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ABSTRACT 
 
Mendelian randomization may give biased causal estimates if the instrument affects the outcome not 
solely via the exposure of interest (violating the exclusion restriction assumption). We demonstrate use 
of a global randomization test as a falsification test for the exclusion restriction assumption. Using 
simulations, we explored the statistical power of the randomization test to detect an association 
between a genetic instrument and a covariate set due to a) selection bias or b) horizontal pleiotropy, 
compared to three approaches examining associations with individual covariates: i) Bonferroni 
correction for the number of covariates, and ii) correction for the effective number of independent 
covariates and iii) an r2 permutation-based approach. We conducted proof-of-principle analyses in UK 
Biobank, using CRP as the exposure and coronary heart disease (CHD) as the outcome. In simulations, 
power of the randomization test was higher than the other approaches for detecting selection bias 
when the correlation between the covariates was low (R2� 0.1), and at least as powerful as the other 
approaches across all simulated horizontal pleiotropy scenarios. In our applied example, we found 
strong evidence of selection bias using all approaches (e.g., global randomization test p<0.002). We 
identified 51 of the 58 CRP genetic variants as horizontally pleiotropic, and estimated effects of CRP on 
CHD attenuated somewhat to the null when excluding these from the genetic risk score (OR=0.956 [95% 
CI: 0.918, 0.996] versus 0.970 [95% CI: 0.900, 1.046] per 1-unit higher log CRP levels). The global 
randomization test can be a useful addition to the MR researcher’s toolkit. 
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INTRODUCTION 
 
Mendelian randomization (MR) is a valuable approach to test for causal effects using observational data, 
generally using a genetic instrumental variable (IV) to proxy for the exposure of interest [1–4]. However, 
three core assumptions need to be made, to be able to test for a causal effect using MR, and violations 
of these assumptions may bias results [5]. These three assumptions are: 1) the IV is associated with the 
exposure (relevance assumption), 2) there is no unmeasured (i.e., unaccounted for) confounding 
between the IV and the outcome (independence assumption) and 3) the association of the IV and the 
outcome is entirely via the exposure (exclusion restriction assumption). To estimate the magnitude of 
(not just test for) an effect a further assumption of monotonicity or homogeneity is required [4,6]. The 
independence assumption may be violated by confounding due to population stratification, by dynastic 
effects and assortative mating [7]. The exclusion restriction assumption may be violated due to 
horizontal pleiotropy, where the genetic variant affects the outcome along pathways that are not via the 
exposure, or linkage disequilibrium. Selection bias can also violate the exclusion restriction assumption 
by inducing a pathway between the IV and confounders through conditioning on a collider [8]. 
 
While only the relevance assumption can be directly tested (by testing the strength of the association of 
the exposure with the IV), the independence and exclusion restriction assumptions can be investigated 
with sensitivity analyses and falsification tests that test for evidence that these assumptions do not hold. 
A common falsification test for the independence assumption is to test for covariate prevalence 
difference (also known as covariate balance), by testing the association of the IV with a set of potential 
confounders. Provided these factors are not on the causal path between the IV and exposure, or the 
exposure and outcome, the IV should not be associated with these factors if the independence 
assumption holds [9]. For example, cis CRP genetic variants were not found to be related to risk factors 
for cardiovascular disease [10,11]. Bias can also be estimated, as the covariate prevalence difference 
divided by the exposure prevalence difference, and displayed in confounding bias plots [9,12]. This is 
useful when a researcher wants to compare the potential bias due to confounding in an IV analysis with 
that of a conventional multivariable regression, as the bias in the causal MR estimate depends also on 
the strength of the effect of the IV on the exposure [9]. For example, confounding bias plots have been 
used to assess the potential bias in IV studies of myopia [13] and education [13,14]. 
 
A recent study proposed an approach to compare balance or bias of an IV analysis with what would be 
expected from a randomized experiment [15]. Given a set of covariates, C, their approach – which we 
refer to as the global randomization test – uses permutation testing to test whether a binary instrument 
Z is as-if randomized according to p(Z|C), by comparing the observed test statistic (e.g., covariate bias or 
balance) with that which we would expect if this were true (i.e. no difference in C across values of Z). 
They suggest the Mahalanobis distance can be used as a global measure of balance and bias, across the 
set of covariates tested. In their study [15] they assume that C are measured before Z and X are 
assigned, hence assume that there is no alternate path between the IV and outcome via C rather than X 
(i.e. the exclusion restriction assumption holds). However, in an MR setting with a genetic IV, an 
association between Z and a covariate C may be because of violations of either the independence or the 
exclusion restriction assumptions (or both) (see Figure 1). Thus, in MR studies the randomization test 
has potential to be used as a falsification test for both these assumptions, depending on the MR analysis 
in question. 
 
