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37 ABSTRACT

38 Machine learning (ML) models for analyzing medical data are critical for both accelerating development 

39 of novel diagnostic and treatment strategies and improving the accuracy of medical care delivery. Our 

40 objective was to comprehensively review supervised ML models for diagnosis or treatment prediction.

41 Publications indexed in PubMed were reviewed to identify articles utilizing supervised predictive ML 

42 models in medicine. Articles published between 01/01/2020–01/01/2022 were included in this review. 

43 Initially, PubMed was searched using MeSH major terms, and if more extensive search results were 

44 needed, a broader search was applied (titles/abstracts).

45 PubMed indexed 21,268 published articles (MeSH Major topic) describing ML methods implemented 

46 in medicine. Of those, 11,726 articles were published within the last 2 years. Most of the published ML 

47 models in medicine in the last two years were different types of deep learning models (about 75%). Fifty 

48 articles were included in this review.

49 Almost all categories of disease were subjects of ML predictions. Positive and negative factors in each 

50 of the scenarios need to be evaluated before the most optimal ML model is selected. Domain knowledge 

51 and collaborations between physicians and ML experts can improve the selection and prediction 

52 performance of ML models in medicine and facilitate implementation in clinical practice. Predictive ML 

53 models could provide recommendations to recruit suitable patients for clinical trials. Prediction ML 

54 models may contribute to development of more effective diagnostic and therapeutic choices, founded on 

55 evidence-based medicine. A broad range of methodological approaches have been taken toward this 

56 goal, and those approaches are presented here with their various advantages and disadvantages. 

57

58

59
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61 AUTHOR SUMMARY

62 Over the last decade, there has been rapid development of Machine learning (ML) methods to analyze 

63 Big Data in medicine. ML is aimed to make the computer learn from past experiences and make 

64 predictions by recognizing patterns in medical data. We performed a comprehensive systematic literature 

65 review of recent publications (last two years), indexed in PubMed/MEDLINE that have described either 

66 traditional or deep supervised prediction ML models in medicine. We identified 21,268 articles 

67 describing ML implementation in medicine. 11,726 articles were published in the last 2 years. We 

68 presented the number of publications describing each of the most often ML methods to show current 

69 trends in development of these models. Most of the recently published ML models in medicine were 

70 deep learning models. We found that the understanding of disease is likely to lead to more accurate 

71 prediction. An important dilemma is the selection of optimal ML models for a specific task, considering 

72 amount and type of available data. Domain knowledge and collaborations between physicians and ML 

73 experts can improve the prediction performance of ML models, which could help clinicians to select the 

74 most effective diagnostic and therapeutic choices available and decrease medical errors.

75

76

77

78 INTRODUCTION

79 Over the last decade, there has been significant growth of the amount of medical data generated by the 

80 adoption and integration of electronic health records (EHR).[1] This growth in EHR data coincided with 

81 rapid development of ML techniques and computing power to analyze Big Data in medicine, which 

82 could contribute to improved medical solutions and better, more efficient healthcare.[2-5] ML is a branch 

83 of Artificial intelligence (AI), aimed to make the computer learn from past experiences and make 

84 predictions by recognizing patterns in medical data.[5-7] ML can be classified into three categories: 
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85 unsupervised, supervised, and reinforcement learning (RL). This paper focuses on supervised ML 

86 techniques, where a function that maps an input to an output is inferred from labeled training data. 

87 The objective of the research was to perform a comprehensive systematic literature review of recent 

88 publications that have used either traditional or deep supervised prediction ML models in medicine. We 

89 examined whether the method is appropriate for the selected medical prediction task, whether the model 

90 is generalizable, and whether it could be used by clinicians to improve the quality of medical care. 

91 Supervised prediction ML models are utilized in traditional and deep learning approaches.[5-7] The most 

92 frequently used traditional ML models in medicine are: decision trees (DT),[8] random forest (RF),[9]  

93 and other ensemble methods,[10-14] single and multi-layer perceptron (MLP),[15.16] Bayesian learning 

94 (BL),[17] support vector machines (SVM),[18] k-nearest neighbors (k-NN),[19] linear regression 

95 (LR),[20] and logistic regression (LogR).[21] Deep learning models are inspired by biological neural 

96 networks, where each layer of the network learns higher order features of the previous layer. Different 

97 types of neural networks have been designed, such as: deep neural networks (DNN) including deep belief 

98 networks,[22] convolutional neural networks (CNN),[22] recurrent neural networks (RNN - long short-

99 term memory (LSTM) and gated rectified unit (GRU)),[23] etc. 

