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Abstract  22 

Nigeria currently reports the second highest number of cholera cases in Africa, with numerous 23 

socioeconomic and environmental risk factors. Less investigated are the role of extreme events, 24 

despite recent work showing their potential importance. To address this gap, we estimated time 25 

varying reproductive number (R) from cholera incidence in Nigeria and used a machine learning 26 

approach to evaluate its association with extreme events (conflict, flood, drought) and pre-existing 27 

vulnerabilities (poverty, sanitation, healthcare). We then created a traffic-light system for cholera 28 
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outbreak risk, using three hypothetical traffic-light scenarios (Red, Amber and Green) and used this 29 

to predict R. The system highlighted potential extreme events and socioeconomic thresholds for 30 

outbreaks to occur. We found that reducing poverty and increasing access to sanitation lessened 31 

vulnerability to increased cholera risk caused by extreme events (monthly conflicts and the 32 

Palmers Drought Severity Index). The work presented here shows the need for sustainable 33 

development for disaster prevention and mitigation and to improve health and quality of life.  34 

 35 

Introduction  36 

Cholera was reintroduced into Africa in the 1970s during the seventh and continuing cholera 37 

pandemic. It has since caused significant mortality and morbidity, especially amongst the most 38 

vulnerable, such as children under five1. Despite this, other disease outbreaks have drawn 39 

attention away from cholera in Africa in recent years, including COVID-19 and Ebola2,3. Explosive 40 

cholera outbreaks are not uncommon due to the short incubation period (2 hours to 5 days) and 41 

high numbers of asymptomatic infections, which when contaminating the environment can sustain 42 

transmission4. Cholera is considered a disease of inequity and is preventable through wide-spread 43 

access to safe drinking water and sanitation5.  However, the effect of these pre-existing 44 

vulnerabilities on disease risk can be exacerbated in times of environmental and social extremes, 45 

which can in turn act as a catalyst for, or exacerbate the impacts of, outbreaks.  46 

 47 

Previous research has found several links between extreme events and cholera including floods, 48 

drought and conflict6-8. Disaster-related risk factors leading to disease outbreaks include an 49 

inability to access routine care such as vaccination, fears over safety, destruction of infrastructure, 50 

disruption of water, sanitation and hygiene (WASH) services and human displacement9,10. Previous 51 

research on disaster-related infectious disease outbreaks have examined extreme events in 52 

isolation7,10, while others do not include multiple pre-existing socio-economic factors into the 53 

methodology11,12. Research linking several social and environmental extremes to diseases, 54 

including via risk factor cascades, is a global research gap and is important for predicting cholera 55 

transmission and mitigating outbreaks13. 56 
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 57 

Nigeria currently reports the second highest number of estimated cholera cases in Africa1,14 and 58 

has experienced many large outbreaks15-18. This is likely due to the presence of many underlying 59 

social and environmental risk factors, including a favourable climate19,20, poor access to WASH21,22 60 

and a high proportion of the population living in poverty (62% at <$1.25/day)23-25.  It also has a 61 

relatively robust reporting system which may correlate with more cases, as cholera is an under-62 

reported disease and cases and deaths are often missed or misattributed. The country has been 63 

frequently challenged by both social and environmental extremes such as drought and floods, 64 

which may alter in intensity and frequency with climate change13,24, along with ongoing conflict in 65 

the northeastern region due to Boko Haram (Islamic State West Africa Province)8,13.  66 

 67 

Here, we aim to resolve the role of extreme events in causing or contributing to cholera and 68 

increase the attention on cholera in Nigeria. In collaboration with the Nigeria Centre for Disease 69 