In this paper we show how the global randomization test can be useful in MR studies, to identify 
potential bias due to horizontal pleiotropy or non-random selection. We demonstrate the statistical 
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power in these scenarios using simulations and demonstrate how this approach can be used in practice 
using proof of principle applications. 
 
 
METHODS 
 
Overview of the randomization test procedure 

 

The global randomization test approach as presented in [15] has the following steps: 
1) Define set of covariates to test – this depends on the specific scenario (see applied examples). 
2) Calculate the test statistic T, the Mahalanobis distance (with values �0, ∞��, which is a global 
measure of balance and bias across all covariates tested. 
3) Permute the genetic IV Np times and for each calculate the test statistic t, where Np is specified by 
the researcher. We use Np=5000 in our simulations and applied examples below. 
4) Calculate the P value as the proportion of permutations with a test statistic t at least as strong as 
T, i.e. |
 � �| N�⁄ . 
 

We generalize the approach in [15] (that focused on binary IVs) to continuous, ordinal and binary IVs, as 
described in the following section. 

 
Generalising the Mahalanobis distance to allow continuous, ordered categorical and binary variables 

We use the Mahalanobis distance as a global measure of balance defined for an IV with two categories 
as: 

MD � ����
��� � ��

������������������
��� � ��

���� 

 
Where C is a � � � matrix of m participants and n covariates, and ��

���  is a vector containing the mean 
of the covariates for the subset of participants where z=a. 
 
Since MD is affinely invariant, this is also a global measure of bias (i.e. changing prevalence difference  

��
��� � ��

��� to bias measure 
	

���� 	


���

�
���� �
���
 in the above equation would result in the same MD value). 

 
To generalize to IVs with three categories (i.e., SNP dosages) and continuous IVs (i.e., genetic risk 
scores), we generalize this equation to: 

MD � �� !�"#$$��������������� !�"#$$��� 
 
Where meandiff(C) is a 1xn vector of the mean difference of each covariate per 1 unit higher IV. This 
assumes a linear relationship between the IV and covariates. 
 
We estimate the mean difference using the correlation between z and each covariate C� : 
  

� !�"#$$�C�� � cor�z, C�� � *+�C��
*+�,�  

where cor(A, B) is the Pearson’s r2 between A and B, SD(X) is the standard deviation of X. This approach 
also assumes a linear relationship between the IV and covariates, but is ~15 times faster than estimating 
the mean difference using linear regression (particularly helpful for this work as the randomization test 
uses permutation testing and we conduct extensive simulations). Note that the MD is invariant to the 
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scale of covariates in C, but not invariant to the scale of Z, and the resultant global randomization test P 
value is independent of both. 
 

 
Simulations 

 
We conduct simulations to explore scenarios where the global randomization test may be useful when 
testing for horizontal pleiotropy and selection bias. We conduct separate simulations to test for 
selection bias and horizontal pleiotropy, illustrating how the covariates can be chosen to test each 
scenario. We report the aims, data-generating mechanisms, estimands, methods, and performance 
measures of our simulations (the ADEMP approach) [16]. 
 
Simulation A: Assessing statistical power to detect potential selection bias 
This simulation is based on the situation where a researcher wants to determine whether the GRS 
relates to covariates that are unlikely to be downstream effects of the GRS, such that an association 
would indicate possible selection bias. 
 
Aim: To compare statistical power of the global randomization test compared to alternative tests that 
test each covariate individually, across different (1) number of covariates that affect selection, 2) 
number of covariates than do not affect selection, and 3) correlations between covariates. 
 

Data generating mechanism: The directed acyclic graph (DAG) on which our data generating mechanism 
is based is shown in Figure 2a. We set the proportion selected to 5.5%, based on the UK Biobank 
recruitment rate where 9.2 million invited and 5.5% of those joined the study. We use a sample size of 
920,000, 10% of the number invited in UK Biobank to keep the simulation manageable [17]. A set of 
covariates C including those affecting selection ��  and those not affecting selection ��
 are included. We 
vary the number of covariates affecting selection -��, the number of covariates not affecting selection 
-��
, the correlation between all variables in C, .�

