
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5826)=36.98, p<0.001), gender (F(8, 5826)=5.29, p<0.001), scan site (F(8, 5826)=8.78, 

p<0.001) and group (F(41, 5826)=2.23, p<0.001). All between-subject effects were 

Greenhouse-Geisser corrected due to a significant result in the Mauchly sphericity test. The 

repeated-measures ANCOVA comparing FEP with Con-Psy showed a significant main effect 

of group (F(1, 285)=10.79, p<0.001) indicating there was a significantly smaller GM volume 

in patients compared to controls, a significant main effect of network-related GM volume (F(7, 

2073)=12.76, p<0.001), and significant interactions of network-related GM volume with age 

(F(7, 2073)=2.33, p<0.02), TIV (F(7, 2073)=8.09, p<0.001), and scan site (F(7, 2073)=6.77, 

p<0.001). The interaction between network-related GM volume and group (F(7, 2073)=1.52, 

n.s.) as well as with gender (F(7, 2073)=1.57, n.s.) was not significant. Again, all between-

subject effects were Greenhouse-Geisser corrected due to a significant result in the Mauchly 

sphericity test. The repeated-measures ANCOVA comparing Con-PD with PDN showed a 

significant main effect of group (F(1, 227)=7.30, p<0.007) indicating a significantly smaller 

GM volume in patients compared to controls, a significant main effect of network-related GM 

volume (F(8, 1761)=19.32, p<0.001), and significant interactions of network-related GM 

volume with age (F(8, 1761)=14.89, p<0.001), TIV (F(8, 1761)=16.63, p<0.001), gender (F(8, 

1761)=3.06, p<0.002) and scan site (F(8,1761)=9.91, p<0.001). The interaction between 

network-related GM volume and group was not significant (F(8, 1761)=1.91, n.s.). Again, all 

between-subject effects were Greenhouse-Geisser corrected due to a significant result in the 

Mauchly sphericity test. The repeated-measures ANCOVA comparing Con-PD with PDP 

showed a significant main effect of group (F(1, 174)=12.56, p<0.001) with a significantly 

smaller GM volume in patients compared to controls, a significant main effect of network-

related GM volume (F(8, 1322)=16.78, p<0.001), and significant interactions of network-

related GM volume with age (F(8, 1322)=7.85, p<0.001), TIV (F(8, 1322)=6.99, p<0.001), 

gender (F(8, 1322)=4.51, p<0.001) and scan site (F(8, 1322)=11.35, p<0.001). The interaction 

between network-related GM volume and group was again not significant (F(8, 1322)=1.85, 
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n.s.). All between-subject effects were Greenhouse-Geisser corrected due to a significant result 

in the Mauchly sphericity test. Finally, the repeated-measures ANCOVA comparing Con-Psy 

with Con-PD showed a significant main effect of group (F(1, 228)=279.8, p<0.001) indicating 

there was a significantly smaller GM volume in older compared to younger subjects, a 

significant main effect of network-related GM volume (F(8, 1843)=10.52, p<0.001), and 

significant interactions of network-related GM volume with TIV (F(8, 1843)=9.64, p<0.001), 

gender (F(8, 1843)=2.55, p<0.009), scan site (F(8, 1843)=5.67, p<0.001) and group (F(8, 

1843)=23.54, p<0.001) with multivariate post-hoc analyses showing significant group 

differences (i.e., smaller GM values in older compared to younger subjects) for all networks. 

Again, all between-subject effects were Greenhouse-Geisser corrected due to a significant result 

in the Mauchly sphericity test. The repeated-measures ANCOVA comparing FEP with Con-PD 

showed a significant main effect of group (F(1, 228)=5.54, p<0.02) indicating a significantly 

smaller GM volume in elderly controls compared to FEP, a significant main effect of network-

related GM volume (F(7, 1566)=13.29, p<0.001), and significant interactions of network-

related GM volume with age (F(7, 1566)=3.86, p<0.001), TIV (F(7, 1566)=7.97, p<0.001), 

gender (F(7, 1566)=2.34, p<0.02), scan site (F(7,1566)=6.45, p<0.001) and group (F(7, 

1566)=2.16, p<0.04) with multivariate post-hoc analyses showing significant group differences 

(i.e., smaller GM values in elderly controls compared to patients) in networks 2, 8, 13, 15, 16, 

17, 18, 23, 24, 26, 29, 30. Again, all between-subject effects were Greenhouse-Geisser 

corrected due to a significant result in the Mauchly sphericity test.  All other group comparisons 

did not reveal any significant results.   