100 Many ML models have been developed for prediction of diagnosis, or recommendation of the most 

101 optimal therapeutic approach. Since this is a rapidly evolving scientific field, we reviewed articles 

102 published within the last two years.

103

104 MATERIALS AND METHODS

105 We conducted a systematic review of articles describing supervised prediction ML models (traditional 

106 and deep learning) published within the last two years (01/01/2020 –01/01/2022). The following 

107 traditional supervised ML models were included in the review: DT, RF and other ensemble methods, the 
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108 perceptron, BL models, SVM, k-NN, LR, and LogR. Deep learning models included in the review were: 

109 DNN, CNN, and RNN.

110 We searched PubMed/MEDLINE, as the most relevant source of medical topics, to identify articles 

111 describing applications of supervised traditional and deep predictive ML models in medicine. Initially, 

112 we searched PubMed using MeSH (Medical Subject Headings) major terms. If we did not find enough 

113 literature for the specific ML model, we applied a broader search using terms that appear in titles of 

114 publications, or in case of bagging and boosting ensemble models and RNN we used combinations of 

115 MeSH and title/abstract searches. This searching approach extracted articles where the reviewed ML 

116 model was a major part of the article. The search strategy used keywords indicating “ML model” AND 

117 “prediction/detection/classification” AND “medical conditions (therapies, outcomes)”. In the example 

118 of deep learning methods, we divided searches into 3 groups: classic DNN, CNN and RNN. To extract 

119 general DNN models we used the following search query: ("deep learning"[Mesh] not "CNN" not 

120 "RNN" not "LSTM" not "GRU"). For CNN models the query was: (CNN[Title]) OR (convolutional 

121 neural networks[Title]). And for RNN model the query was: (RNN[Title/abstract] OR recurrent neural 

122 networks[Title] OR LSTM[Title] OR GRU[Title] OR long short term memory[Title] OR gated rectified 

123 unit[Title]). 

124 We included articles that presented original research published in English. The search results were sorted 

125 according to types of described ML models. For each of the reviewed ML models we selected a 

126 representative sample. Priority was given to the newest published research in cases of multiple papers 

127 describing similar predictive ML approaches. At least four authors agreed that the article was sufficiently 

128 significant to be included in this review. We performed a systematic review of the literature to analyze 

129 how useful and meaningful the described predictive ML models are in terms of realistic applicability in 

130 medical practice.

131
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132 RESULTS 

133 We identified 21,268 articles (MeSH Major topic) describing ML implementation in medicine (Figure 

134 1). 11,726 articles were published in the last 2 years. 

135

136
137 Figure 1. Number of publications describing ML applications in Medicine indexed in PubMed.
138
139
140
141 Fifty articles were included in the review. In Table 1, we present the method of search for each of the 

142 ML models and the number of publications retrieved using that particular search method. Most of the 

143 published ML models in medicine in the last two years were different types of deep learning models. 

ML method Type of ML Type of PubMed 
Search

% of articles 
total

% in the last 2 
years

Linear regression Traditional MeSH Major topic 13% 1%
SVM Traditional MeSH Major topic 13% 4%
DT Traditional MeSH Major topic 9% 1%
Logistic regression Traditional MeSH Major topic 9% 1%
Bayesian Traditional MeSH Major topic 5% 4%
RF Traditional MeSH Major topic 8% 8%
Ensemble - boosting Traditional Title search 1% 1%
k-NN Traditional Title search 3% 2%
Perceptron Traditional Title search 1% 1%
Ensemble - bagging Traditional Title search 1% 1%
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DNN Deep MeSH Major topic 27% 35%
CNN Deep Title search 13% 22%
RNN Deep Title search 10% 14%

144
145 Table 1. Supervised ML methods applied in prediction of medical conditions. Percentages of articles of 

146 the total number of publications by ML method are presented.