Control (NCDC), we evaluated by way of machine learning how a range of environmental and 70 

social covariates influence time-varying reproductive number (R) of cholera. Using the model with 71 

the best predictive power, we predicted a traffic-light system of cholera risk to illustrate how 72 

disasters and pre-existing vulnerabilities alter R and therefore the risk of cholera outbreaks. We 73 

anticipate that this novel and relatively simple framework of cholera outbreak risks could be 74 

employed by a range of professionals working in fragile settings by targeting interventions towards 75 

key disaster-related risk factors.  76 

 77 

Results  78 

Incidence and R 79 

In Nigeria, there were 837 and 564 confirmed cholera cases for 2018 and 2019, respectively. The 80 

geographic distribution of confirmed cases is shown in Fig. 1a and are concentrated in the northeast 81 

of the country, with Adamawa, Borno, Katsina and Yobe having the highest burden. The number of 82 

cases declined steeply with age to a minimum in the 35-44 years category, before increasing again 83 
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over 45 years. Whereas, cases were relatively evenly split by sex overall, with slightly more males 84 

affected in 2018 (51.6% male) and more females in 2019 (43.6% male) (Fig. 1b).  85 
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Fig. 1: Number of confirmed cholera cases. a, by state, grey indicates states that had no 

reported confirmed cases and b, by sex and age group, all for 2018 and 2019. 
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Six states for 2018 and two states for 2019 had sufficient cases to be included for R calculations, 87 

including Adamawa (2018 & 2019), Bauchi (2018), Borno (2018 & 2019), Gombe (2018), Katsina 88 

(2018) and Yobe (2018). Both the R values and the incidence data used to calculate R are shown 89 

temporally in Fig. 2 for each state and year. Some states appear to have a peak in transmission 90 

around June-July, whereas others appear later during September to October.   91 

 92 

Covariate Selection and Random Forest Models  93 

Twenty-one covariates were included in the clustering and variable importance analyses and were 94 

grouped into nine clusters. The clusters and variable importance (based on reducing node impurity) 95 

Figure 1: a, Number of confirmed cholera cases by state, grey indicates that 
there were no reported confirmed cases, b, confirmed cholera incidence by sex 
and age group, all for 2018 and 2019. 

b 

Katsina

2018

Yobe

2018

Borno

2018

Borno

2019

Gombe

2018

Adamawa

2018

Adamawa

2019

Bauchi

2018

Apr May Jun Jul Aug Sep Jan Apr Jul Oct

Apr Jul Oct Apr Jul Oct Jun Jul Aug Sep Oct

Jun Jul Aug Sep Oct Jul Oct Apr May Jun Jul Aug
0.0

0.5

1.0

1.5

2.0

0

5

10

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

0

2

4

6

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

2.0

0

1

2

0

5

10

15

20

0

50

100

0

5

10

15

20

0

5

10

15

20

0

20

40

60

0

5

10

15

0

5

10

15

20

0

10

20

Date

R
Incidence

Fig. 2: R values (line) calculated from the incidence (bar) of cholera. Data is for the 

confirmed cholera cases for 2018 and 2019 of states which met the threshold equal to or 

more than 40 cases. 
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of each covariate are shown in Fig. 3. Stepping through different covariate combinations, the best 96 

fit model included number of monthly conflict events, Multidimensional Poverty Index (MPI), 97 

Palmers Drought Severity Index (PDSI) and improved access to sanitation, fitted to R values with a 98 

serial interval of 5 days (standard deviation: 8 days). The fit of the incidence-based vs covariate-99 

based R values (including error) are shown in Fig. 4 and had a correlation of 0.87, with the model 100 

RMSE at 0.33 and R² of 0.32.  101 
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 103 

Nowcasting  104 

Using the best fit model, R was predicted for the remaining 31 states which did not have sufficient 105 

cases to be included in the R calculations and any missing dates for the six states which were 106 

included. This created estimates of R for all 37 states on a monthly temporal scale for 2018 and 107 

2019. The predictions provide further evidence that the model accurately predicts R, as the higher 108 

R values were in areas with known elevated cholera burden (northern and northeastern regions) 109 

and the states which only marginally fell below the threshold for R calculations (Fig. 5).  110 

 111 

 112 

Fig. 4: Incidence-based vs covariate-based R values for the best fit model fitted to the 

testing dataset. The error bars show mean absolute error and the line is a linear trend line 

intercepting at 0.  
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 113 

Traffic-Light System for Cholera Outbreak Risk  114 

Fig. 6 shows the predicted R values for the three traffic-light scenarios (Red = R over 1, Amber = R 115 

around 1 and Green = R less than 1) of cholera outbreak risk, based on the four selected covariates. 116 