 

The AUCs from the ROC analyses, representing the overall classification performance of each 

population-derived morphometric network to differentiate the different groups, are presented 

in Figure 2 and specific diagnostics are presented in Supplementary Table 2. Classification 

performances differed depending on group comparison. The Con-Psy were differentiated from 
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FEP with an overall good performance in the training and in the validation (AUCs average: 

0.80). The Con-PD were differentiated from PDN with a fair performance (AUCs average: 

0.72) in the training set and a poor performance (AUCs average: 0.65) in the validation. 

Similarly, Con-PD were differentiated from PDP with a fair performance (AUCs average: 0.71) 

in the training, but also a fair performance (AUCs average: 0.71) in the validation. 

Classification of elderly (Con-PD) from young controls (Con-Psy), however, produced a mainly 

good to excellent performance in the training set (AUCs average: 0.94) and validation (AUCs 

average: 0.89; see ROC curves in Figure 2). These results indicate that morphometric networks 

are suitable parameters to differentiate Con-Psy from FEP, as well as younger (Con-Psy) from 

elderly controls (Con-PD), and to a lesser degree also for the differentiation of Con-PD from 

PDP. The best classifying networks for the comparison FEP vs Con-Psy and PDP vs Con-PD 

are presented in Figure 3, showing an overlap in the NW14, the precuneus. 
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Figure 2. Classification performance of group differentiation. The 30 anatomically derived 

morphometric areas from the ICA networks thresholded at z=3.5 and overlaid on the ROC 

curves for each group differentiation. Model training results are presented in solid lines, model 

evaluation in dotted lines. Black ROC: Con-Psy vs. Con-PD, red ROC: Con-Psy vs. FEP, blue 

ROC: Con-PD vs PDP; purple ROC: Con-PD vs. PDN. 

 

 

Figure 3. Best classifying networks for FEP and PDP versus controls, with overlap in the 

precuneus. A. NW14 and NW16 produced the best classification performance (AUC=0.82) to 

discriminate FEP from Con-Psy; these NWs consist of the precuneus, temporal pole, 

parahippocampal gyrus, the orbitofrontal cortex, and the lingual gyrus. B. NW 14 and 18, 

consisting of the precuneus and the thalamus, produced the best classification performance 

(AUC>0.73) to discriminate PDP from Con-PD. 

 

Whole-brain grey matter pattern differences between groups 

To investigate potential differences in whole-brain GM pattern between groups, we assessed 

GM pattern similarity (i.e., homogeneity) by correlating the GM volume in the 30 

morphometric networks of each individual with the GM volume in the 30 brain networks of 

every other subject (Figure 4). These correlations indicate how similar one’s whole-brain 

organization is with every other individual of the respective group. We compared the 
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homogeneity of variances between groups (Con-Psy vs. FEP (!2(59)=689.59, p<0.001); Con-

Psy vs. ARMS (!2(59)=440.69 p<0.001); Con-PD vs. PDN (!2(59)=532.95, p<0.001); Con-

PD vs. PDP (!2(59)=417.01, p<0.001)). All group comparisons indicated there was a lower 

homogeneity in the respective patient groups. 
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Figure 4. A. Homogeneity of GM volume per network and individual, across all groups. The 
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GM volume of each network for each individual is correlated with the GM volume of each NW 

of any other individual. Lighter colours indicate lower correlations. Black squares indicate 

groups. B-D. Network-specific variability as assessed by the coefficient of variation for 

different group comparisons: B) Con-Psy versus FEP; C) Con-PD vs. PDN; D) Con-PD vs. 

PDP. Group differences were investigated using the modified signed-likelihood ratio (MSLR) 

test; * significant at p<0.002 corrected for multiple comparisons (i.e., 30 networks).  