147
148 Traditional models

149 Decision trees are classification methods that adopt a top-down strategy where each node represents a 

150 classification question and the branches partition the data into different classes.[8] DT models were 

151 developed for prediction of diabetes mellitus type 2 (DM2), and essential hypertension (EH),[24] by 

152 creating visually guided classification trees to facilitate the feature selection (four different datasets, sizes 

153 547 – 12,447). The prediction accuracy of DM2 and EH in different scenarios varied between 58% and 

154 87%. DTs predicted coronary artery disease with the accuracy about 91% on a dataset of 303 

155 patients.[25] A DT algorithm was proposed to identify pre-treatment clinical predictors of survival in 

156 rectal cancer (100 examples).[26] Predicted accuracy of survival rates were 71-76%. Presented DT 

157 models have questionable generalization potential, since most of them were developed on small samples 

158 frequently from one hospital.

159 Random Forest is a ML method that applies many decision trees to predict the outcome.[9] RF models 

160 have been constructed to predict hepatotoxicity on a dataset of 346 samples, with the accuracy up to 

161 71%.[27] This may provide a basis for improved safety evaluation in drug discovery and the risk 

162 assessment of environmental pollutants. A retrospective review of 559 patients undergoing abdominal 

163 hernia was the basis for RF modeling to predict surgical approach and determine the importance of 

164 different socioeconomic variables in selecting the type of surgery (area under the receiver operating 

165 characteristic (AUROC) ≈0.82).[28] Data were obtained from a single institution, which limits the 

166 generalizability of findings. Psychotic and depressive symptom clusters in dementia were predicted 

167 using RF on the EHR records of 4,003 patients with dementia (AUROC 0.80).[29] An RF model boosted 
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168 by the AdaBoost algorithm was utilized to predict the severity of COVID-19 cases and the possible 

169 outcome, by using a patient’s geographical, travel, health, and demographic data (3397 patients, accuracy 

170 94%). The model revealed a positive correlation between patients’ genders and deaths, finding that men 

171 are more likely to die.[30] All presented RF models need further improvements including potential 

172 combination with deep learning ML models to find a relevant application in practice.

173 Ensemble Methods (boosting, bagging) combine a few weak learning models and turn them into a great 

174 learning algorithm.[10-14] The most famous boosting algorithm is AdaBoost. ML models were built to 

175 predict the probability of different pairs of drugs and nanoparticles creating drug-decorated nanoparticle 

176 (DDNPs) complexes with anti-glioblastoma activity. Forty-one features have been selected for 855,129 

177 drug-nanoparticle complexes. The best model was obtained with the bagging ensemble classifier, based 

178 on 20 decision trees with the AUROC of 0.96 and accuracy of 87%. This model could be applied for the 

179 screening of nanoparticle-drug complexes in glioblastoma.[31] The bagging ensemble method improves 

180 reproducibility of both cortical and subcortical functional parcellation of the human brain neuroimaging 

181 (more than 300 samples).[32] AdaBoost was used to differentiate colorectal neoplasia from normal tissue 

182 (AUROC up to 0.95 on 64 samples from 16 patients).[33] Both models use imaging data as inputs and 

183 need additional research work, including comparison to deep learning models, before their potential 

184 application in clinical practice.

185 Perceptron and Multilayer Perceptron. The perceptron is based on a threshold function that learns 

186 weights for features and processes one example at a time. It could be used as a single-layer perceptron 

187 or as a multilayer perceptron.[15,16] Modeling of the spread of the COVID-19 infection using a MLP 

188 was designed on a dataset (20,706 examples) operated by the Johns Hopkins University Center for 

189 Systems Science and Engineering (JHU CSSE).[34] This is one of many papers about COVID-19 

190 intended to predict the spread of the infection, but the model lacks generalization ability. MLP was 

191 applied in a diagnosis of breast cancer subtypes, using MRI images (704 images) with AUROC of 
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192 0.86.[35] The study used imaging data to distinguish between benign and malignant breast lesions. The 

193 challenge remains how to effectively incorporate this model into everyday oncology.  

194 Bayesian ML algorithms calculate probabilities for hypotheses. The class having maximum probability 

195 is assigned as the most suitable class.[17] A study presented a method for classifying electrocardiogram 

196 (ECG) data into four emotional states according to the stress levels using naive Bayes and SVM 

197 algorithms with the average accuracy of the stress classification of 97.6%. Ability to quantify the stress 

198 signals could facilitate a more effective management of mental state.[36] A Bayesian ML model was 

199 designed to estimate the probability of an individual having an oral Human Papilloma Virus (HPV) 

200 infection, given Oropharyngeal Squamous Cell Carcinomas (OPSCC) and other covariate 

201 information.[37] The model is then inverted using Bayes' theorem to reverse the probability relationship. 