Sanitation and MPI had a clear relationship with the R threshold, with consistently lower MPI (less 117 

poverty) and a higher proportion of people with access to sanitation seeing lower R values. R 118 

increased above 1 at 50% or lower for improved sanitation access and MPI values of above 0.32. 119 

The historical average sanitation level for R = >1 was 52.8% for the full dataset, whereas for R <1 120 

it was 61.2%, for MPI the mean values were 0.27 and 0.13 for R = >1 and R <1, respectively.  121 
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In contrast, monthly conflict events and PDSI shows a less defined relationship, with conflict having 123 

a wide range of values in each of the three traffic-light scenarios. For PDSI and conflict, R values 124 

increased above 1 at around -1.1 for PDSI and monthly conflict events of 1.6. The historical spatial 125 

trends for conflict and PDSI are presented in Supplementary Figure 1 and shows polarity in the 126 

relationships between the selected social and environmental extremes and R values, which differ 127 

between states.  128 

 129 

Spatial Heterogeneities 130 

Conflict  131 

Borno and Kaduna were selected due to their clear positive relationship between conflict and R 132 

(increased conflict and R = >1). The three traffic-light scenarios created for conflict in these two 133 

1.0

1.1

Red Amber Green

M
ea
n

R

2

3

4

5

6

Red Amber Green

M
ea
n

Conflict

0.0

0.1

0.2

0.3

0.4

Red Amber Green

M
ea
n

MPI

30

40

50

60

70

80

Red Amber Green

M
ea
n

Sanitation

-2.0

-1.5

-1.0

-0.5

Red Amber Green

M
ea
n

PDSI

Fig. 6: Traffic-light system of cholera risk. The three traffic-light scenarios (Red = R over 1, 
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states found a consistently high cholera outbreak risk. The Green traffic-light scenario was relatively 134 

small, with only a narrow range of conflict values causing R values less than 1. Both Kaduna and 135 

Borno have high levels of poverty and low access to sanitation (40-41% access). For Borno, raising 136 

monthly conflict events from 1 to 2 increased R above 1, but an increase in access to sanitation 137 

from 41-46% pushed the R value back below one. This relationship continued in a stepwise pattern 138 

and in a similar way for MPI but to a lesser degree. This showed that increasing sanitation and 139 

therefore decreasing vulnerability, allowed the states to adapt to increasing conflict and keep the R 140 

value below 1 (See Supplementary Figure 2).  141 

 142 

Drought 143 

Four states were investigated to evaluate the differences between extreme wetness (Lagos and 144 

Ekiti) and extreme dryness (Nasarawa and Kwara) and R values over 1. In contrast to Borno and 145 

Kaduna, all four states predicted consistently low R values (Supplementary Figs. 3 & 4), a potential 146 

explanation for this is the high variable importance of PDSI (Fig. 3) and the high levels of sanitation 147 

and low levels of poverty in all four states, contributing to overall lower predicted levels of cholera. 148 

Therefore, the model was detecting a signal in only small changes in PDSI, that resulted in changing 149 

R values which have not been detected in other states with higher rates of poverty and lower levels 150 

of sanitation access. It also helps to highlight the multi-directionality of the relationship between 151 

PDSI and cholera transmission, with both extreme wetness and extreme dryness causing increases 152 

in R. 153 

 154 

Discussion  155 

The results presented here show the importance of social and environmental extremes on cholera 156 

outbreaks in Nigeria, along with the importance of underlying vulnerability and socioeconomic 157 

factors. Of the 1,401 positive cases for Nigeria in 2018 and 2019, the northeast of the country and 158 

children under 5 carried the highest burden of disease, whereas there was minimal differentiation 159 

in cases between sex. Six states were used to calculate the R values, including Adamawa, Bauchi, 160 

Borno, Gombe, Katsina and Yobe. Twenty-one covariates were considered for model inclusion and 161 
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the best fit model according to the selected model performance measures (variable importance 162 

based on node impurity, RMSE, R2 and correlations) included monthly conflict events, percentage 163 

of the population with access to sanitation, MPI and PDSI. Using the best fit model, nowcasting was 164 

used to calculate the R values for the remaining thirty-one states which did not meet the threshold.  165 