�, the variance of X explained by Z, .��
� , and the pseudo 

variance of S explained by Cs and X, .���
� . We use a fully factorial design, running our simulation with all 

combinations of the following values: -�� / {2,10, 50}, -��
 / {2,10, 50}, .�
� / {0, 0.2, 0.4, 0.8, 0�0,0.1�}, 

.��
� / 10.05, 0.13, and .���

� / 10.05, 0.1, 0.2}. For the .�
� � 0�0,0.1� setting the covariate correlations 

are generated from a normal distribution with mean=0 and standard deviation (SD)=0.1, to reflect 
correlations reported previously [18]. All covariates in C, and exposure X are continuous with mean=0 
and SD=1. Instrument Z is assumed to be a normally distributed genetic risk score with mean=0 and 
SD=1. 
 
We fix the total effect of the following relationships. For variable X, we fixed the total effect of all 
covariates ��  and ��
 on X, to r2=0.1, with equal contribution by each set (i.e., r2=0.05 for each set 
irrespective of -�� and -��
). This fixes the strength of effect of the covariates on selection indirectly via 
X. Further details of this process are given in Supplementary section S1. A DAG with simulation 
parameters is shown in Supplementary figure 1a. The outcome Y is not modelled as, according to our 
DAG in Figure 2a, the association between the SNPs and covariates induced by conditioning on selection 
does not depend on our definition of Y. 
 
Estimand or other target: Our target is the test of the null hypothesis of no association between the GRS 
and covariate set. 
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Methods: We compare the global randomization test with 3 alternative approaches to test the 
association of the IV with C:  

a) individual tests of each covariate with Bonferroni correction, referred to as test-Bonf. 
b) individual tests of each covariate with correction for the effective number of tests performed, 

referred to as test-indep.  
c) permutation testing where the test statistic is the maximum r2

 of each of the covariates with 
the IV, referred to as test-r2perm. 

 
To calculate (a) and (b) we first regress the IV on each of the covariates using univariable regression, and 
find the lowest p value of these results, pvaluemin. The test-Bonf p value is then calculated as 
min�1, 8�!9: ���  �  N��. The p value for test-indep in calculated as min�1, 8�!9: ���  � N��, where 
NI is the estimated effective number of independent tests calculated using spectral decomposition 
[19,20].  
 

Performance measures: We evaluate statistical power using rejection percentage [16], which is the 
proportion of simulation repetitions, ���� , where the null hypothesis is rejected (see further details in 
Supplementary section S2). We set ����=500 in all our simulations. The four tests (global randomization 
test, test-Bonf, and test-indep and test-r2perm) are applied to the same simulated dataset in each 
simulation repetition. 
 
We repeated these simulations, including only half the covariates in ��  and ��
 to represent the scenario 
where only a subset of these covariates is either available or hypothesized to affect selection. We also 
repeated these simulations in the whole sample (I.e., with no selection) to check that we observe ~5% 
type-1 error, i.e., around 5% of the permutations incorrectly identify an association between the IV and 
covariate set. 
 
 
Simulation B: Assessing statistical power to detect potential horizontal pleiotropy 
This simulation is based on the situation where a researcher has a GRS but wants to determine whether 
any of the SNPs included may affect the outcome via horizontally pleiotropic pathways rather than 
(solely) via the exposure of interest. 
 

Aim: To compare statistical power of the global randomization test with alternatives that test the 
association of a SNP with each covariate individually, to identify whether the SNP acts via a horizontally 
pleiotropic pathway. We evaluate this across different: 1) numbers of covariates affected and not 
affected by a horizontally pleiotropic SNP, and 2) magnitude of effect of a horizontally pleiotropic SNP 
on covariates on the horizontal pleiotropy pathway. 
 
Data generating mechanisms: The DAG on which our DGM is based is shown in Figure 2b. We use a 
sample size of 500,000 reflecting the size of UK Biobank. We include one horizontally pleiotropic SNP, 
;�� , and one non-horizontally pleiotropic ;������. We generate a set of covariates C including those 

affected by ;��, and not affected by ;��, denoted ��� and �������, respectively. We vary the number of 
covariates in ��� and �������, denoted -��� and -�������, the variance of each covariate in ���  explained by  

;��, .����
� , and the correlation between all variables in C, .�

�. We use a fully factorial design where 

-��� / {1, 5}, -�������  / {1, 5}, .����
� / {0.001, 0.005, 0.01}, and .�

� / {0, 0.2, 0.4, 0.8, 0�0, 0.1�}. The 

exposure X and outcome Y are not modelled as, according to our DAG in Figure 2b, the association 
between the SNPs and covariates are not dependent on X or Y. 
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All covariates in C are continuous with mean=0 and SD=1. Each SNP is a 3-category ordinal variable 
(representing SNP dosages) assuming allele frequencies of 0.8 and 0.2 and assuming Heidi Weinberg 
Equilibrium (such that Pdosage0=0.64, Pdosage1=0.32, and Pdosage2=0.04). A DAG with simulation parameters is 
shown in Supplementary figure 1b. 
 
