A mesocorticolimbic dopamine gene network moderates the effect of early adversity on the risk for psychiatric and cardio-metabolic comorbidities

Supplementary

Supplementary Materials and Methods

Participants

We used genomic and phenotypic data from two cohorts, one of adults and one of adolescents: 1) the UK Biobank and 2) Avon Longitudinal Study on Parents and Children (ALSPAC).

UK Biobank – Adult cohort: Consenting participants provided baseline information, answered questions, had measurements and biological samples collected. The genotyping data was available for 487,409 subjects. This research has been conducted using the UK Biobank Resource under application number 41975. For the purpose of this project, only non-related subjects were considered in the analysis. Exclusion criteria were 1) participants who withdrew their consent from the study, 2) no genotyping data, 3) related participants (genetic kinship to other participants > 0.04), 4) inconsistencies in genetic and reported sex and 5) outliers for heterozygosity. All included subjects selected for the analysis included these criteria: (1) have genotyping data available and (2) have both the diagnosis outcome and adversity score. Only unrelated individuals were considered. Detailed description of each inclusion and exclusion criteria and the corresponding sample size at each step can be found in **Supplementary Figure 1**.

ALSPAC – Adolescent cohort: Participants provided informed written consent to participate in the study. Informed consent for the use of data collected via questionnaires and clinics was obtained from participants following the recommendations of the ALSPAC Ethics and Law Committee at the time (a full list of the ethics committees that approved different aspects of the ALSPAC studies is available at http://www.bristol.ac.uk/alspac/researchers/research-ethics/). Consent for biological samples has been collected in accordance with the Human Tissue Act (2004). Data were collected during clinic visits or with postal questionnaires. Please note that the study website contains details of all the data that is available through a fully searchable data dictionary and variable search tool at http://www.bristol.ac.uk/alspac/researchers/our-data/. The following inclusion criteria were applied: unrelated individuals, gestational age between 37 and 42 weeks inclusively, maternal age at delivery >= 18 years old, birth weight of at least 2000 grams, singleton pregnancies. Detailed description of each inclusion and exclusion criteria and the corresponding sample size at each step can be found in **Supplementary Figure 2**.

Genotyping

Adult cohort: Blood samples from the UK Biobank were genotyped at the Affymetrix Research Services Laboratory in Santa Clara, California, USA. Genotyping was conducted using a bespoke BiLEVE Axiom array for 50,000 participants and the remaining 450,000 participants were genotyped using the Affymetrix UK Biobank Axiom array. The two SNP arrays are very similar with over 95% common marker content. Axiom Array plates were processed on the Affymetrix GeneTitan® Multi-Channel (MC) Instrument. Genotypes were then called from the resulting intensities in batches of ~4,700 samples (~4,800 including the controls) using the Affymetrix Power Tools software and the Affymetrix Best Practices Workflow. Individuals with the same genotype at any given SNP will cluster together in a two-dimensional intensity space (one dimension for each targeted allele). For the interim data release, Affymetrix performed further rounds of genotype calling using algorithms customized for the UK Biobank project. These algorithms targeted very rare SNPs with 6 or fewer minor alleles in a batch, and a subset of SNPs for which the generic calling algorithm did not perform optimally. After genotype calling, Affymetrix performed quality control in each batch separately, to exclude SNPs with poor cluster properties. If a SNP did not meet the Affymetrix prescribed QC thresholds in a given batch, it was set to missing in all individuals from that batch. Hardy-Weinberg equilibrium was performed for each batch. Affymetrix also checked sample quality (such as DNA concentration) and genotype calls were provided only for samples with sufficient DNA metrics. For SNP-based QC metrics, only individuals with similar ancestry and the population structure were characterized by computing principal components using only UK Biobank individuals. The array also includes coding variants across a range of minor allele frequencies (MAFs), including rare markers (<1% MAF); and markers that provide good genome-wide coverage for imputation in European populations in the common (>5%) and low frequency (1-5%) MAF ranges. More information about the genotyping protocol, QC and imputation could be found in¹. The population structure of the UK Biobank cohort was evaluated using fastPCA algorithm for principal component analysis². To account for population stratification, the first forty principal components were included in the UK Biobank analysis.

Adolescent cohort: Subjects in ALSPAC cohort were genotyped using the Illumina HumanHap550 quad genome-wide SNP genotyping platform by the Welcome Trust Sanger Institute (Cambridge, UK) and the Laboratory Corporation of America (Burlington, NC, US)³. The following quality control procedure was applied: participants with inconsistencies in self-reported and genotyped sex, minimal or extreme heterozygosity, high levels of individual missingness (>3%), and insufficient sample replication (IBD < 0.8) were excluded. SNPs with MAF of <1%, a call rate <95%, or those not in HWE (p < 5 x 10–7) were removed. Imputation was conducted using Impute v3 and Haplotype Reference Consortium (HRC) imputation reference panel (release 1.1). The resulting data set consisted of 8,365 individuals and 38,898,739 SNPs available for analysis. The population structure of the ALSPAC cohort was described using principal component analysis^{4, 5}, which was conducted on the genotyped autosomal SNPs with MAF

> 5% with the following pruning parameters for linkage disequilibrium: 100-kilobase sliding window, an increment of 5 SNPs, and variance inflation factor threshold of 1.01. To account for population stratification, the first ten PCs were included in the analysis. To account for population stratification, the first ten principal components were included in the ALSPAC analysis.

Gene expression levels at different developmental stages

In order to investigate if the genes that composed the mesocorticolimbic DAT1 ePRS have similar patterns of gene co-expression during different life periods in humans, we used the gene expression data from human samples extracted from the BrainSpan database⁶. The correlation patterns were compared during three different stages of development: childhood PFC (0 to 12 years old, N=8), adolescence PFC (13 to 19 years old, N=5), and adulthood PFC (20 to 40 years old, N=6), childhood striatum (0 to 12 years old, N=4), adolescence striatum (13 to 19 years old, N=3), and adulthood striatum (20 to 40 years old, N=6). The analyses were carried out in R (https://www.r-project.org)⁷ using the heatmaply package⁸.

Genome-wide association study (GWAS) enrichment

Genetic correlations comparing the SNPs included in the mesocorticolimbic DAT1 ePRS with SNPs relevant for other traits were made using LD Hub (http://ldsc.broadinstitute.org/ldhub/). LD Hub is a database that contains summary-level GWAS results for several diseases/traits from different resources that automates LD score regression analyses⁹. GWAS from UK Biobank cohort were not considered in this analysis to avoid duplication.

We also performed GWAS enrichment analysis using a set of GWAS for metabolic and neuropsychiatric disorders. Summary statistics from GWAS meta-analyses of schizophrenia (SCZ)¹⁰, attention deficit hyperactivity disorder (ADHD)¹¹, major depressive disorder (MDD)¹² and suicide attempt in MDD¹³ were downloaded from the Psychiatric Genomics Consortium website (https://www.med.unc.edu/pgc/downloads). GWAS summary statistics for type II Diabetes¹⁴, BMI¹⁵ and Coronary Artery Disease¹⁶ were obtained from the respective studies. Gene-level analysis of GWAS results was performed by FUMA¹⁷, a gene-set annotation framework that accounts for linkage disequilibrium (LD) between SNPs. An annotation step is performed, in which SNPs are mapped onto genes, and gene-level analysis is carried out to create aggregate statistics for each gene. The same procedure was performed in FUMA for our DAT1 ePRS gene list. To quantify the enrichment of GWAS signals within the DAT1 ePRS gene list, we calculated Spearman's correlation between the co-expression correlation coefficients from each gene in the network, and the -log10 p-value for the significance of the SNPs within that gene in each GWAS study¹⁸.

Early Life Adversity Score

The early life adversity scores for UK Biobank and ALSPAC cohorts were created using a cumulative measure combining multiple indicators of early life adversity according to the methods demonstrated previously¹⁹. The presence of each component yielded 1 point and the total score represents the summation of all points. The variables used to create the early life adversity score in each cohort are described in Table 1. For the UK Biobank cohort, small and large birth size was defined as the 10th and above the 90th percentile, respectively; as gestational age information is not available, all values were considered at term (variable ID20022). The exposure to maternal smoking question (ID1787) is part of a questionnaire related to early life exposures. From an online follow-up questionnaire called Thoughts and Feelings, we obtained information about feeling hated by family member during childhood (1 point if the answer was sometimes, often, or very often; ID20487). The same questionnaire provided information about feeling loved during childhood (1 point if the response was never or rarely; ID20489). Finally, data on having nobody to take to the doctor when needed (one point if the response was often, half a point was given if the response was rarely had someone; ID20491). Presence of domestic violence during childhood (physical or sexual) was also counted as one point (ID20488). For more information see https://biobank.ndph.ox.ac.uk/showcase/.

For the ALSPAC cohort, similar to UK Biobank, small and large birth size was defined as the 10th and above 90th percentile, respectively, for the reported gestational age at birth. Presence of smoking during pregnancy was derived from a questionnaire applied at 32 weeks' gestation ("Your Pregnancy"), and one point was attributed if smoking was reported. Presence of hospitalization in the first 6 months of life was derived from a questionnaire applied to the mothers and called "My Daughter/Son at 6 months"; one point was given in case a child was hospitalized in the first 6 months of life. Financial difficulties score was based the on self-reported mother's answers from the Looking After the Baby questionnaire about difficulties in affording clothes, food, rent and baby items in the infant's first months of life. Scores ranged from 0 to 15; scores above 7 were given one point in the early life adversity score. Presence of domestic violence (physical) during childhood was accessed through a questionnaire on the infant and mother lifestyle during early childhood; one point was given if domestic violence was reported. Mother interaction score was computed according to maternal self-report questions about how often certain activities were performed (bathing, feeding, singing, play with toys, take for walks, etc). The sum of these items ranged from 0 to 36; one point was attributed to the early life adversity score if the sum was equal or lower than 23. Maternal mental health was accessed through the Edinburgh Postnatal Depression Scale (EPDS)²⁰, and the scores above 10 contributed one point towards the early life adversity score. For more information on ALSPAC variables, please see http://www.bristol.ac.uk/alspac/researchers/our-data/.

Outcome measures

UKBiobank: Comorbidity between psychiatric and cardio-metabolic disorders: To access the presence of psychiatric and cardio-metabolic comorbidities within the UK Biobank cohort, we utilized diagnostic terms from across all participants hospital inpatient records, coded according to the International Classification of Diseases version 10 (ICD-10)²¹. Diagnostic terms from the ICD10 chapter V Mental and behavioural disorders included: F10-F19 Mental and behavioural disorders due to psychoactive substance use; F20-F29 Schizophrenia, schizotypal and delusional disorders; F30-F39 Mood disorders and F40-F48 Neurotic, stress-related and somatoform disorders. For the cardio-metabolic disorders diagnostic categories considered were: From chapter IV Endocrine, nutritional and metabolic diseases, E11 Non-insulin-dependent diabetes mellitus; from chapter IX Diseases of the circulatory system, I70 Atherosclerosis, I63 Cerebral infarction and ischaemic heart diseases I20 to I25. The presence of at least one cardio-metabolic diagnosis and at least one psychiatric diagnosis was considered a "co-morbidity" case.