 

Differences in intra-network variability between groups 

We assessed differences in the coefficients of variation of GM volume between groups using 

the MSLR test (Figure 4).  There was a highly significant group effect between psychosis 

controls and FEP (!2(1)=18.57, p<0.0001),  Con-PD and PDN (!2(1)=15.63, p<0.0001),  as 

well as  Con-PD and PDP (!2(1)=15.61, p<0.0001), indicating a higher variability in all patient 

groups across all networks. We furthermore assessed differences for each network using a 

Bonferroni corrected threshold for multiple comparisons (p<0.002), see Supplementary Table 

3 for details. In summary, for the comparison between Con-Psy and FEP, we found significant 

differences in NW13, NW15 and NW23; between Con-PD and PDN in NW5, NW19, NW26, 

and NW28; and between Con-PD and PDP in NW19, NW21, and NW 28. All differences were 

based on an increased coefficient of variation (i.e., variability) in patients relative to healthy 

controls (see Figure 4).  

 

Association with clinical scores 

In FEP, we found a significant correlation between the GM volume of NW23, and PANSS (r=-

0.21, p=0.017, corrected for multiple comparison), indicating reduced GM volume with higher 

clinical scores. Correlations between NW13, and NW15 and clinical scores did not reveal any 

significant effects (p=0.1-0.17). Similarly, in PDP, we found a significant interaction between 

the GM volume of both NW21 and NW28 and psychosis severity (Hallucination and Psychosis, 

MDS-UPDRS, item 2; X2=11.26, p=0.0104, X2=11.31, p=0.0102, respectively and corrected 
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for multiple comparison), which showed reduced GM volume with increasing psychosis 

severity. Furthermore, in PDN, but not in PDP, we found a significant correlation between the 

GM volume of NW5, 19, 26, 28, and MMSE in PDN, corrected for multiple comparison 

(r=0.24, p=0.0085; r=0.23, p=0.012; r=0.26, p=0.0053, r=0.3, p=0.00092, respectively). The 

correlation implies lower GM volume with lower cognitive scores. In Con-PD, the correlation 

between GM volume of NW19 and 28 and MMSE produced a trend towards significance for 

the GM (r=0.26, p=0.021, r=0.23, p=0.045, respectively), indicating the same relationship as in 

PDN – greater GM volume with higher cognitive scores. Importantly, Con-PDs show a smaller 

range of cognitive scores, pointing towards less cognitive decline. All clinical associations are 

presented in Figure 5. 
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Figure 5. Correlation of clinical and cognitive scores with specific GM NWs which showed 

significantly different variability between controls and patients. A. shows a significant 

negative correlation between GM NW 23 and PANSS total, indicating lower GM volume with 

higher symptoms in FEP. B. reveals a significant interaction between both GM NWs, 21 and 

28, and the Hallucination and Psychosis, MDS-UPDRS score, also showing reduced GM 

volume with higher psychotic symptoms. C/D/E show correlations of GM NWs and MMSE in 

Con-PD (C), PDN (D) and PDP (E). While there are significant positive correlations in PDN 

and Con-Psy, indicating higher GM volume with less cognitive decline; there is no such 

correlation in PDP (E). D. the violin plot shows the distribution of the MMSE scores across 
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PDP, PDN and Con-PD, the box plots show individual scores, the median as a line and the 

mean as a dot. All analyses are controlled for multiple comparisons.  

 

Discussion 

This study aimed at investigating transdiagnostic GM differences and similarities between early 

schizophrenia and Parkinson´s Disease (PD) psychosis, in a unique sample that controls for age 

differences and disease progression, potentially shedding light on the development of psychotic 

symptoms in schizophrenia and PD. We present an SBM analysis, demonstrating widespread 

differences between patients and controls, with a general reduction of grey matter (GM) volume 

across the morphometric networks (NW), with a reduced inter-subject homogeneity, and 

increased intra-network variability in patients with both primary disorders. Importantly, we did 

not find any differences in GM volume, the homogeneity or variability between early 

schizophrenia and PD psychosis. Furthermore, data revealed that morphometric network-based 

classification algorithms show good performance when differentiating individuals with early 

schizophrenia (FEP) from healthy controls (Con-Psy), and a fair performance when 

differentiating individuals with PD psychosis (PDP) from healthy controls (Con-PD), with the 

best performance in partly overlapping clusters.  