Estimand or other target: Our target is the test of the null hypothesis of no association between ;��and 
the covariates.  
 
Methods: As in simulation A, we compare 4 approaches to test the association of the IV with C: the 
global randomization test, test-Bonf, and test-indep and test-r2perm.  
 
Performance measures: We evaluate statistical power using rejection percentage [16]. 
 
We also estimated these performance measures using ;������ to check that we observe ~5% type-1 error, 

i.e., around 5% of the permutations incorrectly identify an association between ;������ and C. 

 
 
Applied examples 

 
Study population 
UK Biobank is a prospective cohort of 503 325 men and women in the UK aged between 37–73 years 
(99.5% were between 40 and 69 years). This cohort includes a large and diverse range of data from 
blood, urine and saliva samples and health and lifestyle questionnaires. UK Biobank received ethical 
approval from the UK National Health Service’s National Research Ethics Service (ref 11/NW/0382). This 
research was conducted under UK Biobank application number 16729, using phenotypic dataset ID 
48196. 
 
Of the 463,005 UK Biobank participants with genetic passing quality control [21], we removed 77,758 
minimally related participants, 48,233 non-white British participants, and 39 participants who had since 
withdrawn from the study. Our sample therefore included 336,975 participants. A data flow diagram is 
provided in Supplementary figure 2. 
 
Example 1: Testing for evidence of selection bias 
We assess the potential for selection bias in Mendelian randomization studies in UK Biobank that use C-
reactive protein (CRP) as the exposure of interest. A previous GWAS meta-analysis (that did not include 
UK Biobank) identified 58 SNPs robustly associated with CRP [22]. We generate the CRP GRS as a 
weighted sum of the 58 SNPs, weighted by the effect size of the CRP-increasing allele of each SNP on 
CRP. 
 
We use two sets of covariates, a restricted set and a more liberal set. The restricted set comprises just 
age and sex – two factors that cannot be on the causal path between the (constituent SNPs of the) CRP 
GRS and outcome. The liberal set were chosen as phenotypes that, given our exposure of interest (CRP) 
we believe are not likely to be either upstream determinants of CRP (or CRP GRS) or downstream 
effects, such that if an association exists between this set and the CRP GRS we would think it is more 
likely that this is due to selection bias rather than a causal effect of one or more of the CRP SNPs on (one 
or more of) these traits. This second set additionally includes socio-economic factors (Townsend 
deprivation index, age completed full time education), north and east coordinates of home location, and 
height [23]. Age, sex, home location and education were self-reported at baseline. Sex was validated 
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against genetic sex. Height was measured as baseline, to the nearest cm using a Seca 202 device. The 
age the participant completed full time education was used as a measure of education level. Townsend 
deprivation index (a score representing the deprivation of the participant’s neighbourhood) was 
calculated immediately prior to participants joining UK Biobank using their self-reported postcode of 
residence. This gave 7 variables included in the liberal covariate set. 
 
We ran the global randomization test and alternative approaches to test for an association of the CRP 
GRS with the restricted and liberal covariate sets, respectively. We also repeated these analyses using 
the rs2794520 cis CRP SNP only, to explore detection of selection bias using the SNP set (in this case just 
one SNP) that is unlikely to be horizontally pleiotropic. 
 
Example 2: Testing for evidence of horizontal pleiotropy among CRP SNPs 
We used the global randomization test to identify CRP-associated SNPs that may have horizontally 
pleiotropic effects on coronary heart disease (CHD). We formed our covariate set using a previous study 
[10] that found little evidence of an association of CIS CRP SNPs with a set of CHD risk factors. These risk 
factors are therefore unlikely to be on the causal pathway between CRP levels and CHD, such that 
associations with other CRP-associated SNPs (or a combined CRP GRS) would be most likely due to this 
SNP being horizontally pleiotropic. These risk factors can therefore be used as the covariate set in the 
randomization test, to test for evidence of horizontal pleiotropy. 
 