ALSPAC: The indicators of risk to develop psychiatric disorders comprised: a) total difficulties score as measured by the Strengths and Difficulties Questionnaire²² filled out by primary caregivers of 16.6 year old participants. This instrument evaluates behavioral problems, and a total difficulties score is computed by adding four domains of the scale (emotional symptoms, conduct problems, hyperactivity/inattention and peer relationship problems) that represent negative behaviors; b) depression score and c) anxiety score as measured by the Computerized Interview Schedule – Revised (CIS-R) that establishes the nature and severity of neurotic symptoms²³, applied to 17.5 year old participants. The indicators of risk to develop metabolic disorder involved: d) insulin resistance as measured by the Homeostatic Model Assessment of Insulin Resistance (HOMA-IR), calculated using plasma fasting glucose (mmol/l) and insulin (pmol/l) levels collected at 17.5 years of age. The calculation followed the updated version of the HOMA-IR index developed by Wallace et al (2004)²⁴ and was computed using the HOMA2 calculation tool (http://www.dtu.ox.ac.uk/homacalculator/); and e) waist circumference (cm) measured at 15.5 years of age.

Gray matter density from UK Biobank participants: T1 structural brain MRI pre-processed imaging data were generated by an image-processing pipeline developed and run on behalf of the UK Biobank²⁵. High-resolution T1-structural images for the whole brain were acquired with straight sagittal orientation using a Siemens Skyra 3T running VD13A SP4, with a standard Siemens 32-channel RF receive head coil. The following parameters were used: resolution 1x1x1mm; field-of-view 208x256x256 matrix; 5 minutes duration; 1 mm isotropic resolution using 3D MPRAGE acquisition; in-plane acceleration iPAT=2; prescan-normalize. Full 3D gradient distortion correction (GDC) was applied to the original T1 image and the field of view (FOV) was cut down to reduce the amount of non-brain tissue. Tools used to achieve this

include BET (Brain Extraction Tool), FLIRT (FMRIB's Linear Image Registration Tool), and the MNI152 "nonlinear 6th generation" standard-space T1 template. A non-linear registration to MNI152 space was used with FNIRT (FMRIB's Nonlinear Image Registration Tool). Using the inverse of the MNI152 alignment warp, a standard-space brain mask was transformed into the native T1 space and applied to the T1 image to generate a brain-extracted T1. Tissue-type segmentation was applied using FAST (FMRIB's Automated Segmentation Tool). These data were then used to carry out a SIENAX17 analysis to obtain the total brain volume. In this study, T1 images were normalized for the head size.

Supplementary Figure 1. UK Biobank Sample size block scheme for each inclusion and exclusion criteria applied

Supplementary Figure 1. UK Biobank Sample size block scheme for each inclusion and exclusion criteria applied. Block scheme depicting each step of inclusion and exclusion criteria applied to the original sample (N=502,543) until reaching final sample size for main hypothesis testing (N=60,016) and final sample size for parallel ICA analysis (N=9,291)

Supplementary Figure 2. ALSPAC Sample size block scheme for each inclusion and exclusion criteria

applied

Supplementary Figure 2. ALSPAC Sample size block scheme for each inclusion and exclusion criteria applied. Block scheme depicting each step of inclusion and exclusion criteria applied to the original sample (N=15,645) until reaching final sample size for main hypothesis testing (N=910).

Supplementary Figure 3. Comorbidity risk clusters - ALSPAC

Supplementary Figure 3. Comorbidity risk clusters - ALSPAC. Cluster 1 (N=627) and 2 (N=283) mean z score values for the variables considered in the cluster analysis. Cluster high comorbidity risk represents the psychiatric and metabolic comorbidity risk profile in adolescents. SDQ Total Difficulties is a computed score from the Strengths & Difficulties Questionnaire (SDQ). Depression and anxiety scores were computed from the Computerized Interview Schedule – Revised (CIS-R). Homeostatic Model Assessment of Insulin Resistance (HOMA-IR), was computed using the HOMA2 calculation tool. Waist circumference was measured in centimeters. Clustering of these variables was performed using the *mclust* on R. The resulting cluster membership for each individual was treated as a categorical variable ("yes" or "no" comorbidity) and tested as a main outcome.

Supplementary Figure 4. Volume of gray matter and participant's age in the UK Biobank

Supplementary Figure 5. Mesocorticolimbic DAT1 gene network enrichment analysis

Supplementary Figure 5. Mesocorticolimbic DAT1 gene network enrichment analysis. a, Network
Processes, b, Gene Ontology Processes and c, Pathway Maps related to genes included in
mesocorticolimbic DAT1 gene network. Enrichment was performed using MetaCore®. FDR values were
-10log normalized for better visualization.

Supplementary Table 1. Genes selected to compose the mesocorticolimbic DAT1 ePRS genetic score.

Gene	Ensembl	Description		
ABCA1	ENSG00000165029	ATP binding cassette subfamily A member 1		
ACTL6A	ENSG00000136518	actin like 6A		
		ADAM metallopeptidase with thrombospondin		
ADAMTS9	ENSG00000163638	type 1 motif 9		
ADORA2A	ENSG00000128271	adenosine A2a receptor		
AFF3	ENSG00000144218	AF4/FMR2 family member 3		
AGBL5	ENSG0000084693	ATP/GTP binding protein like 5		
AGRN	ENSG00000188157	agrin		
AKAP7	ENSG00000118507	A-kinase anchoring protein 7		
AMBRA1	ENSG00000110497	autophagy and beclin 1 regulator 1		
		adaptor related protein complex 3 subunit mu 1		
AP3M1	ENSG00000185009			
APC	ENSG00000134982	APC regulator of WNT signaling pathway		
APC2	ENSG00000115266	APC regulator of WNT signaling pathway 2		
ARL4C	ENSG00000188042	ADP ribosylation factor like GTPase 4C		
ASPM	ENSG0000066279	abnormal spindle microtubule assembly		
ASXL3	ENSG00000141431	ASXL transcriptional regulator 3		
		activator of transcription and developmental		
AUTS2	ENSG00000158321	regulator AUTS2		
BACH2	ENSG00000112182	BTB domain and CNC homolog 2		
BBC3	ENSG00000105327	BCL2 binding component 3		
		BAF chromatin remodeling complex subunit		
BCL11A	ENSG00000119866	BCL11A		
		BAF chromatin remodeling complex subunit		
BCL11B	ENSG00000127152	BCL11B		
		BAF chromatin remodeling complex subunit		
BCL7A	ENSG00000110987	BCL7A		
BCL9L	ENSG00000186174	BCL9 like		

BMF	ENSG00000104081	Bcl2 modifying factor			
BRD1	ENSG00000100425	bromodomain containing 1			
BRD4	ENSG00000141867	bromodomain containing 4			
BTBD7	ENSG00000277222	BTB domain containing 7			
BTF3	ENSG00000145741	basic transcription factor 3			
BTF3L4	ENSG00000134717	basic transcription factor 3 like 4			
CBX2	ENSG00000173894	chromobox 2			
CCDC12	ENSG00000160799	coiled-coil domain containing 12			
CCDC138	ENSG00000163006	coiled-coil domain containing 138			
CCNB2	ENSG00000157456	cyclin B2			
CCT3	ENSG00000163468	chaperonin containing TCP1 subunit 3			
CCT4	ENSG00000115484	chaperonin containing TCP1 subunit 4			
CDH10	ENSG0000040731	cadherin 10			
CDK19	ENSG00000155111	cyclin dependent kinase 19			
CECR2	ENSG00000099954	CECR2 histone acetyl-lysine reader			
CENPF	ENSG00000117724	centromere protein F			
CEP170	ENSG00000276725	centrosomal protein 170			
CEP57	ENSG00000166037	centrosomal protein 57			
		calcium and integrin binding family member 2			
CIB2	ENSG00000136425				
CKLF	ENSG00000217555	chemokine like factor			
CKS2	ENSG00000123975	CDC28 protein kinase regulatory subunit 2			
CLIC1	ENSG00000213719	chloride intracellular channel 1			
COL25A1	ENSG00000188517	collagen type XXV alpha 1 chain			
COTL1	ENSG00000103187	coactosin like F-actin binding protein 1			
CTTNBP2	ENSG00000077063	cortactin binding protein 2			
CUEDC2	ENSG00000107874	CUE domain containing 2			
CUX1	ENSG00000257923	cut like homeobox 1			
CXADR	ENSG00000154639	CXADR Ig-like cell adhesion molecule			
		cytochrome P450 family 26 subfamily A member 1			
CYP26A1	ENSG00000095596				

		dishevelled associated activator of morphogenesis		
DAAM1	ENSG00000100592	1		
DAB1	ENSG00000173406	DAB adaptor protein 1		
		dishevelled binding antagonist of beta catenin 1		
DACT1	ENSG00000165617			
DCC	ENSG00000187323	DCC netrin 1 receptor		
DDR1	ENSG00000204580	discoidin domain receptor tyrosine kinase 1		
DDX6	ENSG00000110367	DEAD-box helicase 6		
DEK	ENSG00000124795	DEK proto-oncogene		
DLX6-AS1	ENSG00000231764	DLX6 antisense RNA 1		
		DnaJ heat shock protein family (Hsp40) member		
DNAJB5	ENSG00000137094	B5		
DNMT3B	ENSG0000088305	DNA methyltransferase 3 beta		
DOLPP1	ENSG00000167130	dolichyldiphosphatase 1		
DPEP1	ENSG00000015413	dipeptidase 1		
DUSP23	ENSG00000158716	dual specificity phosphatase 23		
		eukaryotic translation elongation factor 1 beta 2		
EEF1B2	ENSG00000114942			
		eukaryotic translation elongation factor 1 delta		
EEF1D	ENSG00000273594			
		eukaryotic translation initiation factor 4E binding		
EIF4EBP2	ENSG00000148730	protein 2		
ELAVL3	ENSG00000196361	ELAV like RNA binding protein 3		
ELF2	ENSG00000109381	E74 like ETS transcription factor 2		
ENO3	ENSG00000108515	enolase 3		
EPB41	ENSG00000159023	erythrocyte membrane protein band 4.1		
EPHA5	ENSG00000145242	EPH receptor A5		
EPHA7	ENSG00000135333	EPH receptor A7		
EPHB2	ENSG00000133216	EPH receptor B2		
EPHB4	ENSG00000196411	EPH receptor B4		
		epidermal growth factor receptor pathway substrate		
EPS8	ENSG00000151491			

r				
		8		
ETV4	ENSG00000175832	ETS variant transcription factor 4		
EXOC4	ENSG00000131558	exocyst complex component 4		
EXOSC4	ENSG00000178896	exosome component 4		
EZR	ENSG0000092820	ezrin		
FANCC	ENSG00000158169	FA complementation group C		
FBXW9	ENSG00000132004	F-box and WD repeat domain containing 9		
FCHSD2	ENSG00000137478	FCH and double SH3 domains 2		
FGF11	ENSG00000283903	fibroblast growth factor 11		
FHL3	ENSG00000183386	four and a half LIM domains 3		
FJX1	ENSG00000179431	four-jointed box kinase 1		
FKBP7	ENSG0000079150	FKBP prolyl isomerase 7		
FOXN3	ENSG00000053254	forkhead box N3		
FUBP1	ENSG00000162613	far upstream element binding protein 1		
FUS	ENSG0000089280	FUS RNA binding protein		
		FYN proto-oncogene, Src family tyrosine kinase		
FYN	ENSG0000010810			
GBX2	ENSG00000168505	gastrulation brain homeobox 2		
GDI2	ENSG00000057608	GDP dissociation inhibitor 2		
		growth factor, augmenter of liver regeneration		
GFER	ENSG00000127554			
GFRA2	ENSG00000168546	GDNF family receptor alpha 2		
GNA13	ENSG00000120063	G protein subunit alpha 13		
GNB1	ENSG0000078369	G protein subunit beta 1		
GNG4	ENSG00000168243	G protein subunit gamma 4		
GPD2	ENSG00000115159	glycerol-3-phosphate dehydrogenase 2		
GPM6A	ENSG00000150625	glycoprotein M6A		
GPR85	ENSG00000164604	G protein-coupled receptor 85		
GPSM1	ENSG00000160360	G protein signaling modulator 1		
GRIP1	ENSG00000155974	glutamate receptor interacting protein 1		