 166 

The predicted R values from the three traffic-light scenarios helped to shed light on the thresholds 167 

and triggers for raising R values above 1 in Nigeria. MPI and sanitation showed a well-defined 168 

relationship with R, with consistently higher access to sanitation and less poverty (lower MPI value) 169 

when R was less than 1. Thresholds which pushed R above one included decreasing access to 170 

sanitation below 50% and increasing the MPI above 0.32. Whereas the relationship between R and 171 

conflict events and PDSI appeared to vary spatially, with some states showing a negative and some 172 

states a positive association. For these two covariates, the effect on R was largely dependent on 173 

the access to sanitation and poverty within the states, with high levels of sanitation and low poverty 174 

resulting in a decreased effect of PDSI and conflict. This showed that better sustainable 175 

development in the state acted as a buffer to social and environmental extremes and allowed people 176 

to adapt to these events better, due to less pre-existing vulnerability.  177 

 178 

According to the World Bank26, up to 47.3% (98 million people) of Nigeria’s population live in 179 

multidimensional poverty. Poverty is a well-known risk factor for cholera, which is considered a 180 

disease of inequity27. Poverty can result in several risk factor cascades, which puts people at risk of 181 

not just cholera but several other diseases. Examples of these risks include poor access to WASH21, 182 

inadequate housing28, malnutrition29 and overcrowding30. The expansion of sustainable 183 

development helps to reduce these risks and meeting or exceeding the Sustainable Development 184 

Goals would see significant gains in global health31. People living in poverty have fewer options and 185 

abilities to adapt to new and extreme situations, becoming trapped in the affected area or displaced 186 

to areas where their needs are not met. This provides further evidence for the need to reduce pre-187 

existing vulnerabilities and to implement known techniques for reducing disasters32,33.  188 

 189 
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Poverty when measured in monetary terms alone can create issues due to its impact on the risk 190 

factors stated and is an advantage of using the MPI as a poverty indicator. Nigeria’s cash transfer 191 

scheme has allowed many Nigerians to meet the household income limit for poverty but there is a 192 

case for turning these funds and attention onto structural reform34. Nigeria’s nationwide average 193 

access to sanitation is around 25%, therefore using these funds to increase access to sanitation 194 

may significantly improve health35. Currently, 73% of the enteric disease burden in Nigeria is 195 

associated with inadequate WASH36 and here we show the need for expansion of sanitation to 196 

reduce cholera risks and the shocks of extremes on its transmission. In a recent review on the 197 

implementation of non-pharmaceutical cholera interventions, there was generally a high acceptance 198 

of several WASH interventions. Despite this, education was key and building community 199 

relationships is needed to achieve this, such as understanding cultural differences and barriers37. 200 

This is especially important in areas with conflict, where trust between the government and residents 201 

may have been lost29.  202 

 203 

Since 2002, Boko Haram (and Islamic State’s West Africa Province) has been gaining a foothold 204 

and territory in northeastern Nigeria which has resulted in ongoing conflict, unrest and oppression 205 

of civilians38. Currently 5,860,200 people live in Borno state39, where the fighting has been most 206 

concentrated. Millions of people comprise conflict-affected populations globally and there is an 207 

increasing proportion of people living in early post conflict areas40. This is significant in terms of 208 

health and disease, as conflict has known risk factors for cholera along with several other 209 

diseases8,10,41 and can worsen several of the social risk factors discussed above. Here, conflict was 210 

included in the best fit model and in some states, highly influential in terms of cholera transmission. 211 

Providing services and protecting health in conflict zones is especially challenging and coordination 212 

across organisations in reporting and operations are needed to streamline resources and prevent 213 

duplication of services42. The traffic-light system used here helps highlight what is needed in these 214 

situations to protect health and when outbreaks may occur.    215 

 216 
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PDSI and several of the other drought indices tested here showed high variable importance but, in 217 

some states, had only marginal influence on R predictions when the PDSI values were manipulated. 218 