Our covariate set comprised the subset of these phenotypes that were measured in the full UKB sample 
(e.g., some such as LDL cholesterol were only available in the NMR metabolomics UKB subsample), 
namely: BMI, systolic blood pressure (SBP), diastolic blood pressure (DBP), total cholesterol, HDL 
cholesterol, apolipoprotein A1, apolipoprotein B, albumin, lipoprotein A, Leukocyte count, glucose, 
smoking pack years, weight and waist hip ratio. Details of the covariates are provided in Supplementary 
section S3. CHD events were ascertained using both self-reported data and linkage to mortality data and 
hospital inpatient records (see Supplementary section S4 for further details).  
 
We estimated the causal effect of CRP on CHD using two-stage IV probit regression, first using all CRP 
SNPs and then using only those not identified as horizontally pleiotropic, using a nominal threshold of 
P<0.05. We use log transformed CRP levels (mg/L) and take the exponent of 1.6 times the estimates, to 
approximate the association in terms of the change of odds per 1 unit higher log CRP levels [24]. We 
repeated analyses using a threshold of P<0.001, to assess the sensitivity of results to the stringency of 
SNP selection. 
 
Analyses were performed in R version 4.0.3, Stata version 15 and Matlab r2015a, and all of our analysis 
code are available at https://github.com/MRCIEU/MR-randomization-test. Git tag v0.1 corresponds to 
the version of the analyses presented here. 
 
 
RESULTS 
 

Simulation results 

 
Using the randomization test to detect selection bias 
Figure 3 shows the results of our selection bias simulations, with an IV strength of r2=0.05, including all 
covariates in the tests of association. Results for IV strength r2=0.1 and including half the covariates in 
the tests of association are shown in Supplementary figure 3. The approach with the highest statistical 
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power depended on the scenario, with the randomization tending to have greater statistical power with 
low covariate correlations (usually for both the r2=0 and r2= 0�0, 0.1�). 
 
The statistical power of the global randomization test changed relatively little across covariate 
correlations, compared with the test-r2perm, test-Bonf and test-indep approaches, which were sensitive 
to this. For example, when there were 10 covariates affecting selection and 2 covariates not affecting 
selection and a total effect of effect on selection of r2=0.05, power ranged between 0.280 (MCSE=0.02) 
and 0.342 (MCSE=0.02) for the global randomization test (correlation between covariates r2=0.4 and 0, 
respectively), and between 0.172 (MCSE=0.02) and 0.682 (MCSE=0.02) for the test-indep approach 
(correlation between covariates r2=0 and 0.8, respectively). 
 
The statistical power of the global randomization test was well controlled (i.e., with ~5% type-1 error 
when no selection bias is present) across all scenarios of our selection bias simulation (see 
Supplementary figure 4). 
 

Using the randomization test to detect horizontal pleiotropy 
Figure 4 shows the results of our horizontal pleiotropy simulations. In all except one simulated scenario, 
statistical power of the global randomization test was either comparable to the power of the alternative 
tests or had greater power. For example, with an effect of the horizontally pleiotropic SNP of 0.001 on 
each covariate (Figure 4a), and 5 horizontal pleiotropy covariates (-��� � 5� and 5 non HP (-������� � 5�, 

when the covariates were uncorrelated (.�
� � 0� we estimated similar statistical power across all 

approaches (e.g.0.146 (MCSE=0.02) and 0.118 (MCSE=0.01) for the global randomization and test-indep 
approaches). In contrast, when the covariates were generated with normally distributed correlation 
(.�

�=0�0, 0.1�), power of the global randomization was larger than the other tests 0.262 (MCSE=0.02) 
compared with e.g., 0.134 (MCSE=0.02) for the test-indep approach). 
 
The statistical power of the global randomization test was well controlled (i.e., with ~5% type-1 error for 
non- horizontal pleiotropy SNPs) across all scenarios of our horizontal pleiotropy simulation (see 
Supplementary figure 6). 
 

 

Applied examples 

 

Detecting selection bias for CRP GRS in UK Biobank 
Table 1 shows the results of our CRP selection bias analysis in UK Biobank. We did not detect an 
association of the CRP GRS with the restricted covariate set (containing only age and sex) using any 
approach (e.g., p=0.813 using the global randomization test). Using the liberal covariate set we detected 
an association with the CRP GRS using all approaches (e.g., p<0.002 and p=0.010 for the global 
randomization test and test-r2-perm approaches, respectively). In contrast, we only detected an 
association with the CRP cis SNP using test-r2-perm (p=0.004). 
 