GTSE1	ENSG0000075218	G2 and S-phase expressed 1			
GUCY1A2	ENSG00000152402	guanylate cyclase 1 soluble subunit alpha 2			
HDAC2	ENSG00000196591	histone deacetylase 2			
HEBP2	ENSG00000051620	heme binding protein 2			
HIST3H2A	ENSG00000181218	H2A.W histone			
HNRNPA1	ENSG00000135486	heterogeneous nuclear ribonucleoprotein A1			
HNRNPK	ENSG00000165119	heterogeneous nuclear ribonucleoprotein K			
HNRNPR	ENSG00000125944	heterogeneous nuclear ribonucleoprotein R			
ICK	ENSG00000112144	intestinal cell kinase			
IER5L	ENSG00000188483	immediate early response 5 like			
		insulin like growth factor binding protein like 1			
IGFBPL1	ENSG00000137142				
IL7	ENSG00000104432	interleukin 7			
IMPDH1	ENSG00000106348	inosine monophosphate dehydrogenase 1			
INHBB	ENSG00000163083	inhibin subunit beta B			
IPMK	ENSG00000151151	inositol polyphosphate multikinase			
ITGA5	ENSG00000161638	integrin subunit alpha 5			
JARID2	ENSG0000008083	jumonji and AT-rich interaction domain containing			
VCTD11	ENSC00000212850	potassium channel tetramerization domain			
KCIDII	ENS00000213839	containing 11			
KDM1A	ENSG0000004487	lysine demethylase 1A			
KDM4A	ENSG0000066135	lysine demethylase 4A			
KIAA1549	ENSG00000122778	KIAA1549			
KIF15	ENSG00000163808	kinesin family member 15			
KIF2C	ENSG00000142945	kinesin family member 2C			
KIF7	ENSG00000166813	kinesin family member 7			
KLF12	ENSG00000118922	Kruppel like factor 12			
KLF3	ENSG00000109787	Kruppel like factor 3			
KLF6	ENSG0000067082	Kruppel like factor 6			
KLHL23	ENSG00000213160	kelch like family member 23			

KLHL7	ENSG00000122550	kelch like family member 7			
KLHL8	ENSG00000145332	kelch like family member 8			
KRT18	ENSG00000111057	keratin 18			
LAMC1	ENSG00000135862	laminin subunit gamma 1			
LASP1	ENSG0000002834	LIM and SH3 protein 1			
LRP12	ENSG00000147650	LDL receptor related protein 12			
LRRC40	ENSG0000066557	leucine rich repeat containing 40			
LRRC7	ENSG0000033122	leucine rich repeat containing 7			
LSS	ENSG00000160285	lanosterol synthase			
LZIC	ENSG00000162441	leucine zipper and CTNNBIP1 domain containing			
		microtubule associated protein RP/EB family			
MAPRE1	ENSG00000101367	member 1			
		myristoylated alanine rich protein kinase C			
MARCKS	ENSG00000277443	substrate			
		microtubule associated serine/threonine kinase 2			
MAST2	ENSG0000086015				
MBTD1	ENSG00000011258	mbt domain containing 1			
		minichromosome maintenance complex			
MCM2	ENSG0000073111	component 2			
		minichromosome maintenance complex			
MCM5	ENSG00000100297	component 5			
MFAP2	ENSG00000117122	microfibril associated protein 2			
MIF	ENSG00000240972	macrophage migration inhibitory factor			
MKRN1	ENSG00000133606	makorin ring finger protein 1			
MLLT11	ENSG00000213190	MLLT11 transcription factor 7 cofactor			
MLLT3	ENSG00000171843	MLLT3 super elongation complex subunit			
MMP16	ENSG00000156103	matrix metallopeptidase 16			
MOSPD3	ENSG00000106330	motile sperm domain containing 3			
MSI1	ENSG00000135097	musashi RNA binding protein 1			
MTA1	ENSG00000182979	metastasis associated 1			

MTSS1	ENSG00000170873	MTSS I-BAR domain containing 1		
MYD88	ENSG00000172936	MYD88 innate immune signal transduction adaptor		
MYL6	ENSG0000092841	myosin light chain 6		
MYNN	ENSG0000085274	myoneurin		
NASP	ENSG00000132780	nuclear autoantigenic sperm protein		
NBEAL1	ENSG00000144426	neurobeachin like 1		
NCAPH	ENSG00000121152	non-SMC condensin I complex subunit H		
NES	ENSG00000132688	nestin		
NFIA	ENSG00000162599	nuclear factor I A		
NHSL1	ENSG00000135540	NHS like 1		
NIPSNAP3A	ENSG00000136783	nipsnap homolog 3A		
NLGN1	ENSG00000169760	neuroligin 1		
NLN	ENSG00000123213	neurolysin		
NOL4	ENSG00000101746	nucleolar protein 4		
NPM1	ENSG00000181163	nucleophosmin 1		
NPTXR	ENSG00000221890	neuronal pentraxin receptor		
NTHL1	ENSG0000065057	nth like DNA glycosylase 1		
NUP205	ENSG00000155561	nucleoporin 205		
NXN	ENSG00000281300	nucleoredoxin		
NXPH4	ENSG00000182379	neurexophilin 4		
ODC1	ENSG00000115758	ornithine decarboxylase 1		
PACS1	ENSG00000175115	phosphofurin acidic cluster sorting protein 1		
PANK1	ENSG00000152782	pantothenate kinase 1		
PANK3	ENSG00000120137	pantothenate kinase 3		
PANX1	ENSG00000110218	pannexin 1		
PBX1	ENSG00000185630	PBX homeobox 1		
PDAP1	ENSG00000106244	PDGFA associated protein 1		
PDE10A	ENSG00000112541	phosphodiesterase 10A		
PDE4D	ENSG00000113448	phosphodiesterase 4D		
		phosphatidylethanolamine N- methyltransferase		

PEMT	ENSG00000133027			
PHF21A	ENSG00000135365	PHD finger protein 21A		
PIAS4	ENSG00000105229	protein inhibitor of activated STAT 4		
		phosphatidylinositol-4,5-bisphosphate 3- kinase		
PIK3CA	ENSG00000121879	catalytic subunit alpha		
		phosphatidylinositol transfer protein cytoplasmic 1		
PITPNC1	ENSG00000154217			
PKLR	ENSG00000143627	pyruvate kinase L/R		
PMF1	ENSG00000160783	polyamine modulated factor 1		
PNMT	ENSG00000141744	phenylethanolamine N-methyltransferase		
POLR3D	ENSG00000168495	RNA polymerase III subunit D		
PPP1R35	ENSG00000160813	protein phosphatase 1 regulatory subunit 35		
		protein phosphatase 2 regulatory subunit B'epsilon		
PPP2R5E	ENSG00000154001			
PPP4C	ENSG00000149923	protein phosphatase 4 catalytic subunit		
PRPF40A	ENSG00000196504	pre-mRNA processing factor 40 homolog A		
PRR5	ENSG00000186654	proline rich 5		
PTBP1	ENSG00000011304	polypyrimidine tract binding protein 1		
		protein tyrosine phosphatase non-receptor type 9		
PTPN9	ENSG00000169410			
QARS	ENSG00000172053	glutaminyl-tRNA synthetase 1		
RAB11B	ENSG00000185236	RAB11B, member RAS oncogene family		
RALA	ENSG0000006451	RAS like proto-oncogene A		
		Ral GEF with PH domain and SH3 binding motif 2		
RALGPS2	ENSG00000116191			
RAVER1	ENSG00000161847	ribonucleoprotein, PTB binding 1		
		RB binding protein 4, chromatin remodeling factor		
RBBP4	ENSG00000162521			
RBM12	ENSG00000244462	RNA binding motif protein 12		
RBM42	ENSG00000126254	RNA binding motif protein 42		
RCC1	ENSG00000180198	regulator of chromosome condensation 1		

RLF	ENSG00000117000	rearranged L-myc fusion			
RNF122	ENSG00000133874	ring finger protein 122			
RNF138	ENSG00000134758	ring finger protein 138			
RNF165	ENSG00000141622	ring finger protein 165			
RNF180	ENSG00000164197	ring finger protein 180			
RNF2	ENSG00000121481	ring finger protein 2			
ROBO1	ENSG00000169855	roundabout guidance receptor 1			
ROBO2	ENSG00000185008	roundabout guidance receptor 2			
RP9	ENSG00000164610	RP9 pre-mRNA splicing factor			
RPL13	ENSG00000167526	ribosomal protein L13			
RPL13A	ENSG00000142541	ribosomal protein L13a			
RPL14	ENSG00000188846	ribosomal protein L14			
RPL26	ENSG00000161970	ribosomal protein L26			
RPL27	ENSG00000131469	ribosomal protein L27			
RPL30	ENSG00000156482	ribosomal protein L30			
RPL37A	ENSG00000197756	ribosomal protein L37a			
RPS10	ENSG00000124614	ribosomal protein S10			
RPS12	ENSG00000112306	ribosomal protein S12			
RPS13	ENSG00000110700	ribosomal protein S13			
RPS18	ENSG00000227794	ribosomal protein S18			
RPS20	ENSG0000008988	ribosomal protein S20			
RPS21	ENSG00000171858	ribosomal protein S21			
RPS6	ENSG00000137154	ribosomal protein S6			
RRM1	ENSG00000167325	ribonucleotide reductase catalytic subunit M1			
RSL1D1	ENSG00000171490	ribosomal L1 domain containing 1			
RSPRY1	ENSG00000159579	ring finger and SPRY domain containing 1			
SARM1	ENSG0000004139	sterile alpha and TIR motif containing 1			
SBF2	ENSG00000133812	SET binding factor 2			
		secretagogin, EF-hand calcium binding protein			
SCGN	ENSG00000079689				
SCN3A	ENSG00000153253	sodium voltage-gated channel alpha subunit 3			