202 The authors analyzed 8,106 OPSCC patients and achieved the AUROC of about 0.7. The Bayesian model 

203 could be utilized to identify risk factors in estimating the probability of medical conditions.

204 Support Vector Machine models apply an optimization problem that attempts to find a separating 

205 hyperplane with as large a margin as possible.[18] SVM was trained on 318 samples to distinguish 

206 neurodegenerative movement disorders such as Parkinson’s Disease (PD) from healthy subjects, and 

207 from other movement disorders (precision ≈81% and recall ≈89%).[38] In this study, DNN and RF were 

208 applied to the same task, with DNN achieving the best results. Models were trained on retrospective data 

209 at a single site, with high data quality and none of the different classifiers outperformed the others, which 

210 are some of limitations of these models. SVM models have also been used for diagnosis of early breast 

211 cancer using PET images (116 samples, accuracy up to 85%, AUROC 0.89),[39] and detection of atrial 

212 fibrillation (AF) using ECG data (79 AF and 336 non-AF cases, accuracy 97-100%).[40] Both models 

213 use images as inputs. These models must be tested on bigger data and compared to deep learning since 

214 recent literature show that deep learning models yield better prediction than SVM models on imaging 

215 data.
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216 The K-Nearest Neighbors algorithm takes into account k-neighboring points when classifying a data 

217 point and assigns the class by finding the most prominent class among the k-nearest data points.[19] 

218 Hepatocellular carcinoma (HCC) dataset from the UCI machine learning repository was used to test 

219 different algorithms, including k-NN classifier, for feature selection and classification. The best results 

220 achieved up to 84% accuracy.[41] The k-NN and SVM classifiers were utilized to determine whether 

221 the patients have abnormal or normal respiration, or have bradypnea (slow breathing), or tachypnea (fast 

222 breathing). The testing accuracies of the completely built SVM and k-NN classifiers were 96% and 99%, 

223 respectively.[42] Constructed models must be tested on more datasets from other institutions to 

224 determine reproducibility of the models. K-NN models have not been used very often for medical 

225 predictions in the last few years. 

226 A Linear Regression algorithm performs a regression task and predicts a specific value based on an 

227 independent variable.[20] A linear model was created to predict the impact of the duration of exposure 

228 (number of days) to COVID-19 on mortality rates (more than 270,000 patients).[43] Multiple regression 

229 and LR analysis were successfully applied to predict the number of weekly deaths due to COVID-19 in 

230 India (606 patients).[44] LR models are good options for time to event type of predictions and for 

231 predictions of the exact numbers of patients, or the cost of care. 

232 Logistic Regression uses the logistic function to binary classification and estimates the probability of 

233 the event.[21] Multivariate LogR (as well as RF and XGBoost) models were applied for prognosis of 

234 mortality risk in patients with COVID-19 (292 patients, AUROC ≈0.95).[45] The model needs to be 

235 tested on larger multi-center data. A study investigated the application of LogR and RNN LSTM models 

236 in capturing clinical risk factors for outcome prediction of 575 patients with aneurysmal subarachnoid 

237 hemorrhage (AUROC 0.89).[46] Since, the LSTM RNN model achieved higher accuracy, it is likely a 

238 better choice in this type of study. A logistic regression-based ML prognostic algorithm is implemented 

239 in real-time as a clinical decision support (CDS) system to facilitate decision making for patients with 
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240 suspected COVID-19 in the emergency department (ED). Training data included 1,469 adult patients 

241 who tested positive for Severe Acute Respiratory Syndrome (SARS) within 14 days of acute care. The 

242 algorithm performed well with an AUROC of 0.85.[47] A LogR based ML-enabled CDS can be 

243 developed, validated, and implemented with high performance across multiple hospitals while being 

244 equitable and maintaining performance in real-time validation. 