When analysing spatial differences between R and PDSI, the relationship appears to be multi-219 

directional, with both extreme wetness (PDSI = +4) and extreme dryness (PDSI = -4) associated 220 

with R values above 1. Furthermore, access to sanitation and poverty were important in how PDSI 221 

impacted R, similar to the impacts of conflict. There is significant evidence to show that both 222 

droughts7,11 and floods12,43 can cause cholera outbreaks and elevated transmission. Mechanisms 223 

through which this can occur includes a lack of water increasing risky drinking water behaviour and 224 

floods allowing for the dispersal of the pathogen. Nigeria has a varied climate across the country 225 

and therefore both extremes are likely to be felt by those living there. Cholera outbreaks have been 226 

seen in both the rainy and the dry season and the work presented here shows potential triggers for 227 

when extra vigilance is needed, especially in certain states. This immediate insight is important, 228 

while continually working to offset cholera risks from extremes through sanitation and hygiene, 229 

which can take significant time and resources44.  230 

  231 

Despite adapting the methodology to account for this, a potential limitation may be lagged effects 232 

of the covariates on cholera45,46. Both long-term and short-term changes to the population may take 233 

time before changes in cholera transmission are evident. While some influences may be considered 234 

slow-onset or rapid-onset and therefore defining their beginning is subjective. Despite this, the 235 

incubation period of cholera is short (<2 hours - 5 days) and previous research has suggested that 236 

acute impacts cause increases in cholera cases within the first week of the event47-49. Calculating 237 

R on monthly sliding windows and using monthly covariate data helped to reduce potential lagged 238 

effects on the R values, which would be captured if the one-week lag estimate is applicable here. 239 

Although beyond the scope of the research presented here, the impacts of different lagged periods 240 

for several of these covariates and cholera outbreaks is an essential area of future research.  241 

 242 

Cholera is considered an under-reported disease, and the lack of symptomatic cases means that 243 

many are likely to be missed. There are also incentives not to report cholera cases, due to travel 244 
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restrictions and isolations and implications for trade and tourism50. However, the robust reporting 245 

system in Nigeria suggests that the data used here is the best available for analysis. While during 246 

times of crisis, cholera may be over-reported or more accurately represent the cholera burden in 247 

the area. This is due to the presence of cholera treatment centres, increased awareness among the 248 

population and external assistance from non-governmental organization, detecting cases that may 249 

have been missed previously8.  250 

The Global Task Force on Cholera Control’s 2030 target of reducing cholera deaths by 90%51 will 251 

require acceleration of current efforts and significant commitment. Increasing cholera research and 252 

data are important in achieving this and the traffic-light system for cholera risk presented here sheds 253 

light on ways to reduce cholera outbreaks in fragile settings. The results highlight the importance of 254 

extreme events on cholera transmission and how reducing pre-existing vulnerability could offset the 255 

resultant cholera risk. This research is the first time several disaster types and measures of 256 

population vulnerability have been evaluated together quantitatively in terms of cholera. We hope it 257 

shows the importance of doing so to gain a more accurate understanding of disease outbreaks in 258 

complex emergencies. Nigeria is currently working towards its ambitious goal of lifting 100 million 259 

people out of poverty by 203034. If it is successful, this could significantly improve health, increase 260 

quality of life and decrease the risks of social and environmental extremes.  261 

 262 

Methods  263 

Datasets 264 

Cholera data were obtained from NCDC and contained linelist data for 2018 and 2019. The data 265 

were age and sex-disaggregated, on a daily temporal scale and to administrative level 4. The data 266 

also provided information on the outcome of infection and whether the patient was hospitalised. 267 

The data were subset to only include cases that were confirmed either by rapid diagnostic tests or 268 

by laboratory culture and only these confirmed cases were used in the analyses. 269 

 270 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 29, 2022. ; https://doi.org/10.1101/2022.03.21.22272693doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.21.22272693
http://creativecommons.org/licenses/by-nd/4.0/


 

 

A range of covariates were investigated based on previously understood cholera risk factors. 271 

Covariates included factors related to conflict (monthly, daily)52, drought (Palmers Drought Severity 272 