SCRT2	ENSG00000215397	scratch family transcriptional repressor 2		
SCYL2	ENSG00000136021	SCY1 like pseudokinase 2		
SDC3	ENSG00000162512	syndecan 3		
SDCCAG8	ENSG00000054282	serologically defined colon cancer antigen 8		
		SEC11 homolog A, signal peptidase complex		
SEC11A	ENSG00000140612	subunit		
SEMA3F	ENSG0000001617	semaphorin 3F		
SERINC2	ENSG00000168528	serine incorporator 2		
SEZ6	ENSG0000063015	seizure related 6 homolog		
SF3B4	ENSG00000143368	splicing factor 3b subunit 4		
SFPQ	ENSG00000116560	splicing factor proline and glutamine rich		
		SH3 domain containing GRB2 like,		
SH3GLB1	ENSG00000097033	endophilin B1		
		spindle and kinetochore associated complex		
SKA2	ENSG00000182628	subunit 2		
SLC1A5	ENSG00000105281	solute carrier family 1 member 5		
SLC39A6	ENSG00000141424	solute carrier family 39 member 6		
SLC43A3	ENSG00000134802	solute carrier family 43 member 3		
		solute carrier organic anion transporter family		
SLCO5A1	ENSG00000137571	member 5A1		
SMAD1	ENSG00000170365	SMAD family member 1		
SMAP1	ENSG00000112305	small ArfGAP 1		
		SWI/SNF related, matrix associated, actin		
		dependent regulator of chromatin, subfamily d,		
SMARCD1	ENSG0000066117	member 1		
		structural maintenance of chromosomes flexible		
SMCHD1	ENSG00000101596	hinge domain containing 1		

	Cluster - Low		Cluster – High		P-value
	comorbidity risk		comorbidity risk		
	Mean	SE	Mean	SE	
SDQ Total	-0.30	0.03	0.68	0.05	p<0.001
Difficulties					
Depression	-0.29	0.03	0.62	0.05	p<0.001
Score ^a					
Anxiety Score	-0.30	0.03	0.67	0.05	p<0.001
HOMA2-IR	-0.21	0.03	0.47	0.05	p<0.001
Waist	-0.21	0.03	0.46	0.05	p<0.001
Circumference ^b					
	N=627		N=283		

Supplementary Table 2. Adjusted means of variables used in the cluster analysis for the ALSPAC cohort.

Note: covariates considered: sex and SES

^a Significant difference was observed for sex, F(1,891)= 6.461,p=0.011 between high and low comorbidity risk groups

^b Significant difference was observed for sex, F(1,891)= 6.015,p=0.014 between high and low comorbidity risk groups

Age band	Linked pair of	Correlation	Correlation between	Total Sample
	independent components	coefficient	components P-value	size
40.45.45.000	SNP component: 63			
40 to 45 yrs	MRI component: 27	0.23	8.09e-20	1505
16 40 50	SNP component: 42			
40 to 50 yrs	MRI component: 1*	0.28	1.51e-34	1730
51 to 55 yrs	SNP component: 44*			
	MRI component: 37	-0.23	6.85e-26	1944
56 to 60 yrs	SNP component: 39			
50 to 00 yrs	MRI component: 17	-0.23	8.67e-27	2105
61 to 65 yrs	SNP component: 50			
	MRI component: 21	-0.28	5.91e-29	1493
66 to 70 to	SNP component: 15			
	MRI component: 29*	-0.50	2.35e-34	514

Supplementary Table 3. The most significantly linked pair of neuroimage and genetic components for every age band.

* A significant adversity effect was observed in these components when comparing component loading coefficients for early adversity and no early adversity groups.

Supplementary

Supplementary Table 4. Significant SNPs (|Z| > 2.5) from mesocorticolimbic DAT1 ePRS associated with the neuroimaging components for every age

ba	nd.
Ual	uu.

Age band 40	0 to 45 yrs	Age band 46	to 50 yrs	Age band 51	to 55 yrs	Age band 56	to 60 yrs	Age band 61	to 65 yrs	Age band 66	to 70 yrs
SNP Comp	oonent 63	SNP Compo	onent 42	SNP Comp	onent 44	SNP Compo	onent 39	SNP Compo	onent 50	SNP Compo	onent 15
SNPs	Loading Coef.										
rs3211663	-27.325	rs78395954	25.543	rs144039224	23.638	rs17215231	26.753	rs10512333	47.356	rs78395954	19.710
rs184180733	20.619	rs116998176	-17.688	rs116717855	21.249	rs15087	24.220	rs113647163	27.309	rs3894776	16.694
rs139834560	20.403	rs148918967	-17.636	rs3762272	21.040	rs145650486	-19.561	rs17215231	26.166	rs111649180	15.692
rs12920969	-18.594	rs9467573	13.601	rs193267099	17.629	rs28564089	19.498	rs117323391	17.321	rs116717855	13.080
rs41309308	15.327	rs145071781	-12.930	rs9358867	-15.695	rs401394	-14.367	rs12920969	-17.257	rs13430705	-11.680
rs8177971	12.284	rs140931342	11.842	rs142047277	13.200	rs1629664	-11.919	rs2298694	-14.319	rs71413857	-10.402
rs3762272	11.386	rs4647394	-11.532	rs10263870	12.308	rs3762272	11.802	rs4743758	13.773	rs11947505	9.481
rs10263870	10.910	rs10263870	11.405	rs725332	11.751	rs145071781	-11.540	rs725332	-12.303	rs113647163	-9.348
rs10088105	10.861	rs3762272	11.176	rs145728372	10.867	rs76753172	11.473	rs184180733	-10.326	rs10263870	-9.323
rs138818	10.792	rs1504310	-10.784	rs10802904	-10.834	rs73076560	-10.743	rs145650486	10.154	rs71517255	9.136
rs11637595	-8.271	rs17579352	10.774	rs138818	-9.838	rs351343	-10.302	rs213204	9.883	rs190264799	8.574
rs9652856	-8.194	rs55779933	10.484	rs117402521	9.342	rs10263870	10.111	rs145728372	9.056	rs11637595	-8.403
rs401394	-7.933	rs4790714	-10.049	rs111548256	9.286	rs193267099	9.418	rs9467573	-8.649	rs77303187	8.350
rs147767243	7.836	rs185177951	-9.341	rs10512333	9.143	rs140819465	-8.957	rs3758294	-8.240	rs146111043	-8.054

rs2139455	-7.686	rs553959864	9.331	rs10088105	9.136	rs6749757	8.888	rs142047277	-7.847	rs115864893	-8.029
rs4072555	7.509	rs10512333	9.190	rs73076560	8.942	rs117128147	-8.340	rs3211663	-7.766	rs116998176	-7.776
rs13237311	7.390	rs116717855	8.965	rs74318291	8.558	rs1785913	-8.325	rs111548256	-7.195	rs4308719	-7.693
rs72670627	7.364	rs4743758	8.589	rs76974812	8.532	rs149268659	8.043	rs41309308	-7.092	rs74318291	-7.485
rs12974962	7.352	rs62018159	-8.416	rs61783205	8.500	rs10275680	-7.860	rs140931342	-7.020	rs79942123	7.175
rs6988177	7.108	rs144977809	8.120	rs148918967	8.371	rs1014416	7.733	rs73437201	6.477	rs149268659	7.022
rs138136669	-7.100	rs139834560	-7.708	rs11994203	7.765	rs8179656	-7.506	rs524281	6.027	rs3799146	6.762
rs140958972	6.899	rs74811295	-7.647	rs140656857	-7.645	rs148918967	7.453	rs144876987	-5.788	rs401394	6.704
rs142047277	-6.628	rs3134530	-7.498	rs145071781	-7.364	rs58583286	7.341	rs2824350	-5.725	rs117979404	6.622
rs140931342	-6.605	rs79087982	-7.375	rs192418723	-7.344	rs7638334	-7.293	rs79087982	-5.585	rs144876987	6.621
rs725332	-6.588	rs140580063	-7.242	rs190645385	-7.301	rs78395954	7.220	rs17435718	-5.580	rs4647394	-6.329
rs62455215	6.336	rs41309308	-6.992	rs28564089	-7.297	rs524281	-7.156	rs1014416	5.468	rs60319541	-6.123
rs112558177	-6.319	rs2284748	6.978	rs146276817	7.162	rs142047277	7.154	rs142196672	5.398	rs370079236	6.034
rs61875269	6.245	rs6942120	-6.955	rs140958972	7.156	rs41309308	7.122	rs11947505	-5.204	rs111503359	6.008
rs2776077	-6.110	rs11030918	6.927	rs60319541	6.874	rs79942123	6.973	rs1046115	5.177	rs113495032	-5.918
rs524281	6.101	rs10917313	6.915	rs3741370	6.864	rs150893744	-6.766	rs149268659	-5.061	rs73076560	-5.848
rs55839877	-5.972	rs117128147	6.873	rs145650486	-6.831	rs213204	6.687	rs17460074	5.060	rs185177951	5.708
rs113389788	5.938	rs524281	-6.650	rs571413	6.800	rs17372186	6.451	rs12151996	-4.997	rs10512333	5.700
rs75177707	5.858	rs181971636	6.616	rs139872992	-6.799	rs140580063	-6.285	rs12642875	-4.891	rs1504310	-5.577

rs2933075	-5.773	rs118154071	6.351	rs4647394	-6.694	rs10514710	6.266	rs75602357	-4.825	rs142715768	-5.573
rs139091288	-5.391	rs2776077	-5.883	rs2824350	-6.656	rs117402521	-6.246	rs11808886	4.688	rs1629664	-5.556
rs117323391	-5.390	rs6908713	5.866	rs2933075	6.615	rs9365898	6.241	rs142715768	4.607	rs35172826	5.510
rs190322101	5.376	rs17215231	-5.858	rs4468	-6.529	rs75814235	-6.217	rs4737288	-4.483	rs114404643	-5.484
rs72923978	5.254	rs149980545	5.858	rs140819465	6.293	rs75177707	-6.200	rs3134530	-4.479	rs62018159	-5.342
rs148345475	-5.203	rs12974962	-5.786	rs148273366	-6.247	rs13202762	-6.096	rs117854460	4.440	rs138818	5.327
rs147581282	5.200	rs7165812	-5.721	rs11637595	5.985	rs73437201	6.068	rs117110314	-4.410	rs10088105	5.290
rs553030	5.169	rs12723359	5.716	rs79835059	5.972	rs7796916	5.897	rs75177707	-4.211	rs2062858	-5.271
rs10275680	5.047	rs140271797	5.678	rs146111043	-5.877	rs79851445	5.838	rs111736183	4.163	rs17140826	5.253
rs75290858	4.983	rs3738696	-5.660	rs7638334	5.844	rs116526056	-5.727	rs77728810	4.144	rs72753256	-5.225
rs117932605	4.952	rs11994203	5.496	rs558548241	-5.806	rs117348380	-5.711	rs7338608	4.135	rs117431686	5.220
rs115864893	4.916	rs73093571	-5.488	rs142196672	5.802	rs140271797	5.708	rs2284748	-4.091	rs16878122	-5.167
rs140656857	-4.906	rs12204127	-5.374	rs16936356	5.792	rs9953722	5.609	rs62396140	4.033	rs77439453	-5.157
rs11808886	4.897	rs12543736	-5.321	rs6949760	5.755	rs2824350	-5.566	rs139872992	4.022	rs74571033	-5.150
rs4730796	-4.866	rs75203411	5.212	rs10275680	5.703	rs9467573	5.485	rs115264061	-4.021	rs147763162	-5.141
rs12662612	4.828	rs6770763	5.210	rs74788884	5.668	rs12320689	-5.439	rs116732333	-3.986	rs6813392	5.103
rs1257428	-4.813	rs226225	5.164	rs1480022	-5.665	rs116732333	-5.419	rs72761751	3.970	rs6818784	4.996
rs146218495	4.786	rs1046115	-5.110	rs11730581	-5.613	rs72923978	-5.414	rs2773080	-3.947	rs9365898	-4.993
rs144977809	-4.691	rs17435718	5.070	rs566739	5.516	rs67631072	5.402	rs2189962	3.919	rs553959864	-4.993