245 Deep learning

246 Deep Neural Networks. DNN is a multilayer neural network with an input layer, hidden layers, and an 

247 output layer. DNN learns weights so the output from the network correctly classifies the example. The 

248 back propagation algorithm is a standard approach to train DNNs.[22] A compartmental model enhanced 

249 with deep learning methodology predicted the dynamics of the COVID-19 epidemic in the U.S. using 

250 the JHU CSSE data repository.[48] The model predicted the number of active cases between 3.2-3.3 

251 million on August 16-18, 2020. The actual number of infected cases on August 16-18, 2020, was about 

252 2.5 million (CDC data), so the model was not accurate. DNN methods were designed, to predict the 

253 dynamics of the COVID-19 pandemic outbreak on JHU CSSE data and Korea Centers for Disease 

254 Control and Prevention data.[49] Predictions of different aspects of COVID-19 epidemic are popular, 

255 but considering the current state of the pandemic, it is difficult to confirm that these models work 

256 accurately in reality. A DNN was designed for prediction of behavior of engineered RNA elements 

257 capable of detecting small molecules, proteins, and nucleic acids.[50] This work shows that DNN 

258 approaches could be used for predictions in RNA synthetic biology, but more data are needed for the 

259 training of DNNs, as well as improvement of DNN architectures. A DNN performed an automatic 

260 diagnosis of the 12-lead ECG recordings and outperformed cardiology residents in recognizing six types 

261 of abnormalities, with F1 scores above 80% and specificity over 99%.[51] Additional studies could test 

262 weather DNN effectively diagnose different ECG abnormalities, including myocardial infarction. DNN, 

263 RF, and a simple statistical test were used to predict COVID-19 infections from full blood counts only 
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264 (598 samples), without knowing the history of the patients (accuracy up to 91%).[52] It appears that 

265 these DNN models are more of a theoretical work at this stage of development, without evident clinical 

266 implementation. A deep ML model was developed for automatic detection of brain metastases that uses 

267 contrast-enhanced and non-enhanced CT images as inputs. The dataset contained CT scans of 116 

268 patients with brain metastases (total of 659 metastases). Single-shot detector (SSD) ML models were 

269 constructed with a feature fusion module. The sensitivity was 88.7% for the model that used both 

270 contrast-enhanced and non-enhanced CT images (the CE + NECT model) and 87.6% for the model that 

271 used only contrast-enhanced CT images (the CECT model).[53] The model is a contribution to imaging-

272 based diagnostics, and it needs further testing on larger datasets to improve generalization. Another study 

273 proposed a novel deep learning architecture involving combinations of CNN layers and RNN layers that 

274 can be used to perform segmentation and classification of five cardiac rhythms based on ECG recordings. 

275 The algorithm is developed in a sequence to sequence setting where the input is a sequence of five second 

276 ECG signal sliding windows and the output is a sequence of cardiac rhythm labels. Experimental result 

277 shows this approach can achieve an average F1 scores of 0.89.[54]

278 Convolutional Neural Networks use a special kind of linear mathematical operation called convolution. 

279 The hidden layers of a CNN typically consist of a series of convolutional layers.[22] CNNs showed great 

280 potential for melanoma subtypes and localization diagnosis on dermoscopic image datasets (780 images) 

281 and achieved AUROC ≈0.93.[55] Improvements in the accuracy of this model could be achieved by 

282 adding more training images of mucosal and subungual sites. Data-augmentation deep models 

283 (DADLM) that enhance the learnability of CNNs and Convolutional LSTM (ConvLSTM) deep learning 

284 models, improve the accuracy of COVID-19 detection.[56] The study used 50 images (X-ray and CT). 

285 This model needs more reliable data to confirm its performance. The fast-track COVID-19 classification 

286 network (FCONet) was developed to diagnose COVID-19 pneumonia in CT images (3,993) and 

287 differentiate it from non-COVID-19 pneumonia and non-pneumonia diseases with ≈99% accuracy.[57] 
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288 A CNN was also utilized to classify solid, lipid-poor, contrast enhancing renal masses using enhanced 

289 CT images (143 patients) with the accuracy ≈99%, and AUROC ≈0.82,[58] and for automated prediction 

290 of breast cancer risk on 92 histopathological images where the F1 score was 0.73.[59] These CNN 

291 models are examples of deep learning that rely on medical imaging. More research that uses EHR, or 

292 medical text data in addition to imaging could contribute to faster and cheaper diagnostics. Transfer 

293 learning is applied to train ResNet-50 and ResNet-101 deep learning models on augmented HAM10000 

294 datasets, which contained about 42,000 dermoscopy skin cancer images. Achieved accuracy was better 

295 when used augmented dataset compared to the original dataset and it was about 91.7%.[60] CNN mpdel 

296 has shown great success in decoding motor preparation of upper limbs from time-frequency maps of 