Index, Standardised Precipitation Index)53,54, internally displaced persons (IDPs) (households, 273 

individuals)55, WASH (improved drinking water, piped water, improved sanitation, open defecation, 274 

basic hygiene)56, healthcare (total facilities, facilities per 100,000 people)52, population (total)57 and 275 

poverty (MPI, headcount ratio in poverty, intensity of deprivation among the poor, severe poverty 276 

and population vulnerable to poverty)52. 277 

 278 

Covariate data were on a range of spatial and temporal scales, therefore administrative level one 279 

(state) was set as the spatial granularity (data on a finer spatial scale were attributed to 280 

administrative level 1) and the finest temporal scale possible (daily) was used for covariate 281 

selection (repeating values if data were not available at the daily level). The datasets and methods 282 

used here were approved by Imperial College Research Ethics Committee and a data sharing 283 

agreement between NCDC and the authors.  284 

 285 

Incidence and R 286 

The 2018 and 2019 laboratory confirmed linelist data were used to calculate incidence. Incidence 287 

was calculated on a daily scale by taking the sum of the cases reported by state and date of onset 288 

of symptoms. This created a new dataset with a list of dates and corresponding daily incidence for 289 

each state. All analysis was completed in R with R Studio version 4.1.0. (packages !incidence”58 & 290 

!EpiEstim”59). 291 

 292 

Rather than using incidence as the outcome variable (which has less implicit assumptions), R was 293 

calculated, as it is more descriptive providing information on epidemic evolution (e.g., R = >1, cases 294 

are increasing), instead of new reported disease cases for a single time point. R was calculated 295 

from incidence using the parametric standard interval method, which uses the mean and the 296 

standard deviation of the standard interval (SI). SI is the time from illness onset in the primary case 297 
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to onset in the secondary case and therefore impacts the evolution of the epidemic and speed of 298 

transmission. The SI for cholera is well-documented and there are several estimates in the 299 

literature60-62. To account for this reported variation in SI, a sensitivity analysis was conducted with 300 

SI set at 3, 5 and 8 days with a standard deviation of 8 days. The parametric method was used (vs 301 

the non-parametric which uses a discrete distribution), as this can be adequately modelled by 302 

a normal probability distribution and has a fixed set of parameters. 303 

 304 

Estimating R too early in an epidemic increases error, as R calculations are less accurate when 305 

there is lower incidence over a time window. A way to understand how much this impacts R values 306 

is to use the coefficient of variation (CV), which is a measure of how spread out the dataset values 307 

are relative to the mean. The lower the value, the lower the degree of variation in the data. A 308 

coefficient of variation threshold was set to 0.3 (or less) as standard, based on previous work59. To 309 

reach the CV threshold, calculation start date for each state was altered until the threshold CV was 310 

reached. States with <40 cases were removed, as states with fewer cases did not have high enough 311 

incidence across the time window to reach the CV threshold. Additionally, R values were calculated 312 

over monthly sliding windows, to ensure sufficient cases were available for analysis within the time 313 

window.  314 

 315 

Covariate Selection and Random Forest Models  316 

Supervised machine learning algorithms such as decision-tree based algorithms, are now a widely 317 

used method for predicting disease outcomes and risk mapping63,64. They work by choosing data 318 

points randomly from a training set and building a decision tree to predict the expected value given 319 

the attributes of these points. Transparency is increased by allowing the number of trees 320 

(estimators), number of features at each node split and resampling method to be specified. Random 321 

Forests (RF) then combines several decision trees into one model, which has been shown to 322 

increase predictive accuracy over single tree approaches, while also dealing well with interactions 323 

and non-linear relationships65,66. 324 

 325 
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The covariates listed above (conflict, drought, IDPs, WASH, healthcare, population and poverty) 326 

were first clustered to assist in the selection of covariates for model inclusion and to understand any 327 

multicollinearities. Despite RF automatically reducing correlation through subsetting data and tuning 328 

the number of trees and depth64,67, the process here lends support that the final model is measuring 329 

somewhat independent processes and not purely overfitting the same patterns63. The clustering 330 

was based on the correction between the covariates meeting an absolute pairwise correlation of 331 

above 0.75. A secondary covariate selection process was run during preliminary analysis and acted 332 

as a method of validation. The process is detailed in Supplementary Information 1. 333 