rs1050046	4.663	rs73076560	-5.035	rs12342233	-5.510	rs16936356	5.125	rs190724526	3.888	rs524281	-4.958
rs12171130	-4.651	rs6517780	-4.978	rs74811295	5.507	rs76974812	5.036	rs11042613	3.887	rs35986071	4.911
rs141519089	4.614	rs76990532	4.962	rs3799146	-5.344	rs3211698	-5.012	rs12543736	-3.877	rs1575013	4.815
rs75342996	-4.611	rs72817046	-4.945	rs118154071	-5.276	rs6908713	4.880	rs117936086	3.708	rs4142261	-4.742
rs1504310	4.578	rs147634506	4.881	rs117436375	5.225	rs6688710	4.869	rs76748266	-3.708	rs116275355	4.689
rs220812	-4.514	rs144876987	-4.867	rs6749757	-5.205	rs55779933	4.856	rs146276817	-3.692	rs4604150	-4.680
rs7095103	-4.392	rs143934748	4.809	rs62455215	5.163	rs11994203	4.775	rs12924762	3.678	rs17372186	-4.665
rs146111043	-4.382	rs116303796	4.806	rs9652856	5.073	rs571413	4.754	rs117348380	-3.668	rs11653768	4.659
rs79851445	-4.360	rs2011323	4.786	rs150893744	5.039	rs79269048	4.742	rs78395954	-3.636	rs79043630	4.648
rs59239472	4.354	rs2824350	-4.783	rs187086310	5.022	rs71653924	-4.735	rs147581282	-3.587	rs77206101	-4.628
rs116303796	4.301	rs12810479	-4.723	rs117323391	5.004	rs11612551	4.715	rs116717855	-3.569	rs1014416	4.512
rs149268659	4.300	rs11856887	-4.696	rs12920969	4.993	rs146218495	-4.702	rs75342996	-3.519	rs78929101	-4.499
rs2773080	-4.239	rs111503359	-4.686	rs55779933	4.950	rs189802198	4.685	rs117979404	3.445	rs10797854	4.467
rs146276817	-4.198	rs140656857	4.670	rs147763162	-4.805	rs11207201	-4.645	rs15087	-3.414	rs142047277	4.420
rs10091760	4.168	rs144039224	4.649	rs296891	-4.787	rs72817046	4.642	rs55839877	-3.379	rs13063349	4.391
rs144681951	-4.160	rs76974812	4.611	rs6897073	-4.696	rs296891	4.624	rs78929101	3.360	rs113397349	4.384
rs74318291	4.155	rs2288549	-4.556	rs61819095	4.653	rs76738271	4.544	rs140819465	-3.351	rs1590153	4.363
rs144196860	-4.155	rs7909879	-4.533	rs11843549	4.619	rs117323391	4.528	rs7220217	-3.329	rs115977303	4.339
rs140618390	4.144	rs1045373	-4.528	rs6782835	-4.554	rs2876862	4.526	rs80173428	-3.329	rs60720150	-4.327
			1	L		1	1		1	1	1

rs79341996	4.069	rs296891	-4.523	rs17372186	4.536	rs74318291	4.416	rs10275680	-3.315	rs140931342	4.292
rs145406815	-4.067	rs10922162	4.500	rs11808886	-4.490	rs11176125	4.381	rs61819095	3.278	rs1785913	4.282
rs11776420	-4.063	rs2111208	-4.492	rs590806	-4.456	rs190724526	-4.377	rs71413857	-3.217	rs117348380	-4.241
rs2876862	-4.030	rs17669125	-4.457	rs59634323	4.430	rs146111043	-4.371	rs2933075	-3.211	rs17513112	-4.241
rs57695836	-4.004	rs62560522	4.455	rs62408192	4.423	rs140958972	4.323	rs2139455	-3.199	rs112064630	-4.219
rs10443217	-3.994	rs11176312	4.432	rs75342996	4.398	rs117436375	-4.309	rs116708449	-3.198	rs28673141	-4.193
rs77439453	3.992	rs79773941	-4.385	rs11612551	-4.348	rs973236	4.295	rs35748153	3.162	rs17286391	-4.191
rs10789545	3.955	rs116850964	-4.345	rs150566466	-4.288	rs143611100	-4.193	rs3762272	3.118	rs76311503	-4.183
rs3211694	3.923	rs142196672	-4.342	rs2776077	-4.262	rs142504280	4.113	rs118154071	3.094	rs3884327	-4.171
rs116092966	3.893	rs182081961	4.312	rs16882205	4.181	rs7095103	-4.094	rs142636042	-3.089	rs722923	-4.122
rs1629664	-3.886	rs147581282	-4.302	rs60720150	4.181	rs190264799	4.081	rs8036417	3.086	rs34107624	4.104
rs72829764	-3.860	rs74371873	4.287	rs1046115	4.142	rs13265739	4.016	rs1862925	3.073	rs13227545	4.078
rs2274576	-3.856	rs17513112	-4.257	rs1785913	-4.133	rs11808886	-3.976	rs187412638	-3.031	rs55689300	4.060
rs73093571	3.848	rs72666163	4.223	rs13265739	-4.130	rs12873770	-3.943	rs117897888	3.028	rs180842835	4.048
rs4743758	3.821	rs73128871	-4.183	rs140618390	-4.038	rs78918308	3.911	rs73076560	-3.024	rs11808886	-4.047
rs4308719	3.820	rs147904652	4.170	rs6688710	-4.015	rs73035766	3.905	rs11776420	-2.975	rs17215231	-4.012
rs875590	-3.787	rs6988177	4.130	rs74640671	-3.981	rs11612962	-3.847	rs74318291	-2.973	rs79185041	-4.010
rs79043630	3.786	rs148273366	4.044	rs10063228	-3.941	rs220812	3.847	rs917022	-2.959	rs2914827	-3.936
rs78738472	3.785	rs113583367	-4.028	rs1257428	3.904	rs72670627	-3.800	rs142504280	-2.947	rs17492659	-3.935
											1

rs72909243	3.768	rs10088105	-3.965	rs147767243	3.890	rs1862925	-3.718	rs11612551	-2.930	rs62091161	3.934
rs4711092	-3.732	rs4711092	-3.964	rs115499442	-3.876	rs74811295	3.712	rs34105866	-2.923	rs145563277	-3.931
rs2288549	3.729	rs148318378	-3.956	rs73437201	-3.866	rs6728983	-3.691	rs76924012	2.889	rs78475441	-3.923
rs35986071	-3.722	rs116280617	3.895	rs11993990	3.862	rs144039224	3.685	rs112983023	2.876	rs75602357	3.870
rs296891	-3.695	rs62396140	3.893	rs11718514	-3.862	rs142636042	3.666	rs79851445	-2.834	rs56000485	3.847
rs12204127	3.679	rs147767243	3.884	rs62396140	-3.838	rs2720262	-3.656	rs2062858	-2.827	rs6688710	-3.828
rs147359410	-3.672	rs13202762	3.852	rs524300	3.836	rs2011323	3.623	rs10820732	2.811	rs76942947	3.809
rs76781091	3.666	rs28906376	-3.843	rs140271797	3.808	rs144876987	-3.620	rs150566466	-2.778	rs112370475	-3.805
rs6897073	3.641	rs116732333	3.842	rs6517780	-3.786	rs148480169	-3.601	rs13286392	2.772	rs2189962	3.776
rs13087237	3.577	rs34832680	-3.824	rs10514710	3.777	rs11774868	3.550	rs12941788	2.767	rs3738696	-3.760
rs7165812	-3.521	rs11072730	-3.807	rs145068927	-3.772	rs10789545	3.539	rs1405948	-2.750	rs36081664	-3.760
rs11774868	-3.515	rs74788884	-3.754	rs11590982	3.758	rs35386495	-3.527	rs78738472	-2.743	rs73026185	-3.740
rs113495032	-3.510	rs57778149	-3.744	rs115070660	-3.756	rs74571033	3.525	rs189304512	-2.743	rs590806	-3.738
rs12406720	-3.506	rs1480010	3.738	rs4604150	-3.755	rs60319541	-3.508	rs72670627	-2.742	rs9573276	-3.737
rs803070	-3.487	rs2377852	3.726	rs11653768	3.686	rs114180647	3.506	rs79942123	-2.704	rs12342233	-3.718
rs12380720	-3.483	rs739439	3.711	rs2237122	3.670	rs187086310	-3.483	rs112558177	2.671	rs12606083	3.717
rs16882205	-3.474	rs139815108	3.709	rs137953078	-3.651	rs61877041	-3.444	rs566739	2.657	rs56080411	3.708
rs146843341	-3.469	rs7796916	-3.624	rs9363058	3.611	rs147634506	3.418	rs12342233	2.653	rs7775567	3.672
rs11176125	3.467	rs139356914	-3.596	rs117853367	3.597	rs4142261	3.405	rs11709697	2.644	rs1394220	3.670