Detecting horizontally pleiotropic CRP SNPs in UK Biobank 
Of the 58 CRP-associated genetic variants, 51 were found to be associated with our defined covariate 
set using the global randomization test (using a threshold of P<0.05). This compares to 51 identified 
using the test-Bonf and test-indep approaches, and 46 identified using the r2perm approach (see 
Supplementary table 4). Using a GRS composed of all 58 SNPs, higher genetically predicted CRP levels 
are associated with a lower risk of CAD (odds ratio [OR]: 0.956 [95% CI: 0.918, 0.996] per 1-unit higher 
log CRP levels). Using a GRS composed of only the 7 SNPs not identified as horizontally pleiotropic using 
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the global randomization test, and estimates attenuated slightly to the null (e.g., OR: 0.970 [95% CI: 
0.900, 1.046] per 1-unit higher log CRP levels). Results of sensitivity analyses using the P<0.001 threshold 
were similar to the main results (see Supplementary figure 7). 
 

 

DISCUSSION 
 
In this study, we have adapted a recently proposed test of association for use in MR studies. The global 
randomization approach tests the association of a set of covariates with a trait of interest jointly, 
accounting for the correlation between these covariates, rather than testing the association of the trait 
of interest with each covariate individually. While the original study [15] proposed the global 
randomization test as a test for assumption 2 (no association between IV and confounders), assuming 
that the IV relevance assumption (IV instruments the exposure) and exclusion restriction are valid, in an 
MR setting, only the relevance assumption is directly testable. The exclusion restriction assumption (in 
addition to the independence assumption) may not be valid. We therefore focused on demonstrating 
ways in which the global randomization test can be used to identify violations of the exclusion 
restriction assumption, using violations due to selection bias and horizontal pleiotropy as examples. We 
compared the statistical power of this test to that of individual tests of the IV with each covariate with 
correction for the multiple tests performed using a) Bonferroni, and b) effective number of independent 
tests (calculated using spectral decomposition). In contrast to these traditional tests of covariate 
imbalance, the global randomization test uses a permutation-based approach to test the association of a 
set of covariates jointly with an IV. We also explored an alternative permutation-based approach, using 
the highest correlation between the covariates and IV as the test statistic. 
 
We used simulations to investigate the statistical power of these approaches to detect selection bias 
and horizontal pleiotropy under different scenarios. Our selection bias simulations suggested that the 
global randomization test tends to have better power compared to the alternative approaches, when 
covariate correlations are lower.  While we do not have enough information to suggest a cutoff in 
general, our simulations suggest the global randomization test (with MD test statistic) could be used 
when covariate correlations are below 0.1. In our horizontal pleiotropy simulations, the global 
randomization test had either similar or better power compared to the alternative approaches across all 
except one of the simulated scenarios. We would therefore recommend use of the global randomization 
test to test for horizontal pleiotropy, but we note we have not assessed every different scenario in our 
simulations. 
 
We demonstrated how the global randomization test can be used in practice with two applied examples. 
The first sought to investigate whether MR analyses of CRP may be biased due to non-random selection 
in UK Biobank. We used a restricted and liberal covariate set, the former containing just age and sex, 
while the latter contained 5 additional variables that are unlikely to be downstream determinants of 
CRP genetic variants. We found evidence using all test approaches (including the global randomization 
test) suggested that non-random selection may bias MR estimates of CRP.  The second applied example 
sought to identify horizontally pleiotropic CRP-associated SNPs, when estimating the effect of CRP on 
coronary artery disease. The global randomization test identified 51 of the SNPs as potentially 
horizontally pleiotropic and estimates attenuated to the null after excluding these SNPs, although 
confidence intervals were wide. 
 
Our results suggest that the global randomization test may be a useful falsification test in MR. However, 
one potential challenge in applying this test in this setting is the choice of covariate set. In an MR 
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setting, most phenotypes can theoretically be downstream of a genetic variant (age and sex being two 
key exceptions), such that it may be difficult to identify candidate covariates to include in the global 
randomization test, where we believe with confidence that these covariates are not on the causal 
pathway between the IV and exposure, or between the exposure and outcome. In short, to use the test 
the researcher needs to assume that, if the IV associates with the candidate covariate set, this is more 
likely to be due to an invalid IV assumption rather than because these covariates are on the vertically 
pleiotropic pathway. Box 1 summarises the approach researchers can take to use the global 
randomization test to explore violations of the exclusion restriction assumption due to selection bias or 
horizontal pleiotropy. Where covariates may associate with the IV due to both selection bias and 
horizontal pleiotropy, it may be useful to first conduct a combined test for these using a combined 
covariate set. The value of this compared to testing for selection bias and horizontal pleiotropy could be 
investigated in future work. 
 
