
 

1 
 

Title: Persistence of SARS-CoV-2 immunity, Omicron’s footprints, and 

projections of epidemic resurgences in South African population cohorts. 

  

Authors: Kaiyuan Sun1*, Stefano Tempia2,3,4, Jackie Kleynhans2,3, Anne von Gottberg2,5, 
Meredith L McMorrow4, Nicole Wolter2,5, Jinal N. Bhiman2,5, Jocelyn Moyes2,3, Mignon du 5 
Plessis2,5, Maimuna Carrim2,5, Amelia Buys2, Neil A Martinson6,7, Kathleen Kahn8, Stephen 
Tollman8, Limakatso Lebina6, Floidy Wafawanaka8, Jacques D. du Toit8, Francesc Xavier 
Gómez-Olivé8, Thulisa Mkhencele2, Cécile Viboud1†, Cheryl Cohen2,3†*, for the PHIRST group 

Affiliations: 

1Division of International Epidemiology and Population Studies, Fogarty International Center, 10 
National Institutes of Health, Bethesda, Maryland, United States of America. 
2Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases 
of the National Health Laboratory Service, Johannesburg, South Africa. 
3School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, 
Johannesburg, South Africa. 15 

4Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States 
of America. 
5School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, 
Johannesburg, South Africa. 
6Perinatal HIV Research Unit, University of the Witwatersrand, South Africa. 20 

7Johns Hopkins University Center for TB Research, Baltimore, Maryland, United States of 
America. 
8MRC/Wits Rural Public Health and Health Transitions Research Unit (Agincourt), School of 
Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South 
Africa. 25 

 

*Corresponding author. Email: kaiyuan.sun@nih.gov (KS); cherylc@nicd.ac.za (CC) 

† These are co-senior authors of this work. 

Abstract: Understanding the build-up of immunity with successive SARS-CoV-2 variants and the 

epidemiological conditions that favor rapidly expanding epidemics will facilitate future pandemic 30 

control. High-resolution infection and serology data from longitudinal household cohorts in South 

Africa reveal high cumulative infection rates and durable cross-protective immunity conferred by 

prior infection in the pre-Omicron era. Building on the cohort’s history of past exposures to 

different SARS-CoV-2 variants and vaccination, we use mathematical models to explore the 
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fitness advantage of the Omicron variant and its epidemic trajectory. Modelling suggests the 

Omicron wave infected a large fraction of the population, leaving a complex landscape of 

population immunity primed and boosted with antigenically distinct variants. Future SARS-CoV-

2 resurgences are likely under a range of scenarios of viral characteristics, population contacts, 

and residual cross-protection.  5 

One Sentence Summary: Closely monitored population in South Africa reveal high cumulative 

infection rates and durable protection by prior infection against pre-Omicron variants. Modelling 

indicates that a large fraction of the population has been infected with Omicron; yet epidemic 

resurgences are plausible under a wide range of epidemiologic scenarios. 

 10 

Main Text: A key questions for the long-term control of SARS-CoV-2 is how sequential 

exposures to different variants of the virus shape population immunity and thereby modulate 

subsequent epidemic cycles and disease burden. Few studies have characterized the protection 

conferred by infection over long time periods, particularly in low and middle-income settings 

where vaccine access is limited and high SARS-CoV-2 infection rates have been reported (1–4). 15 

Here we used unique data from two prospectively followed cohorts in South Africa to estimate the 

strength of cross-protective immunity conferred by infection with successive SARS-CoV-2 

variants. We relied on the cohort data to reconstruct the landscape of population immunity prior 

to the emergence of the Omicron variant, and modeled the trajectory, scale and long-term 

consequences of the Omicron epidemic in this population.   20 

    South Africa experienced three distinct SARS-CoV-2 epidemic waves prior to the emergence 

of the Omicron variant, with the first wave (June 2020 – December 2020) dominated by the 

ancestral SARS-CoV-2 strain carrying the D614G mutation (refer to as D614G hereafter) (5), the 

second wave (December 2020 – May 2021) dominated by the Beta (B.1.351) variant (6), and the 

third wave (May 2021 – October 2021) dominated by the Delta (B.1.617.2) variant (7). In South 25 