297 EEG signals.[61] A deep learning architecture was applied to early diagnosis of glaucoma (301 images, 

298 AUROC 0.92),[62] and for early diabetic retinopathy detection,[63] on retinal fundus images (40 images, 

299 AUROC 0.94). Further studies with larger datasets, adding post-processing methods, and improved 

300 optimized deep ML architectures could increase the accuracy of these models. An interpretable 

301 classification approach of ultrasound images for the risk assessment and stratification of patients with 

302 carotid atheromatous plaque was designed using CNNs and achieved AUROC of 0.73.[64] The 

303 integration of interpretability methods with deep learning strategies can facilitate the identification of 

304 ultrasound image biomarkers for the stratification of patients with carotid atheromatous plaque. A dataset 

305 of 1,900 chest X-ray images has been used with the proposed CNN based model: “C19D-Net” to detect 

306 COVID-19 with the accuracy of 96.24%.[65] The idea is to employ the constructed CNN ML model to 

307 help radiologists improve their accuracy of detection of COVID-19 from X-ray images.

308 Recurrent Neural Networks are a type of neural networks that allow analysis of temporal heterogenous 

309 medical data. LSTM or GRU units effectively model the irregular visiting patterns in the long, 

310 heterogenous sequence of events in EHR.[23] RNNs and the magnetic induction system were integrated 

311 to detect a wide range of human motions.[66] The benefit of LSTM RNN for sequence classification is 
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312 the ability to support multiple parallel temporal input data from different sensor modalities.[66] LSTM 

313 and GRU RNN models were developed to predict complications of DM2 (two million patients with DM2 

314 diagnosis), with the prediction accuracy up to 84%. They outperformed traditional ML models in 

315 prediction accuracy of 10 selected complications of DM2.[67] An RNN approach was used for predicting 

316 hemoglobin levels in patients with end-stage renal disease (7,739 patients) and produced mean absolute 

317 error (MAE) of 0.54.[68] Further research is needed to incorporate the dialysis and laboratory 

318 information. RNNs were designed for monitoring of depth of anesthesia based on features of EEG signals 

319 (20 patients).[69] LSTM RNN models predicted AD from conditions, measurement, and drugs domain 

320 on about 2,600 patients. A successful application of the drugs domain in prediction of AD was presented 

321 (area under the precision recall curve (AUPRC) 0.99).[70] Additional research with the drugs domain is 

322 required to develop comprehensive clinically applicable ML solutions. Another study utilized arterial 

323 waveforms recorded on 18,813 patients during noncardiac surgery to predict short-term intraoperative 

324 hypotension. A weighted average hybrid of deep learning CNN and RNN models performed the best 

325 (AUPRC 0.716).[71] Intraoperative hypotension has an adverse impact on postoperative outcomes and 

326 accurate prediction could improve survival. Acute kidney injury (AKI) is associated with poor patient 

327 outcomes and increased health care costs. Two RNN algorithms were created using a dataset of more 

328 than 72,000 patients.[72] Model 1 predicted the occurrence of AKI within 7 days with AUROC of 0.84 

329 and model 2 predicted the future trajectory of creatinine values up to 72 hours with AUROC of 0.9. 

330 Further development of the suggested approaches could incorporate the model into CDS systems for 

331 prediction of in-hospital AKI.[72] Researchers leveraged a big dataset (48,151 patients) to build an RNN 

332 to predict the risk of developing hepatocellular carcinoma (HCC). RNN models achieved AUROC of 

333 0.759.[73] Deep learning RNN models outperformed traditional models, suggesting that RNN models 

334 could be used to identify high risk of developing HCC. The performance of the presented RNN models 
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335 could be improved by training them on better quality hospital datasets and further optimization of deep 

336 learning models. We summarized the reviewed ML models in Table 2. 

337
338

ML Method Author and year Topic

DT Soguero-Ruiz C, et al 2020 Diabetes Mellitus, Hypertension        24
DT, SVM Joloudari JH, et al  2020 Coronary artery disease                      25
DT De Felice F, et al  2020 Rectal cancer 26
RF Chavan S, et al 2020 Liver toxicity 27
RF Tracy BM, et al  2020 Hernia repair 28
RF Mar J, et al 2020 Dementia, Neuropsychiatric symptoms 29
RF, AdaBoost Iwendi C, et al   2020 COVID-19 30
Ensemble bagging Munteanu CR, et al  2021 Glioblastoma, drugs 31
Ensemble, bagging Nikolaidis A, et al  2020 Functional parcellation of the human brain 32
Ensemble, AdaBoost Li S, et al  2020 Colorectal cancer 33
MLP Car Z, et al  2020 COVID-19 34
MLP Leithner D, et al  2020 Breast cancer 35
Bayesian, SVM Kang M, et al  2021 Electrocardiogram signals, Mental stress 36
Bayesian Tewari P, et al  2021 Oropharyngeal cancer 37
SVM, DNN Varghese J, et al 2020 Movement Disorders 38
SVM Satoh Y, et al  2020 Breast cancer 39
SVM Lown M, et al   2020 Atrial fibrillation 40
K-NN, Boosting, SVM, 
DT