Global group differences in grey matter pattern 

The ICA analysis identified 30 morphometric networks which clearly circumscribe cortical and 

subcortical areas using individual GM maps of all subjects. The structural covariance analysis 

revealed significant differences between patients and controls across both disorders - FEP vs. 

Con-Psy, PDN vs Con-PD, PDP vs. Con-PD; the comparison between psychosis-risk (ARMS) 

and Con-Psy, as well as comparisons between the patient groups (FEP vs PDP, FEP vs PDN, 

ARMS vs FEP, ARMS vs PDP, ARMS vs PDN, and PDP vs PDN) remained non-significant. 

GM alterations across the whole brain found in FEP compared to Con-Psy are in line with the 

literature reporting GM reductions across large areas of the brain (Ivleva et al., 2012; Lieberman 
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et al., 2019; Radua et al., 2012), including areas such as the anterior cingulate cortex (ACC), 

thalamus, insula and inferior frontal gyrus (IFG), superior temporal gyrus (STG), middle 

temporal gyrus (MTG), precuneus, and dorsolateral prefrontal cortex (DLPFC). They are 

likewise in line with previous studies using SBM in patients with psychosis (Gupta et al., 2018; 

Kašpárek et al., 2010; Li et al., 2019; Xu et al., 2009). These studies reported decreased grey 

matter volume in mainly frontal, temporal and parietal regions, although it should be noted that 

methodological details of the SBM approaches differed between the studies and only two of 

those (Kasparek et al., 2010; Li et al., 2019) investigated patients with a first episode of 

psychosis. Similarly, we found global, not NW specific, reductions of GM volume across all 

NW in PDP and PDN compared to Con-PD. Psychosis, especially hallucinations in PD are 

associated with GM alterations in temporal and visual areas compared to non-psychotic PD 

patients  (Bejr-kasem et al., 2021) and in the dorsal visual stream, the midbrain, cerebellar and 

limbic and paralimbic structures compared to healthy controls (Lenka et al., 2015; 

Pagonabarraga et al., 2014; Vignando et al., 2022). In this study, the structural covariance 

analysis did not reveal differences between PDN and PDP, as PD-associated changes might be 

prevailing. GM alterations, in PD in general, have been reported in fronto-temporo-parietal and 

occipital areas, as well as subcortical areas like the caudate, the putamen and limbic areas (Jia 

et al., 2015; Lee et al., 2013, 2018; Xuan et al., 2019; J. Zhang et al., 2015). Interestingly, there 

are no overall differences between FEP and PDP or PDN in the age-corrected GM NWs, 

potentially indicating similarities in structural changes (Farrow et al., 2005; Lin et al., 2019). 

In our study, we did not find GM differences between ARMS and Con-Psy, despite several 

studies indicating such differences, especially in the insula, prefrontal and temporal brain 

regions (Borgwardt et al., 2007; Meisenzahl et al., 2008; Takahashi et al., 2009; Witthaus et al., 

2009). The following considerations may explain the lack of findings in our sample. First of 

all, GM changes especially in temporal and frontal areas have been linked to symptom severity 

particularly attenuated psychotic symptoms (Cropley et al., 2016), our sample of ARMS 
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individuals is relatively mildly affected. Secondly, our sample combines European and Asian 

individuals (ratio 1:2); while all studies that report grey matter differences assess European, 

North-American or Australian participants (Borgwardt et al., 2007; Meisenzahl et al., 2008; 

Takahashi et al., 2009; Witthaus et al., 2009), a recent study reported no regional grey matter 

differences in an Asian sample (Sakuma et al., 2018), discussing lower prevalence of illegal 

drug use as a potential reason (Klauser et al., 2015). While this might provide a potential 

explanation, the general heterogeneity of this group might be more likely. Also, in the ARMS 

group, we did not differentiate between those who transition, or have an increased genetic risk, 

and those who remit. A recent meta-analysis (Merritt et al., 2021), however, showed that grey 

matter differences are more pronounced not only in high-risk individuals who transition into 

frank psychosis but also in those with a genetic risk compared to those who remitted, for whom 

it may also normalise. Thirdly, a recent meta-analysis in ARMS reported both increased and 

decreased GM volumes in different regions compared to healthy controls (Ding et al., 2019). 