rs145068927	-3.465	rs80182122	-3.590	rs114580747	-3.516	rs79902981	3.403	rs71517255	2.608	rs151010172	-3.654
rs71413857	-3.456	rs3799146	-3.588	rs7095103	-3.513	rs72752809	3.386	rs17436893	2.605	rs144196860	-3.644
rs13227545	-3.443	rs247860	3.562	rs6942120	-3.494	rs72836521	-3.381	rs74865437	-2.596	rs571413	3.609
rs13223275	3.434	rs6728983	3.559	rs77078256	3.459	rs17140826	3.352	rs113050428	2.584	rs76738271	3.607
rs2988268	-3.433	rs4053608	3.548	rs28906376	-3.451	rs150446467	3.337	rs193267099	-2.583	rs62408168	3.584
rs6935101	3.422	rs116092966	-3.534	rs12380720	-3.387	rs77728810	-3.327	rs35562243	2.582	rs146276817	-3.583
rs4604150	3.405	rs4885132	-3.487	rs2242586	-3.356	rs62101454	-3.318	rs147318384	-2.579	rs74320918	-3.555
rs111649180	-3.393	rs138605227	3.484	rs189333988	-3.343	rs17669125	3.297	rs4885132	-2.576	rs56100436	-3.518
rs73615605	-3.373	rs182635346	3.481	rs12320689	-3.319	rs72685362	3.295	rs11590982	2.569	rs147220943	-3.499
rs11653768	-3.353	rs973236	-3.449	rs112613914	3.316	rs711866	-3.290	rs62525862	-2.566	rs17579352	3.488
rs72661791	3.349	rs3735645	-3.447	rs73158989	3.316	rs9483504	-3.281	rs7226740	-2.563	rs6782835	-3.487
rs10455804	3.337	rs117431686	3.376	rs13063349	-3.281	rs115355859	3.280	rs1257428	-2.552	rs73093571	-3.480
rs715005	3.336	rs571413	3.367	rs147732250	-3.267	rs144196860	3.255	rs35172826	2.547	rs72761751	-3.473
rs147181118	-3.333	rs79768863	3.356	rs62018159	3.246	rs12543736	3.216	rs111401946	-2.541	rs115088550	3.451
rs35605694	3.317	rs17460074	-3.339	rs7013204	-3.242	rs8095421	3.213	rs6942120	-2.540	rs12041355	-3.448
rs60543345	3.303	rs8095421	3.328	rs2274576	3.235	rs139834560	3.212	rs72923904	-2.530	rs210054	3.448
rs150893744	-3.293	rs142047277	-3.306	rs372676611	3.233	rs150407219	3.207	rs138136669	2.524	rs3128126	-3.438
rs139509348	-3.290	rs115618389	-3.261	rs483832	-3.184	rs112558177	-3.188	rs56100436	-2.518	rs114580747	-3.435
rs73883147	-3.283	rs188055179	-3.244	rs112417976	-3.180	rs78738472	-3.175	rs181971636	2.515	rs2616506	3.423
rs10455804 rs715005 rs147181118 rs35605694 rs60543345 rs150893744 rs139509348 rs73883147	3.337 3.336 -3.333 3.317 3.303 -3.293 -3.293 -3.283	rs117431686 rs571413 rs571413 rs79768863 rs17460074 rs8095421 rs142047277 rs142047277 rs115618389 rs188055179	3.376 3.367 3.367 3.356 -3.339 3.328 -3.306 -3.261 -3.244	rs13063349 rs147732250 rs62018159 rs7013204 rs2274576 rs372676611 rs483832 rs112417976	-3.281 -3.267 3.246 -3.242 3.235 3.233 -3.184 -3.180	rs115355859 rs144196860 rs12543736 rs8095421 rs139834560 rs150407219 rs112558177 rs112558177 rs78738472	3.280 3.255 3.216 3.213 3.212 3.207 -3.188 -3.175	rs1257428 rs35172826 rs111401946 rs6942120 rs72923904 rs138136669 rs56100436 rs181971636	-2.552 2.547 -2.541 -2.540 -2.530 2.524 -2.518 2.515	rs73093571 rs72761751 rs115088550 rs12041355 rs210054 rs3128126 rs114580747 rs2616506	-

rs145579016	-3.260	rs75290858	-3.214	rs75925401	-3.160	rs115088550	-3.162	rs9365898	-2.513	rs372079812	3.418
rs34678735	-3.256	rs558548241	3.209	rs76211860	-3.154	rs6942120	-3.146	rs77148640	2.504	rs11612551	-3.412
rs17497215	-3.242	rs117806396	3.204	rs75139568	-3.144	rs72736482	-3.127	rs112370475	-2.503	rs56320353	3.401
rs75511850	-3.171	rs6661718	3.201	rs144938519	3.096	rs72836530	3.120			rs7729781	-3.370
rs117806396	-3.168	rs73158989	3.193	rs116303796	3.093	rs79203737	3.118			rs61875269	3.356
rs183094692	-3.166	rs7126865	-3.168	rs17313129	3.092	rs1253192	-3.116			rs59239472	3.354
rs144569750	3.158	rs149800587	-3.157	rs188272993	-3.085	rs45622343	-3.096			rs62228460	-3.345
rs115693042	-3.146	rs7995609	-3.155	rs61733912	-3.067	rs76408259	3.087			rs28564089	3.344
rs79434220	-3.146	rs56343681	-3.141	rs116998176	-3.056	rs11590982	3.086			rs12497176	-3.341
rs62458779	3.142	rs16936356	3.136	rs72736482	3.042	rs74874350	3.083			rs74865437	-3.341
rs61957283	3.137	rs2286883	3.116	rs13237311	3.035	rs2499618	3.075			rs6728983	-3.338
rs75392755	3.086	rs3944003	3.113	rs34920654	-3.026	rs7672923	-3.072			rs149022393	3.336
rs62018159	-3.058	rs74878739	-3.099	rs142582914	3.018	rs2057273	-3.049			rs4898984	3.333
rs35203503	-3.057	rs1014416	-3.096	rs77897765	3.012	rs79835059	3.047			rs144130987	3.319
rs4739286	3.051	rs61853454	3.090	rs9650608	3.000	rs6976660	3.047			rs10507819	3.317
rs56100436	-3.041	rs150584992	3.087	rs62101454	-2.992	rs2288549	3.021			rs117854460	-3.299
rs17372186	-3.040	rs62408192	3.073	rs80324682	-2.925	rs553030	-3.012			rs117521530	3.297
rs7559979	-3.036	rs144938519	3.072	rs72923978	-2.919	rs141225628	-3.006			rs145304966	3.296
rs75339750	3.029	rs140941556	3.047	rs142715768	-2.896	rs558548241	2.994			rs76159488	3.296
L	1	1	1	1				1			1

rs118135146	-3.010	rs187412638	3.034	rs17460074	2.892	rs74627356	-2.991	rs1252268	-3.295
rs7995609	2.990	rs10030903	-3.030	rs1175293	-2.887	rs183094692	-2.979	rs28988871	-3.294
rs78918308	2.989	rs188272993	2.999	rs137946119	-2.885	rs115144271	2.976	rs9467573	-3.279
rs111548256	-2.981	rs597384	2.982	rs117979404	-2.882	rs112880643	2.974	rs34836271	3.271
rs117854460	2.965	rs149764582	2.976	rs28480361	-2.876	rs2586725	2.963	rs148918967	3.255
rs59375134	-2.952	rs190645385	2.971	rs553030	2.872	rs523056	-2.960	rs1264403	-3.250
rs147318384	2.946	rs115382571	2.955	rs115088550	2.857	rs55903221	-2.960	rs79341996	-3.249
rs142221240	2.944	rs8036417	-2.950	rs7995609	2.853	rs6058890	2.927	rs191014413	-3.242
rs78211577	2.941	rs9467550	-2.935	rs73026185	2.844	rs56100436	-2.924	rs11776420	3.233
rs571413	2.931	rs59239472	2.919	rs9467577	2.837	rs139136287	2.910	rs1990444	3.207
rs144567223	2.930	rs35562243	-2.912	rs191014413	-2.821	rs3096491	-2.895	rs6658460	-3.181
rs11539148	2.930	rs115264061	2.874	rs149512865	2.818	rs4737288	-2.855	rs1480689	3.170
rs58254626	2.929	rs4739284	-2.873	rs12548235	-2.818	rs9573276	-2.852	rs75177707	3.160
rs146519573	2.906	rs111649180	-2.867	rs72692627	2.804	rs226225	2.850	rs61733912	-3.154
rs115618389	2.902	rs34502193	2.858	rs12642875	-2.793	rs147713217	-2.848	rs143982878	-3.154
rs1927008	2.897	rs296410	2.857	rs77148640	-2.788	rs3758294	2.814	rs917022	3.153
rs585064	-2.887	rs10939848	2.851	rs56034166	2.786	rs113495032	2.812	rs2776077	3.152
rs600749	2.877	rs34564329	2.833	rs213204	2.785	rs111903406	-2.791	rs12543736	3.147
rs4568957	-2.870	rs12924762	-2.822	rs3944003	-2.784	rs75602357	2.777	rs140853325	3.138

rs1011644	2.864	rs11947505	-2.805	rs3894776	-2.778	rs72726348	2.736	rs10013703	3.131
rs71577425	-2.857	rs117402521	-2.796	rs4743758	-2.776	rs146020215	2.735	rs11211907	3.098
rs2906740	-2.854	rs711866	-2.792	rs147220943	-2.770	rs149866083	2.724	rs76990532	-3.078
rs72707463	2.846	rs210053	2.792	rs2062858	-2.767	rs2274576	2.719	rs2288549	3.066
rs12590156	-2.824	rs78727630	2.787	rs183094692	-2.757	rs147620456	2.708	rs72836530	3.056
rs34502193	2.812	rs116853085	2.783	rs523056	-2.749	rs1504310	2.673	rs73664380	-3.055
rs74811295	-2.790	rs62408168	-2.775	rs62257505	-2.741	rs111736183	-2.661	rs11176383	3.054
rs7973341	-2.789	rs12664541	-2.766	rs9649399	2.726	rs62232001	2.657	rs2011323	-3.050
rs79269048	2.787	rs72761751	-2.748	rs739439	2.704	rs12606083	2.654	rs711866	-3.024
rs4870924	2.774	rs220812	2.745	rs28383507	-2.704	rs118003136	2.645	rs73039859	3.024
rs148273366	2.773	rs147220943	2.744	rs578654	-2.701	rs483832	-2.642	rs75791417	-3.019
rs112941034	2.773	rs35095143	2.737	rs72661791	-2.693	rs6085377	-2.637	rs7951159	3.019
rs10507819	-2.755	rs114558563	2.734	rs7327960	-2.692	rs62455215	-2.636	rs8095421	3.018
rs11487824	2.722	rs117209692	2.732	rs1050046	2.682	rs56206332	-2.625	rs1724298	-3.014
rs9855337	2.718	rs17215096	-2.713	rs71517255	-2.681	rs34105866	2.624	rs113805662	-2.999
rs9342222	2.717	rs12380720	2.712	rs139998786	2.678	rs137953078	-2.623	rs117109583	-2.999
rs34105866	-2.714	rs144405150	2.686	rs115972027	-2.674	rs6549824	-2.623	rs1252916	-2.997
rs2586725	-2.709	rs147623796	2.685	rs76781091	2.660	rs11030918	2.619	rs75915001	-2.995
rs4731953	-2.706	rs803070	2.674	rs111732500	-2.655	rs140931342	-2.608	rs62371997	-2.975