Angelis I, et al  2021 Hepatocellular cancer 41

K-NN, SVM Jagadev P, et al  2020 Respiration rate (breathing) 42
LR Verma V, et al 2020 COVID-19 43
LR, Multiple regression Ghosal S, et al  2020 COVID-19 44
LogR Ma X, et al   2020 COVID-19 45
LogR Tabaie A,, et al 2020 Aneurysmal Subarachnoid Hemorrhage 46
LogR Lupei MI, et al  2022 COVID-19 47
DNN Deng Q  2020 COVID-19 48
DNN Jung SY. Et al 2020 COVID-19 49
DNN Angenent-Mari NM, et al  

2020
Genetics 50

DNN Ribeiro AH, et al  2020 ECG diagnosis, Heart diseases 51
DNN, RF Banerjee A, et al  2020 COVID-19 52
DNN Takao H, et al 2021 Brain metastases 53
DNN, CNN, RNN Pokaprakarn T, et al 2021 ECG Cardiac Rhythm 54
CNN Winkler JK, et al  2020 Melanoma 55
CNN, DNN, LSTM Sedik A, et al   2020 COVID-19 56
CNN, DNN Ko H, et al   2020 Chest CT Image, Pneumonia 57
CNN, DNN Oberai A, et al   2020 Renal tumor, CT scan 58
CNN, DNN Wetstein SC, et al   2020 Breast tumors 59
CNN Arshad M, et al   2021 Skin cancer 60
CNN Mammone N,  et al  2020 EEG signals, Motor upper limb 61
CNN Muramatsu C.   2020 Glaucoma, Retinal fundus images 62
CNN, DNN Hatanaka Y.   2020 Retinopathy 63
CNN Ganitidis T, et al 2021 Carotid artery stenosis, Ultrasound 64
CNN Kaur P, et al 2021 COVID-19 65
RNN Golestani N, et al  2020 Human activity recognition 66
RNN, RF, MLP Ljubic B, et al   2020 Diabetes mellitus, complications 67
RNN Lobo B, End-Stage Renal Disease, Hemoglobin 68
RNN Li R, et al.  2020 Monitoring Depth of Anesthesia 69
RNN LSTM Ljubic B, et al  2020 Alzheimer’s disease 70
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RNN Choe S, et al 2021 Hypotension (intraoperative) 71
RNN Kim K, et al 2021 Acute Kidney Injury 72
RNN Ioannou GN, et al 2020 Hepatocellular cancer 73

339

340 Table 2. Reviewed articles, classified by ML model types. First authors, publication year, and medical 

341 topics described in the publications.

342

343
344 The number of articles by types of medical conditions and topics is presented in Table 3. 
345

Types of diseases by systems or therapy Number of reviewed articles

Neoplasms (Oncology) 13
Nervous System and Sense Organs 12
COVID-19 11
Circulatory System 10
Endocrine, Nutritional and Metabolic 2
Respiratory System 2
Genitourinary System 2
Mental Disorders 2
Digestive System 1
Surgical procedures 1
Genomics, proteomics 1
New drugs, drug therapy 1

346
347 Table 3. The number of analyzed articles by types of medical conditions.

348

349 DISCUSSION

350 This review shows that most ML models in medicine represent great software solutions with high 

351 prediction accuracy, but only handful of models could find an implementation in medical practice. 