Given these inconsistent findings, it is possible that we did not find a significant overall (i.e., 

across all NW) group difference in GM volume in the current study for these reasons. As a 

proof of concept, we observed a strong decrease of GM volume, between young individuals 

and elderly individuals across all networks; as well as good to excellent classification 

performances (Pichet Binette et al., 2020). 

ROC-Classification using grey matter networks for FEP and PDP 

Can we use the GM volume NWs to identify individuals with early psychosis (i.e., FEP) or 

Parkinson’s psychosis (i.e., PDP)? Using logistic regression analysis with receiver operator 

characteristics, we found that morphometric NW patterns are suitable for classification of FEP 

and Con-Psy with an overall good performance (AUC>0.8). Networks that discriminated best 

(NW 3, 8, 14, 16, 21, 30) included the thalamus, putamen, insula, hippocampus, amygdala, n. 

accumbens, precuneus, temporal pole, parahippocampal gyrus, orbitofrontal cortex, posterior 

cingulate gyrus, and lingual gyrus. Those regions are highly relevant for the psychopathology 
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in psychosis, and structural alterations are well described in these areas (de Moura et al., 2018; 

Glahn et al., 2008; Meda et al., 2008; Tanskanen et al., 2010; van Erp et al., 2016; van Haren 

et al., 2016; Veijola et al., 2014; Vos et al., 2015; Wood et al., 2001). Also functional alterations 

have been detected in those areas, with regard to functional connectivity in general and in the 

default and salience networks specifically (Alloza et al., 2020; Avram et al., 2020; Du et al., 

2018; Jukuri et al., 2013; Littow et al., 2015; Manoliu et al., 2014; Palaniyappan and Liddle, 

2012), as well as cognitive, reward and salience processing (Boehme et al., 2015; Borgan et al., 

2021; Ermakova et al., 2018; Haarsma et al., 2020; Katthagen et al., 2020; Kesby et al., 2021; 

Knolle et al., 2018).   

Importantly, GM NWs also allowed fair classification performance when discriminating PDP 

from Con-PD (AUC>0.73). Brain regions of the best classifying networks (NW 8, 14, 18, 19, 

23, 24, 28) include the middle temporal gyrus, postcentral gyrus, parahippocampal gyrus, 

hippocampus, precuneus, thalamus, n. accumbens, putamen, insula, temporal fusiform cortex, 

lateral occipital cortex, cerebellum crus I, II, cerebellum VIIb, VIIIa, frontal pole, and the 

Heschl’s gyrus. Again, these regions have been discussed reliably in the literature as core 

structures for functional and structural alterations in PD with psychotic symptoms  (Bejr-kasem 

et al., 2021; Lenka et al., 2018, 2015; Pagonabarraga et al., 2014; Rollins et al., 2019; Vignando 

et al., 2022; Watanabe et al., 2013). There is a strong overlap in fairly well classifying regions 

between FEP and PDP, especially in the putamen, insula, hippocampus, parahippocampal gyrus 

precuneus, and thalamus. The presence of psychotic symptoms in this group of PD patients 

might introduce additional differentiating structural characteristics allowing for a better 

classification. Still, the specificity and sensitivity is reduced compared to the classification of 

early psychosis, which may result from a close association between age and illness duration in 

this particular group (Jia et al., 2015; Lee et al., 2013). In a recent meta-analysis (He et al., 

2020) investigating progressive grey matter atrophy in individuals with PD, significant grey 

matter reductions were detected in mainly in the caudate, putamen, n. accumbens, and 
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amygdala. Our work shows that these regions overlap with areas affected and used for the 

classification not only in PD with psychosis but also in early psychosis.   