In addition to the approaches using a covariate set that we focus on in this study, there are other 
falsification tests for exclusion restriction assumption. Heterogeneity of effects across SNPs can be 
tested for, as if exclusion restriction assumption holds (in addition to the relevance and independence 
assumptions) the estimated effect should be consistent across IVs. Tests for this include the Hansen test, 
or by splitting the SNPs into distinct sets and comparing the estimated effects of the exposure using 
these sets [25]. These approaches test for evidence of horizontal pleiotropy without needing to specify 
the set of covariates for the particular SNP, through which this pleiotropy may act. However, these may 
have low statistical power because they are comparing estimates of effect on the outcome across 
instruments. Steiger filtering is an approach that removes SNPs from a GRS where they explain more 
variation in the outcome than the exposure, such that their effect on the exposure may be more likely to 
be via the outcome rather than vice-versa [26]. As we have shown, the global randomization test can be 
used in a complementary way, to identify SNPs that may be invalid because they correlate with factors 
that we do not believe could be on the causal pathway (i.e., between IV and exposure or between 
exposure and outcome), and hence can be removed from a GRS. This ‘randomization filtering’ can be 
used as a sensitivity analysis in MR studies. 
 
Our study has a number of strengths and limitations. Strengths include the fact that we explored the 
value of the global randomization test using both simulations and applied examples. We tried to 
simulate realistic scenarios by basing aspects such as the recruitment rate on real data (in this case UK 
Biobank). However, we were only being able to simulate a limited number of scenarios, such that we 
cannot infer how the statistical power of the global randomization test compares to the alternative 
approaches beyond these. We generalized the Mahalanobis distance used in [15] to allow continuous 
and ordinal instruments as well as binary. Our approach assumes a linear relationship between the IV 
and each of the covariates, such that non-linear associations may have been missed. We used the global 
randomization test to test the association of a single genetic variant or independent SNPs combined into 
a GRS, with a covariate set. It may be possible to extend this to incorporate multiple correlated SNPs, for 
example, those used in cis-MR studies [27]. We did not adjust for any covariates (e.g., genetic principal 
components) in our examples, but in future work using this approach the genetic instrument and 
covariates could be regressed on potential confounders and then the residuals from those regressions 
can be used in the test process. 
 
In summary, the global randomization test can be used as a first step for identifying potential violations 
of Mendelian randomization assumptions. Where an association is identified that suggests horizontal 
pleiotropy, a researcher can then investigate this further, for example, by using instruments for variables 
in the covariate set to test for an effect of these on the outcome of interest [28]. The choice of covariate 
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set used with the global randomization test needs careful consideration in the context of the specific 
exposure and outcome being examined. While we have focused on falsification tests for the exclusion 
restriction assumption, this approach may also be useful as a falsification test for the independence 
assumption, for example, testing for confounding via dynastic effects. 
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FIGURES 
 
Figure 1: Example scenarios where covariate imbalance may be seen 

 
 
Z: instrumental variable; X: exposure; Y: outcome; C: covariates; S: selection. Branson scenario (a) 
assumes covariates C are measured prior to Z and X and may affect both X and Y (dashed arrow 
indicates association tested using the randomization test). b-g) Example MR scenarios through which 
covariate imbalance can occur. In figure (b) dashed line indicates linkage disequilibrium (LD) between 
genetic variants). Figures (f) and (g) show two example scenarios through which covariates C become 
correlated with instrument Z due to selection bias [29]. 
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Figure 2: DAGs for simulation data generating mechanisms 

a) Selection bias 
 

 
 
b) Horizontal pleiotropy 
 

 
 
DAG (a): Covariates ��  and ��
 are confounders of X and Y. Covariates ��  and exposure X affect selection 
(S) inducing an association between instrument Z and �� . X, ��  and ��
 may affect Y but effects on Y do 
not impact associations between Z and ��  tested by global randomization test. The total effect of the 
following paths on the DAG is kept constant irrespective of the number of covariates in ��  and ��
: ��  < =; ��  < >; ��  < *; ��
  < =; ��
  < >. Dashed line indicated a statistical association induced 
through conditioning on S. 
 