 334 

Random forest variable importance was used to rank all 21 clustered covariates. Variable 335 

importance provided an additional method of guiding the fitting of the best fit model, by testing the 336 

covariates which found the highest variable importance first. In this context, variable importance is 337 

a measure of the cumulative decreasing mean standard error each time a variable is used as a 338 

node split in a tree. The remaining error left in predictive accuracy after a node split is known as 339 

node impurity and a variable which reduces this impurity is considered more important.  340 

 341 

Training (70% of data) and testing (30%) datasets were created to train the model and test the 342 

model’s predictive performance. Random forest regression models (as opposed to classification 343 

models) were used since the outcome variable (R) is continuous. The parameters for training were 344 

set to repeated cross-validation for the resampling method, with ten resampling interactions and 345 

five complete sets of folds to complete. The model was tuned and estimated an optimal number of 346 

predictors at each split of 2, based on the lowest out-of-bag (OOB) error rate with RMSE used as 347 

the evaluation metric (package !caret”68). 348 

 349 

A stepwise analysis was used to fit the models under each SI condition (3, 5 & 8 days), taking into 350 

consideration the covariate clustering and variable importance. One covariate was selected from 351 

each cluster, and all combinations of covariates were tested until the best-fit model was found. 352 
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Models were assessed against each other in terms of predictive accuracy, based upon R² and 353 

RMSE. Predictions were then calculated on the testing dataset to compare incidence-based (R 354 

values calculated using the incidence data) vs covariate-based R values (R values calculated 355 

through model predictions). The terms, actual vs predicted was not used here, as all R values 356 

were modelled making the term “actual” misleading in this context. Model performance 357 

evaluations were built on multiple metrics including correlation, R² and RMSE.  358 

 359 

Despite random forest models being accurate and powerful for prediction, they are easily over-fit 360 

(fitting to the testing dataset too closely or exactly) and therefore calculating error for the 361 

predictions are important. Little to no error in the predictions are an indication of over-fitting which 362 

can occur through predictions based off too small a dataset, more parameters than can be 363 

justified by the data and multicollinearity. Here, error was calculated using mean absolute error 364 

(MAE), where yi is the prediction and xi is the true value, with the total number of data points as n.  365 

 366 

Nowcasting  367 

The best fit model, in terms of predictive power according to the metrics above, was used to predict 368 

R for the remaining states which did not have sufficient reported cases to calculate R using 369 

incidence or had missing data for certain dates. Data for the best fit model covariates were collected 370 

for the states and missing dates from the sources given above. The data for the selected covariates 371 

are shown spatially in Supplementary Figure 5. 372 

 373 

Traffic-Light System for Cholera Outbreak Risk 374 

The best fit model was then used to predict the traffic-light system for cholera outbreak risk, by 375 

manipulating the covariates values and using these to predict R. The traffic light system was defined 376 

by: 377 

• Red - Covariate values which pushed R over 1  378 

𝑀𝐴𝐸 =
∑!"#$ |𝑦! − 𝑥!|

𝑛
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• Amber - Covariates values with predicted R around 1  379 

• Green - Covariate values which predicted R below 1.  380 

By using these three traffic-light scenarios, cholera outbreak triggers were identified based on the 381 

conditions of the four selected covariates. No specific R value had to be met for each traffic-light 382 

scenario, to account for the complexity of the relationships and non-linearity (Supplementary Figs. 383 

6 & 7). To illustrate the historical trends between the best fit model covariates and the R thresholds 384 

(R = >1, R <1), the data is split both spatially (by month) and temporally (by state) in Supplementary 385 

Figs. 1 & 8.  386 

 387 

Spatial Heterogeneities 388 

To understand spatial differences in the relationship between the selected social and environmental 389 

extremes (conflict and PDSI) and cholera outbreak risk and the role pre-exiting vulnerabilities played 390 

in altering these relationships, six states were selected for additional analysis. These states were 391 

selected because they had either a clear positive or clear negative relationship with conflict or PDSI 392 

and R (PDSI is hypothesised to increase R at either end of the scale, +4/-4) and included Borno, 393 

Kaduna, Nasarawa, Ekiti, Lagos and Kwara (see Supplementary Figure 1). The processes above 394 

for predicting R under the three traffic-light scenarios was repeated for the six states but only PDSI 395 

and conflict values were manipulated, keeping the other three covariates at the mean value for R = 396 