The classification of PD alone, without psychotic symptoms, was poor (max. AUC 0.68) in our 

sample. This is in contrast to a recent study by Lee and colleagues  (Lee et al., 2018), who were 

able to classify between PD patients and healthy controls with an accuracy of 0.75 in the 

validation sample. This study, however, did not differentiate between PD patients with and 

without psychotic symptoms. Therefore, improved performance in Lee and colleagues  (Lee et 

al., 2018) compared to our work, could result from the inclusion of individuals with psychotic 

symptoms. Taken together, our results suggest that the presence of psychotic symptoms allows 

for a more precise differentiation between patients and healthy control subjects in general, 

independent of their primary diagnosis. Despite the overlap in brain regions involved that seem 

to link to the presence of psychotic symptoms, it is not possible in this dataset to differentiate 

the contribution of specific psychotic symptoms, e.g. visual vs. auditory hallucinations. 

Importantly, however, functional alterations in the precuneus has been associated with visual 

hallucinations in PD (see reviews (Carter and ffytche, 2015; Zmigrod et al., 2016)) as well as 

with auditory hallucinations in schizophrenia (Mallikarjun et al., 2018; Zhuo et al., 2016), 

suggesting potential unifying mechanisms underlying hallucinations in both disorders.  Larger 

studies with distinguishable subgroups of symptom expression are needed to fully understand 

this potential target area. 

Decreased homogeneity and increased variability in patients links to symptoms 

As expected, when investigating correlations of individual’s GM NW volumes to every other 

individual’s GM NW volumes, we found smaller homogeneity – or, in other terms, decreased 

inter-individual correlation in whole brain grey matter patterns – in all patient groups compared 

to healthy controls. This decreased homogeneity may be linked to clinical symptomatology. 

These results are in line with findings in schizophrenia (Brugger and Howes, 2017; Liu et al., 

2021; Weinberg et al., 2016; T. Zhang et al., 2015) or Alzheimer’s Disease using a similar 
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approach (Pichet Binette et al., 2020). Both, Parkinson’s disease and Psychosis are 

neurobiologically heterogeneous disorders (Brugger and Howes, 2017; Fereshtehnejad et al., 

2017; Voineskos et al., 2020), having multiple clinical subtypes, occurring with co-morbidities, 

and diverse representations across behavior, genetics and brain morphometry. Relating to this, 

we, therefore, explored interindividual GM volume variability; the variability was increased 

globally in FEP, PDP and PDN compared to their control groups. Additionally, we found 

specific NWs that showed increased variability. Within the FEP patient group GM volume was 

significantly more variable in NWs 13, 15 and 23 comprising the temporal lobe, amygdala, n. 

accumbens, large areas of the cerebellum, occipital lobe and the frontal pole. In a meta-analysis 

Brugger and Howes (Brugger and Howes, 2017) investigated GM variability in specific regions 

and found increased variability in the putamen, thalamus, temporal lobe, and third ventricle, 

providing some overlap, but also decreased variability in the anterior cingulate cortex. Although 

the increased variability may be partially caused by secondary factors like medication, illness 

duration or comorbidities, inherent to all case-control, the most likely cause for the increase 

variability is, however, the heterogeneity of the neurobiological processes underlying the 

illness. This heterogeneity furthermore indicates that individuals develop different 

psychopathological profiles. In support of the latter explanation, we found an association 

between GM volume in NW 23, comprising temporal lobe, cerebellar areas, fontal pole, 

postcentral gyrus and occipital lobe, and symptom strength as measured by PANSS, indicating 

that the increased variability in this region may be explained by symptom expression (Cropley 

et al., 2016; Job et al., 2005).   