rs6818784	-2.697	rs76377034	-2.660	rs72906179	-2.650	rs79735330	-2.555	rs118135146	-2.960
rs188055179	-2.689	rs4738035	2.654	rs3735645	2.624	rs144468079	2.553	rs76435383	-2.944
rs79406090	2.686	rs1467632	2.648	rs61834633	-2.623	rs12446868	-2.550	rs75339750	2.942
rs144876987	-2.685	rs72836530	-2.647	rs117348380	2.616	rs188272993	2.550	rs117075001	-2.939
rs73832368	-2.663	rs17286391	-2.642	rs142011155	-2.609	rs6949760	2.542	rs115264061	-2.934
rs2286883	2.662	rs35382	2.634	rs12204127	2.598	rs146058268	-2.541	rs139834560	-2.929
rs62408192	-2.642	rs11774868	2.631	rs10187018	2.597	rs143355724	-2.539	rs75203411	-2.927
rs78243378	2.625	rs116543900	-2.629	rs34105866	-2.593	rs73054110	2.522	rs10106918	2.916
rs117075001	-2.615	rs991932	-2.619	rs17579352	2.585	rs113112399	2.517	rs181625218	2.908
rs16936482	2.613	rs9573276	-2.616	rs78738472	-2.584	rs61783205	2.512	rs13087237	2.907
rs116846781	-2.605	rs55910145	-2.609	rs2289577	2.550	rs142826642	2.511	rs147713217	2.902
rs112105368	2.601	rs118003136	2.606	rs117110314	-2.529			rs187412638	-2.901
rs113547143	2.599	rs112941034	-2.605	rs7955946	-2.523			rs600749	2.887
rs142180874	-2.587	rs9342222	2.592	rs61740929	2.522			rs117128147	2.867
rs71653924	-2.586	rs79361541	-2.585	rs148766958	-2.519			rs143415132	-2.859
rs182081961	2.582	rs142180874	-2.584	rs549658720	2.519			rs140819465	-2.848
rs190264799	2.568	rs137953078	-2.578	rs147225021	2.511			rs72736482	-2.848
rs56223081	2.564	rs8142326	-2.577	rs10797854	2.510			rs7739280	-2.839
rs143183935	-2.563	rs7220217	-2.577					rs1122757	2.831

rs7967622	-2.562	rs148742031	-2.570				rs117323391	-2.831
rs138978706	-2.546	rs117348380	2.569				rs141405568	-2.819
rs72702639	-2.545	rs112558177	2.559				rs12858058	2.797
rs77692990	2.535	rs2139455	-2.550				rs28737338	2.796
rs72829765	-2.530	rs115196534	-2.535				rs149133487	2.790
rs147225021	2.527	rs464921	2.531				rs549658720	2.790
rs10927029	2.525	rs60429865	-2.529				rs141225628	2.781
rs142582914	-2.520	rs351343	2.527				rs9483504	2.769
rs1941356	2.509	rs210054	-2.518				rs112558177	-2.758
rs79203737	-2.506	rs12037127	2.509				rs116961695	-2.748
rs117578598	2.501	rs148813331	-2.505				rs78717262	2.747
							rs296891	-2.745
							rs117933676	-2.734
							rs114180647	-2.734
							rs1405948	2.729
							rs12312548	-2.719
							rs112417976	2.719
							rs7559979	2.716
							rs151115942	2.713

							rs12590156	2.710
							rs62154540	-2.705
							rs11176125	-2.692
							rs7796916	2.686
							rs10037874	2.677
							rs149385803	2.677
							rs149512865	2.671
							rs17460074	-2.668
							rs6085377	2.660
							rs875590	-2.657
							rs28489143	2.654
							rs78424017	-2.648
							rs16936383	-2.648
							rs11668593	2.646
							rs9952007	-2.646
							rs34463571	2.638
							rs5011966	-2.637
							rs10927029	2.636
							rs117936086	2.636
L	l	1	1	1	1			1

						rs117604569	2.634
						rs12924762	2.633
						rs13291863	2.629
						rs62397311	-2.628
						rs79087982	2.623
						rs4419750	2.595
						rs140636454	-2.589
						rs9362727	2.589
						rs117635749	-2.587
						rs45519933	2.585
						rs118003136	2.578
						rs59634323	2.578
						rs6938249	2.573
						rs79470805	2.570
						rs2237122	-2.558
						rs112983023	-2.552
						rs116987332	2.550
						rs144569750	-2.543
						rs12698808	2.541
L		1		1		1	

Barth e	et al
---------	-------

					rs7967622	2.538
					rs118016777	2.537
					rs72666163	2.513
					rs140170347	-2.509
					rs142826642	-2.505

Supplementary Table 5. Significant brain regions from MRI components associated with SNPs from mesocorticolimbic DAT1 ePRS for every age band.

Significant brain regions for MRI component 27 - Age band 40 to 45 years old									
Area	BrodmannVolumeRandom effects: Max Value (x, y, z) Area $(cc) L/R$ L/R		MNI(x, y, z) L/R						
	Positive								
Lentiform Nucleus	*	0.1/0.1	2.8 (-18, 12, -8)/4.6 (15, 8, -9)	(-18, 13, -9)/(15, 9, -10)					
Caudate	*	0.1/0.1	4.4 (-7, 9, -5)/3.5 (8, 10, -4)	(-7, 10, -5)/(8, 11, -4)					
Anterior Cingulate	25	0.1/0.0	3.1 (-2, 5, -4)/-999.0 (0, 0, 0)	(-2, 5, -4)/(0, 0, 0)					
Negative									
Insula	*	0.1/0.1	3.0 (-38, -7, -4)/2.5 (37, -7, -3)	(-38, -7, -5)/(37, -7, -4)					
Inferior Frontal Gyrus	47	0.0/0.1	-999.0 (0, 0, 0)/2.5 (40, 15, -5)	(0, 0, 0)/(40, 16, -5)					
Signi	ficant brain re	egions for N	IRI component 1 - Age band 46 to 50 ye	ears old					
Area	Brodmann	Volume	Random effects: Max Value (x, y, z)	MNI(x, y, z) L/R					
	Area	(cc) L/R	L/R						
			Positive						
Cingulate Gyrus	31	0.1/0.0	4.7 (-3, -42, 30)/-999.0 (0, 0, 0)	(-3, -45, 30)/(0, 0, 0)					
Insula	13	0.1/0.1	2.6 (-40, -7, 0)/3.5 (37, -7, -3)	(-40, -7, -1)/(37, -7, -4)					
Caudate	*	0.1/0.0	3.2 (-12, 16, -2)/-999.0 (0, 0, 0)	(-12, 17, -1)/(0, 0, 0)					
Lentiform Nucleus	*	0.0/0.1	-999.0 (0, 0, 0)/3.1 (17, 5, -9)	(0, 0, 0)/(17, 6, -10)					
Medial Frontal Gyrus	*	0.0/0.1	-999.0 (0, 0, 0)/3.0 (14, 19, -15)	(0, 0, 0)/(14, 20, -17)					

Parahippocampal Gyrus	28	0.0/0.1	-999.0 (0, 0, 0)/2.7 (20, -14, -18)	(0, 0, 0)/(20, -13, -22)				
Negative								
Parahippocampal Gyrus	36	0.0/0.2	-999.0 (0, 0, 0)/4.4 (28, -24, -21)	(0, 0, 0)/(28, -24, -26)				
Anterior Cingulate	*	0.0/0.1	-999.0 (0, 0, 0)/3.7 (6, 36, 7)	(0, 0, 0)/(6, 37, 10)				
Insula	13	0.0/0.1	-999.0 (0, 0, 0)/3.1 (41, 7, -5)	(0, 0, 0)/(41, 7, -5)				
Caudate	*	0.1/0.1	2.7 (-9, 12, -1)/2.5 (14, -4, 18)	(-9, 12, -1)/(14, -5, 19)				
Signif	ïcant brain reg	gions for M	RI component 37 - Age band 51 to 55 y	years old				
Area	Brodmann	Volume	Random effects: Max Value (x, y, z)	MNI(x,y,z) I/P				
Агеи	Area	(cc) L/R	L/R	WINT (x, y, z) L/K				
Positive								
Caudate	*	0.1/0.0	3.7 (-7, 10, 0)/-999.0 (0, 0, 0)	(-7, 10, 0)/(0, 0, 0)				
Thalamus	*	0.0/0.1	-999.0 (0, 0, 0)/3.1 (8, -25, 3)	(0, 0, 0)/(8, -26, 2)				
Parahippocampal Gyrus	*	0.0/0.2	-999.0 (0, 0, 0)/3.1 (26, -5, -12)	(0, 0, 0)/(26, -5, -15)				
Inferior Frontal Gyrus	*	0.1/0.0	3.1 (-13, 26, -17)/-999.0 (0, 0, 0)	(-13, 28, -19)/(0, 0, 0)				
		1 1	Negative					
Medial Frontal Gyrus	25	0.1/0.1	3.7 (-13, 19, -16)/4.3 (14, 11, -15)	(-13, 20, -18)/(14, 12, -17)				
Fusiform Gyrus	20	0.0/0.1	-999.0 (0, 0, 0)/3.1 (31, -41, -16)	(0, 0, 0)/(31, -41, -21)				
Lentiform Nucleus	*	0.0/0.1	-999.0 (0, 0, 0)/2.9 (21, 14, -3)	(0, 0, 0)/(21, 15, -3)				
Parahippocampal Gyrus	*	0.0/0.1	-999.0 (0, 0, 0)/2.8 (27, -18, -13)	(0, 0, 0)/(27, -18, -17)				

Anog	Brodmann	Volume	Random effects: Max Value (x, y, z)	
Area	Area	(cc) L/R	L/R	MINI(x, y, z) L/K
		<u> </u>	Positive	
Medial Frontal Gyrus	25	0.2/0.1	7.9 (-12, 28, -17)/5.0 (12, 24, -16)	(-12, 30, -19)/(12, 26, -1
Caudate	*	0.1/0.0	2.8 (-5, 10, -3)/-999.0 (0, 0, 0)	(-5, 10, -3)/(0, 0, 0)
Inferior Frontal Gyrus	*	0.0/0.1	-999.0 (0, 0, 0)/2.7 (13, 31, -19)	(0, 0, 0)/(13, 33, -21)
			Negative	
Anterior Cingulate	25	0.1/0.1	3.2 (-2, 8, -3)/2.8 (3, 8, -3)	(-2, 8, -3)/(3, 8, -3)
Thalamus	*	0.1/0.0	2.6 (-6, -24, 9)/-999.0 (0, 0, 0)	(-6, -25, 8)/(0, 0, 0)
Signif	icant brain re	gions for M	RI component 21 - Age band 61 to 65	years old
	Brodmann	Volume	Random effects: Max Value (x, y, z)	
Area	Area	(cc) L/R	L/R	MNI(x, y, z) L/R
			Positive	
Insula	13	0.0/0.1	-999.0 (0, 0, 0)/7.2 (38, -2, -5)	(0, 0, 0)/(38, -2, -6)
Parahippocampal Gyrus	*	0.0/0.1	-999.0 (0, 0, 0)/2.6 (22, -35, -2)	(0, 0, 0)/(22, -36, -4)
			Negative	
Incula	*	0.0/0.1	-999.0 (0, 0, 0)/3.6 (38, -5, -6)	(0, 0, 0)/(38, -5, -7)
Insula				