352 Neurological conditions are among the most common medical system subject to ML model 

353 applications.[29,31,32,38,46,53,61-63,66,69,70] The most frequent type of data used in these 

354 applications were imaging data. Images consist of spatially coherent pixels in a local region, meaning 

355 that pixels close to each other share similar information. Deep learning architectures (especially CNN) 

356 produce higher accuracy predictions from image inputs than from EHR type of datasets, which are often 

357 heterogeneous. Another medical discipline extensively used in ML analysis is oncology. Accurate 
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358 predicting the development of cancers or complications of cancers could indicate earlier diagnosis and 

359 therapeutic approaches that would improve outcomes. [26,31,33,35,37,39,41,53,55,58-60,73] The 

360 majority of these ML applications use imaging data (most often histologic type) for classification of 

361 malignant versus benign tumors. Cardiovascular conditions and DM are among the most common 

362 medical conditions used in predictive analysis. [24,25,36,40,46,51,54,64,67,71] The challenges with 

363 these types of predictions are often related to limitations of data availability. Insurance claims data was 

364 frequently used but often lacks important clinical information such as laboratory results and 

365 medications.[67,70] 

366 Many traditional and deep ML models were utilized with the goal of helping to detect COVID-19 

367 infections, complications, or outcomes as one of the most frequent research topic in the last two years. 

368 [30,34,43-45,47-49,51,52,56,65] 

369 The performance of predictive ML models in medicine depends on multiple factors. For challenging 

370 prediction problems, the understanding of disease is likely to lead to more accurate prediction. Physicians 

371 must be better motivated to use ML developments, which is not always easy to achieve since they 

372 perceive this activity as something that decreases their time with patients.[1] Since many physicians use 

373 computers daily, better presented benefits of ML prediction models could increase their adoption in 

374 medicine. Evidence-based medicine requires statistical analysis of medical data and ML is a form of that 

375 analysis. Some form of ML should become a part of statistics teaching in medical school to prepare 

376 future physicians for meaningful adoption of medical ML models. To make ML more meaningful in 

377 clinical practice, we should focus on tasks that physicians need help with and where results of ML could 

378 help physicians to improve their decisions. The computers that physicians use for EHR could also be 

379 used for ML models. Additionally, ML is relatively inexpensive compared to basic science and large-

380 scale clinical research.
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381 Traditional ML methods do not always achieve accuracy that would convince medical doctors of the 

382 benefits of the proposed predictive models.[24-47] A prediction accuracy of 70-90% is generally a good 

383 result in terms of performances of ML models but may not be high enough to suggest clinically 

384 meaningful improvements in practice. Traditional models have the advantage of simplicity and 

385 interpretability but suffer from somewhat worse accuracy.[38,52,67] 

386 The most successful and meaningful application of deep learning ML models was achieved in the 

387 imaging field.[53,55-65] Analyses of CT scans, X-rays, Doppler ultrasound, histo-pathological images 

388 obtained high accuracy results, which often outperform medical experts. RNN models capture the 

389 temporal nature of EHR, imaging and other medical data to predict diseases, complications, and 

390 outcomes.[66-73] Deep learning models produce higher accuracy but suffer from issues of 

391 interpretability and instability.[15,75] Combinations of traditional and deep learning models could 

392 address challenges of interpretability and accuracy.[38,52,67] Many datasets are small and do not have 

393 enough samples for implementation of deep learning models. In those cases, traditional ML models are 

394 the only option. 

395 To build effective ML models, we must understand how to select relevant features to train ML models. 

396 Computational methods that use optimization function to automatically select useful features have been 

397 developed.[76,77] In addition to automatically selected features, we often use medical domain 

398 knowledge to identify useful features that could help in improvement of predictions.[67,70] If analyses 

399 point toward certain features as the most important for obtaining the model performance, the next 

400 challenge is how to quantify the relevance of those features. 

401 An important dilemma is the selection of the most optimal ML models for a specific task. We need to 

402 consider which specific medical problem we want to solve. We must also determine how much and what 

403 type of data are available, how much data are missing, and whether temporal information is included. 

404 Implementation of ML in prediction of medical conditions using EHRs and other non-imaging data as 
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405 cheaper source of data could achieve meaningful results at lower cost. We would need to weigh positive 

406 and negative factors in each of the options before we select the most optimal model for the given task. 

407 Predictive ML models could potentially help to build CDS systems to make better medical decisions. 

408 These models can provide recommendations to select suitable patients for clinical trials.[70] Domain 

409 knowledge and collaborations between physicians and ML experts can improve the prediction 

410 performance of ML models in medicine and facilitate implementation in clinical practice. Prediction ML 

411 models could help clinicians to select the most effective diagnostic and therapeutic choices available. 

412 Successful ML models can make medicine more efficient, improve outcomes, and decrease medical 

413 errors. We predict that ML models will continue to develop, and they will be applied more broadly in 

414 clinical practice. 
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