Findings in the PD group are consistent with this account. Here we found overall 

increased variability in PDP as well as PDN compared to Con-PD. In PDP compared to Con-

PD variability was significantly greater in NW 19, 21, and 28, comprising areas such as the n. 

accumbens, putamen, insula, posterior cingulate gyrus, and temporal lobe, showing strong 

overlap with more heterogeneous areas in the FEP sample. Interestingly, GM volume in NW 
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21 and 28 showed an association with psychotic symptom strength measured using the MDS-

UPDRS, but no correlation with cognitive decline. In contrast, PDN had increased variability 

in NW 5, 19, 26, and 28, including areas such as the cerebellum, n. accumbens, putamen, insula, 

thalamus and temporal lobe, which was, in turn, correlated with cognitive performance (i.e., 

MMSE score), indicating that reduced GM volume in PDN in these areas might be closely 

related to cognitive decline. Interestingly, in Con-PD, a trend for the same association was 

detected. Considering that the cognitive decline is lower in Con-PD and therefore the range 

decreased, the slightly lower correlation seems plausible. These findings are intriguing as they 

show that, while in FEP and PDP GM volume reduction in NWs with increased variability is 

linked to increased psychotic symptoms but not cognitive decline, in individuals not affected 

by psychotic symptoms, such as PDN and Con-PD, GM volume reduction in NWs with 

increased variability is linked to cognitive decline. Interestingly, one of the overlapping areas 

is the cerebellum, which has been reported in multiple studies discussing GM alterations in 

psychiatric and especially psychotic disorders (Moberget et al., 2018; Schwarz et al., 2019; 

Tanskanen et al., 2010; T. Zhang et al., 2015; Zhang et al., 2020), but which has also been 

linked to symptom expression and development (Moberget and Ivry, 2019). Temporal lobe 

alterations are a common findings in psychosis, especially in the lateral (Borgwardt et al., 2007; 

Colibazzi et al., 2017; Sabb et al., 2010) and medial parts (Allen et al., 2012; Lieberman et al., 

2018; Schobel et al., 2013), which have been linked to the neurobiological basis of psychosis 

(Lodge and Grace, 2011; Modinos et al., 2015), providing some commonality with PD 

psychosis, as alterations in these areas may be linked to developing psychotic symptoms.  

 

Limitations 

Potential limitations need to be considered for this study. First, in a multi-cohort study, 

individuals from different studies are pooled together. Parameters like scan-sites, imaging 

protocols, selection criteria might introduce additional variance. In the ANCOVA and ROC 
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analysis we therefore controlled for age, gender, scan site, and TIV to allow maximal 

comparability. In this regard it should not go unnoticed that a correction for age always entails 

removing the influence of disease (duration) to a limited degree, potentially reducing 

differences between patient and control groups. This, however, constitutes a confound often 

present in PD and psychosis research which is hard to avoid. Additionally, each contributing 

study includes a patient and a control group both assessed under identical circumstances, and 

in each group consists of at least two different studies, further controlling for study intrinsic 

confounds. Second, there is no clinical score that has been assessed across all patient groups 

which is not surprising given the diversity of disease studies. We, however, made sure that each 

patient group, consisting of participants from multiple sites, had one identical clinical score. 

The main disadvantage of this shortcoming is that symptom correlation cannot be studied in 

detail, and, thus, potential differences between the groups - such as a higher prevalence of visual 

hallucinations in PD or a higher percentage of auditory hallucinations in schizophrenia - cannot 

be considered.  Third, as we are dealing with two different psychiatric diseases, schizophrenia 

and PD, with different medication strategies, for which a conversion into an equivalent dose is 

not possible, it makes impossible to control for medication in the analysis. Therefore, the results 

could potentially be confounded by medication effects and/or duration of illness effects.  

 

Conclusion 

In this study, we were able to show that alterations in GM volume allow for the fair to good 

classification of individuals with early psychosis and Parkinson’s psychosis. Furthermore, we 

found that there was reduced homogeneity and increased variability in patients compared to 

controls, potentially revealing those areas involved in the neurobiological processes underlying 

disease development. Importantly, we found that reduced GM volume in areas with increased 

variability was linked to increased psychotic symptoms in both FEP and PDP, but not to 

cognitive decline in PDP, indicating that these areas, mainly the cerebellum and the temporal 
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lobe, may contribute to the development of psychotic disorders. Generally, a SCN approach 

may therefore not only be a powerful tool for the identification of individuals at risk for a 

disorder, but also in the understanding of transdiagnostic similarities and differences 

contributing to the development of certain symptoms.  
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