4	Brodmann	Volume	Random effects: Max Value (x, y, z)		
Area	Area	(cc) L/R	L/R	MINI(x, y, z) L/R	
			Positive		
Caudate	*	0.2/0.1	3.5 (-8, 6, 9)/2.6 (8, 8, 3)	(-8, 6, 10)/(8, 8, 4)	
Parahippocampal Gyrus	28, 34	0.1/0.1	3.4 (-18, -8, -16)/3.0 (21, -15, -19)	(-18, -7, -20)/(21, -14, -24)	
Anterior Cingulate	32	0.1/0.0	3.0 (-5, 32, -3)/-999.0 (0, 0, 0)	(-5, 33, -2)/(0, 0, 0)	
Cingulate Gyrus	31	0.1/0.0	2.6 (-3, -38, 27)/-999.0 (0, 0, 0)	(-3, -40, 27)/(0, 0, 0)	
Insula	*	0.1/0.0	2.6 (-36, 11, -3)/-999.0 (0, 0, 0)	(-36, 11, -3)/(0, 0, 0)	
Fusiform Gyrus	20	0.0/0.1	-999.0 (0, 0, 0)/2.6 (34, -36, -18)	(0, 0, 0)/(34, -36, -24)	
			Negative		
Medial Frontal Gyrus	25	0.1/0.1	4.0 (-15, 11, -16)/3.0 (12, 28, -17)	(-15, 12, -18)/(12, 30, -18)	
Caudate	*	0.1/0.0	3.4 (-5, 8, -3)/-999.0 (0, 0, 0)	(-5, 8, -3)/(0, 0, 0)	
Insula	13	0.0/0.1	-999.0 (0, 0, 0)/3.3 (39, -8, 5)	(0, 0, 0)/(39, -8, 5)	
Inferior Frontal Gyrus	47	0.0/0.2	-999.0 (0, 0, 0)/3.3 (13, 18, -19)	(0, 0, 0)/(13, 19, -21)	
Thalamus	*	0.1/0.0	2.8 (-5, -19, 4)/-999.0 (0, 0, 0)	(-5, -20, 3)/(0, 0, 0)	

* Coordinates outside Brodmann areas

Supplementary Table 6. Enrichment analysis using MetaCore® for each reported genetic component from pICA.

	Pathway Maps (FDR<0.05)	Gene Ontology Processes (FDR<0.05)
	DNA damage_ATM/ATR regulation of G2/M	Central nervous system development, neuron
	checkpoint: nuclear signaling	development, neurogenesis, axonogenesis
	Cell cycle_Chromosome condensation in prometaphase	Regulation of synapse structure or activity
Age band:		Cell morphogenesis involved in neuron
40 to 45	GTP metabolism	differentiation, cell projection morphogenesis
yrs	Development_WNT/Beta-catenin signaling in the	Anatomical structure development and
	cytopiasm	morphogenesis
SNP		Cellular response to catecholamine, monoamine
component:		and insulin stimulus
63		Regulation of glutamate receptor signaling
		pathway
		Response to monoamine and catecholamine
		Negative regulation of insulin secretion
		involved in cellular response to glucose
	DNA damage_ATM/ATR regulation of G2/M	Central nervous system development, neuron
Age band:	checkpoint: nuclear signaling	development, neurogenesis, axonogenesis
46 to 50	GTP metabolism	Regulation of synapse structure or activity
yrs	Neurophysiological process_Ephrin-B receptors in	Cell morphogenesis involved in neuron
	dendritic spine morphogenesis and synaptogenesis	differentiation, cell projection morphogenesis
SNP		Anatomical structure development and
component:		morphogenesis
42		Cellular response to catecholamine, monoamine and insulin stimulus

		Regulation of glutamate receptor signaling
		pathway
		Response to monoamine and catecholamine
		Negative regulation of insulin secretion
		involved in cellular response to glucose
	DNA damage_ATM/ATR regulation of G2/M	Central nervous system development, neuron
	checkpoint: nuclear signaling	development, neurogenesis, axonogenesis
	GTP metabolism	Regulation of synapse structure or activity
		Cell morphogenesis involved in neuron
Age band:		differentiation, cell projection morphogenesis
51 to 55		Anatomical structure development and
<u>j</u> 20		morphogenesis
		Cellular response to catecholamine, monoamine
SNP		and insulin stimulus
component:		Regulation of glutamate receptor signaling
		pathway
		Response to monoamine and catecholamine
		Negative regulation of insulin secretion
		involved in cellular response to glucose
Age band:	Neurophysiological process_Ephrin-B receptors in	Central nervous system development, neuron
56 to 60	dendritic spine morphogenesis and synaptogenesis	development, neurogenesis, axonogenesis
yrs	GTP metabolism	Regulation of synapse structure or activity
	Role of epigenetic alterations in survival and	Cell morphogenesis involved in neuron
SNP	migration of SCLC cells	differentiation, cell projection morphogenesis
component:		Anatomical structure development and
39	Cell adhesion_Ephrin signaling	morphogenesis

		Cellular response to catecholamine, monoamine
		Regulation of glutamate receptor signaling pathway
		Response to monoamine and catecholamine
		Negative regulation of insulin secretion involved in cellular response to glucose
	Neurophysiological process_Ephrin-B receptors in	Central nervous system development, neuron
	dendritic spine morphogenesis and synaptogenesis	development, neurogenesis, axonogenesis
	Cytoskeleton remodeling_Keratin filaments	Regulation of synapse structure or activity
Age band:	Cell Adhesion_Desmosomes	Cell morphogenesis involved in neuron differentiation, cell projection morphogenesis
yrs		Anatomical structure development and morphogenesis
SNP		Cellular response to catecholamine and monoamine stimulus
50		Regulation of glutamate receptor signaling pathway
		Response to monoamine and catecholamine
		Regulation of insulin secretion involved in cellular response to glucose stimulus
Age band:		Central nervous system development, neuron development, neurogenesis, axonogenesis
66 to 70 yrs		Regulation of synapse structure or activity
		Cell morphogenesis involved in neuron differentiation, cell projection morphogenesis

Barth <i>et al</i>	Supplementary
SNP	Anatomical structure development and
component:	morphogenesis
15	Cellular response to catecholamine and monoamine stimulus
	Regulation of glutamate receptor signaling pathway
	Response to monoamine and catecholamine
	Negative regulation of insulin secretion involved in cellular response to glucose

Supplementary References

- 1. Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K *et al.* The UK Biobank resource with deep phenotyping and genomic data. *Nature* 2018; **562**(7726): 203.
- 2. Galinsky KJ, Bhatia G, Loh PR, Georgiev S, Mukherjee S, Patterson NJ *et al.* Fast Principal-Component Analysis Reveals Convergent Evolution of ADH1B in Europe and East Asia. *Am J Hum Genet* 2016; **98**(3): 456-472.
- 3. Richmond RC, Timpson NJ, Felix JF, Palmer T, Gaillard R, McMahon G *et al.* Using genetic variation to explore the causal effect of maternal pregnancy adiposity on future offspring adiposity: a Mendelian randomisation study. *PLoS medicine* 2017; **14**(1).
- 4. Patterson N, Price AL, Reich D. Population structure and eigenanalysis. *PLoS genetics* 2006; **2**(12).
- 5. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. Principal components analysis corrects for stratification in genome-wide association studies. *Nature genetics* 2006; **38**(8): 904-909.
- 6. Miller JA, Ding S-L, Sunkin SM, Smith KA, Ng L, Szafer A *et al.* Transcriptional landscape of the prenatal human brain. *Nature* 2014; **508**(7495): 199.
- 7. R CT. *R: A language and environment for statistical computing*. R Foundation for Statistical Computing: Vienna, Austria, 2014.
- 8. Galili T, O'Callaghan A, Sidi J, Sievert C. heatmaply: an R package for creating interactive cluster heatmaps for online publishing. *Bioinformatics* 2018; **34**(9): 1600-1602.
- 9. Zheng J, Erzurumluoglu AM, Elsworth BL, Kemp JP, Howe L, Haycock PC *et al.* LD Hub: a centralized database and web interface to perform LD score regression that maximizes the potential of summary level GWAS data for SNP heritability and genetic correlation analysis. *Bioinformatics* 2017; **33**(2): 272-279.
- 10. Schizophrenia Psychiatric Genome-Wide Association Study C. Genome-wide association study identifies five new schizophrenia loci. *Nat Genet* 2011; **43**(10): 969-976.
- 11. Demontis D, Walters RK, Martin J, Mattheisen M, Als TD, Agerbo E *et al.* Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder. *Nature Genetics* 2019; **51**(1): 63-75.
- 12. Wray NR, Ripke S, Mattheisen M, Trzaskowski M, Byrne EM, Abdellaoui A *et al.* Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. *Nature genetics* 2018; **50**(5): 668.

- 13. Mullins N, Bigdeli TB, Børglum AD, Coleman JR, Demontis D, Mehta D *et al.* GWAS of suicide attempt in psychiatric disorders and association with major depression polygenic risk scores. *American journal of psychiatry* 2019: appi. ajp. 2019.18080957.
- 14. Xue A, Wu Y, Zhu Z, Zhang F, Kemper KE, Zheng Z *et al.* Genome-wide association analyses identify 143 risk variants and putative regulatory mechanisms for type 2 diabetes. *Nature communications* 2018; **9**(1): 1-14.
- Locke AE, Kahali B, Berndt SI, Justice AE, Pers TH, Day FR *et al.* Genetic studies of body mass index yield new insights for obesity biology. *Nature* 2015; **518**(7538): 197-206.
- 16. Siewert KM, Voight BF. Bivariate genome-wide association scan identifies 6 novel loci associated with lipid levels and coronary artery disease. *Circulation: Genomic and Precision Medicine* 2018; **11**(12): e002239.
- 17. Watanabe K, Taskesen E, van Bochoven A, Posthuma D. Functional mapping and annotation of genetic associations with FUMA. *Nat Commun* 2017; **8**(1): 1826.
- 18. Gandal MJ, Haney JR, Parikshak NN, Leppa V, Ramaswami G, Hartl C *et al.* Shared molecular neuropathology across major psychiatric disorders parallels polygenic overlap. *Science* 2018; **359**(6376): 693-697.
- de Lima RMS, Barth B, Arcego DM, de Mendonça Filho EJ, Clappison A, Patel S *et al.* Amygdala 5-HTT Gene Network Moderates the Effects of Postnatal Adversity on Attention Problems: Anatomo-Functional Correlation and Epigenetic Changes. *Front Neurosci* 2020; 14: 198.
- Cox JL, Holden JM, Sagovsky R. Detection of postnatal depression: development of the 10-item Edinburgh Postnatal Depression Scale. *The British journal of psychiatry* 1987; 150(6): 782-786.
- 21. Organization WH. ICD-10 : international statistical classification of diseases and related health problems : tenth revision. 2 edn2004.
- 22. Goodman R. The Strengths and Difficulties Questionnaire: a research note. *Journal of child psychology and psychiatry* 1997; **38**(5): 581-586.
- 23. Lewis G. Assessing psychiatric disorder with a human interviewer or a computer. *Journal* of Epidemiology & Community Health 1994; **48**(2): 207-210.
- 24. Wallace TM, Levy JC, Matthews DR. Use and abuse of HOMA modeling. *Diabetes care* 2004; **27**(6): 1487-1495.

25. Alfaro-Almagro F, Jenkinson M, Bangerter NK, Andersson JL, Griffanti L, Douaud G *et al.* Image processing and Quality Control for the first 10,000 brain imaging datasets from UK Biobank. *Neuroimage* 2018; **166:** 400-424.