DAG (b): Covariates ���  and ������� are confounders of X and Y. In this DAG we depict a horizontally 

pleiotropic instrument that affects Y both via and not via X. While this isn’t necessarily the case (i.e. Zhp 
might affect Y via X only, or directly (i.e. not via X)) here we are showing an example – the exact 
relationship between the instruments and X and Y doesn’t impact the randomization test because the 
randomization test only tests the association between each instrument and the covariate set, and X the 
relationships with X and Y does not impact the strength of this association (unlike in the selection bias 
example where e.g. the effect of Z on X impacts the magnitude of the selection inducted association 
between Z and the covariate set). 
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Figure 3: Results of selection bias simulations for instrument strength r
2
=0.05 and all covariates included in test 
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Figure 4: Results of horizontal pleiotropy simulations 

a) SNP effect on each covariate R
2
= 0.001

 

b) SNP effect on each covariate R
2
= 0.005

 
c) SNP effect on each covariate R
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GRT: global randomization test; SE: standard error. Confidence intervals are +/- 1.96*MCSE (Monte Carlo standard error).  
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TABLES 

Table 1: Results of CRP selection bias applied example 

 
  P values 

  CRP GRS CRP cis SNP rs2794520 

  Restricted covariate 

set 

Liberal covariate set Restricted 

covariate set 

Liberal covariate 

set 

Global 

Randomization test 

 0.813 <0.002 0.937 0.072 

R
2
 permutation test 

(R
2
perm) 

 0.784 0.010 0.925 0.004 

Bonferroni corrected 

(test-Bonf) *  

 1.000 (2 tests) 8.88x10
-9

 (7 tests) 1.000 (2 tests) 0.110 (7 tests) 

Independent (test-

indep) * 

 1.000 (2 tests) 8.88x10
-9

 (7 tests) 1.000 (2 tests) 0.110 (7 tests) 

Covariates 

Age 0.840 0.840 0.923 0.923 

Sex 0.537 0.537 0.732 0.732 

Height  <0.001  0.912 

Home location – northing  <0.001  0.285 

Home location – easting  0.944  0.016 

Years in full time education  0.587  0.222 

Townsend deprivation index  0.966  0.553 

 
* P values calculated as min(1, pvaluemin x numTests), where pvaluemin is the lowest p-value of the covariates and numTests is the number of covariates for Bonferroni, 

and calculated with spectral decomposition for the independent versions. The P values of individual traits are generated with linear regression (IV as independent 

variable, covariate as dependent variable). The number of tests shown in brackets indicates the effective number of independent phenotypes in the covariate sets, i.e., 

the effective number of tests to use in the correction for multiple tests. 

 

Baseline education category “None of the above”. 
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Box 1: Overview of process to use the global randomization test 

 

 Testing for evidence of selection bias Testing for evidence of horizontal pleiotropy 

1. Choose covariates 

for inclusion in 

covariate set 

Covariates should be selected that are thought to be 

unaffected by the genetic instrument (and hence also not 

affected by the exposure phenotype), but that are potential 

determinants of selection. 

Covariates should be selected that are not on the causal 

path between genetic instrument and exposure phenotype 

and are also not downstream effects of the exposure. 

2. Choose test of 

association between 

genetic instrument and 

covariate set 

If mean r
2
 between covariates < 0.1: 

- Use global randomization test. 

Otherwise:  

- Use individual tests of each covariate with correction for the 

effective number of tests performed (test-indep). 

Use global randomization test. 

3. Choose follow-up 

analysis 

Option 1: If confident that covariates are not consequences of 

the genetic instrument, conduct MR analysis conditioning on 

them, as if condition on all causes of selection you remove the 

selection bias. 

 

Option 2: Test associations of covariate set with outcome. If 

covariates are not related to the outcome, then bias due to 

selection may be negligible. 

 

Option 3: Conduct simulations to explore the magnitude of the 

selection bias that would be needed to give the observed (or 

null) effect, assuming no (or positive or negative effect) true 

effect. 

Include SNPs not identified as associated with the covariate 

set in genetic IV, and 

re-estimate causal effect. 

Compare estimate and confidence interval with estimate 

using all SNPs. 

4. Triangulation Test association of covariate set in a second cohort with 

weaker or different selection mechanism. For example, if this 

second cohort has less selection and the association between 

the IV and covariate set weakens then this strengthens the 

evidence for selection bias in the original cohort. 

Test association of covariate set in a second cohort with 

weaker or different selection mechanism. For example, if 

this second cohort has less selection and the association 

between the IV and covariate set weakens then this 

suggests that this association is at least in part driven by 

selection bias rather than (solely by) horizontal pleiotropy. 
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