>1 across the full dataset for the state. The spatial analyses identified the thresholds in conflict and 397 

PDSI needed to push R values below 1. 398 

 399 
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Supplementary Material  
 
Supplementary Information 1: Additional covariate selection using linear regression 
The same 21 covariates (conflict, drought IDPs, WASH, healthcare, population and poverty) 
analysed using variable importance were also run through an additional covariate selection 
process and stepwise analysis as developed by:  

1. Garske, T. et al. Yellow fever in Africa: estimating the burden of disease and impact of mass 
vaccination from outbreak and serological data. PLoS Med. 11, e1001638 (2014). 

2. Gaythorpe, K. A. M. et al. The global burden of yellow fever. Elife 10, e64670 (2021).  
 
The selection process removes covariates that are not significantly associated with the outcome 
variable (Rt3, Rt5, Rt8) at p = <0.1 using linear regression. It then clusters the remaining covariates 
based on the correction between them at an absolute pairwise correlation of above 0.75.  
 
Ten were removed, either because they were not significantly associated with the outcome variable 
(R) or because they were too highly correlated with other covariates (healthcare facilities, piped 
water, open defecation, population, IDPs, severe poverty, vulnerable to poverty, basic hygiene). 
Eleven covariates remained and were grouped into five clusters, the clusters and variable 
importance of each covariate are shown below  
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The variable importance for the eleven remaining covariates after variable selection. All three 
serial interval values tested are shown (Rt3 - 3 days, Rt5 - 5 days, Rt8 - 8 days) and the numbers 
represent the clusters. SPEI01, 12, 48 - Standardised Precipitation Index calculated on 1, 12 and 48 
month scale. PDSI - Palmers Drought Severity Index. MPI - Multidimensional Poverty Index. 
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Supplementary Figure 1: Historical spatial trends between the selected social and environmental extremes 
(conflict and PDSI) and the R thresholds (R = >1, R <1). The mean and standard error for the two covariates for the 
full dataset split by state and R threshold. The red “x” shows the states which were included in the sub-national 
analysis: Conflict (Borno and Kaduna), extreme wetness (Lagos and Ekiti), extreme dryness (Nasarawa and Kwara). 
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Supplementary Figure 2: Three traffic-light scenarios for conflict only and the 
corresponding predicted R values. The other three (PDSI, Sanitation and MPI) covariate values 
were retained at the mean value for R = >1 for the full dataset (values shown in the plot) for a, 
Borno and b, Kaduna.  
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Supplementary Figure 3: Three traffic-light scenarios for PDSI (drier conditions) only and 
the corresponding predicted R values. The other three (Conflict, Sanitation and MPI) 
covariate values were retained at the mean value for R = >1 for the full dataset (values shown in 
the plot) for a, Kwara and b, Nasarawa.  
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Supplementary Figure 4: Three traffic-light scenarios for PDSI (wetter conditions) only 
and the corresponding predicted R values. The other three (Conflict, Sanitation and MPI) 
covariate values were retained at the mean value for R = >1 for the full dataset (values shown in 
the plot) for a, Ekiti and b, Lagos.  
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Supplementary Figure 5: Average values of the four covariates included in the best fit 
model. By state, covariates included: a, monthly conflict events, b, Palmers Drought Severity 
Index (PDSI), c, percentage access to sanitation and d, Multidimensional Poverty Index (MPI).  
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Supplementary Figure 6: Single predictor partial dependency plots for the covariates in the best fit 
model. Showing the relationships between a, monthly conflict events, b, access to sanitation, c, Palmers 
Drought Severity Index (PDSI) and d, Multidimensional poverty Index (MPI) and R.  
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Supplementary Figure 7: Multi predictor partial 
dependency plots for the covariates in the best fit 

model. Showing the relationships between a, Palmers 
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conflict & MPI, d, Monthly conflict & Sanitation, e, 
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Supplementary Figure 8: Historical temporal trends between the best fit model covariates and the R 
thresholds (R = >1, R <1). The mean and standard error for the four covariates included in the best fit model for the 
full dataset split by month and R threshold.  
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