Africa, the Omicron variant was first identified in the province of Gauteng Province in November 

2021, and swiftly spread nationally and globally, causing rapid growth in case counts relative to 

prior waves (7, 8). Similar patterns of rapid growth despite high levels of pre-existing immunity 

from infection and vaccination have also been reported in numerous countries across the world, 
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with Omicron replacing Delta in multiple global locations, even when prevalence of Delta was 

high (9, 10).  

    The apparent fitness advantage of the Omicron variant over Delta could be driven by immune 

evasion, increased intrinsic transmissibility, or a combination of both. The immune evasion 

hypothesis is supported by an increased reinfection risk coinciding with the rise of the Omicron 5 

variant (7, 8, 11, 12). Further support for this hypothesis comes from in vitro analyses of sera from 

convalescent patients (infected with pre-Omicron variants) and vaccinated individuals, which 

show reduced neutralization titers against Omicron compared to earlier variants (13–16). 

Similarly, data from multiple settings have shown decreased vaccine effectiveness against 

Omicron (17, 18). Separately, epidemiological and experimental data point to a reduced clinical 10 

severity of Omicron (17, 19), possibly due to increased tropism for the upper respiratory tract 

rather than the lung, which could also promote higher transmission relative to pre-Omicron 

variants. As the Omicron wave subsides, the relative contribution of these factors to Omicron’s 

spread remains elusive, in part due to uncertainty in the level of population immunity before the 

rise of Omicron. Further, Omicron’s rapid spread poses immense pressure on SARS-CoV-2 testing 15 

capabilities, and its relatively benign course in most people make it difficult to assess the full scope 

of the epidemic.  

    To understand the long-term dynamics of SARS-CoV-2, we leveraged data from two 

longitudinal household cohorts followed over a 13-month period, from July 2020 to August 2021 

in rural and urban areas of South Africa (Prospective Household study of SARS-CoV-2, Influenza 20 

and Respiratory Syncytial virus community burden, Transmission dynamics and viral interaction 

in South Africa, PHIRST-C, where “C” stands for COVID-19, previously described in (4)). We 

relied on the results of densely sampled respiratory and serologic specimens testing from 222 

households to model the kinetics of viral shedding, transmission dynamics among household 

members, and cross-protection between successive variants circulating prior to the emergence of 25 

Omicron. We used population-level models calibrated against data from these prospective cohorts 

and surveillance efforts to clarify long-term patterns of immunity acquisition, the impact of 
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immune evasion, and future epidemic trajectories for SARS-CoV-2 in the aftermath of the 

Omicron wave. 

Overview of SARS-CoV-2 epidemiology in study sites. 

The PHIRST-C cohort captured the dynamics of three waves of SARS-CoV-2 infections in rural 

and urban site located in two provinces of South Africa (see methods for details). In total, 1,200 5 

individuals living in 222 randomly selected households were enrolled and followed up twice a 

week for SARS-CoV-2 real-time reverse transcription polymerase chain reaction (rRT-PCR) 

testing and symptom monitoring, while blood draws were obtained every 2 months for SARS-

CoV-2 serologic tests. Throughout the study, we used a broad measurement of prior and ongoing 

infections including both serologic and virologic evidence, irrespective of symptoms. In Figure 10 

1A-B, we show the weekly SARS-CoV-2 epidemic curves in the district where each study site was 

located (20). Population vaccination started in June 2021 in South Africa and the fraction of the 

cohort population fully vaccinated remained below 10% at the conclusion of the study in 

September 2021 (Figure 1A-B). Both Pfizer/BioNTech’s BNT162b2 and J&J/Janssen’s 

Ad26.COV2.S vaccines are used in South Africa (Figure S1). We did not evaluate vaccine 15 

effectiveness in this study and focused on protection conferred by prior SARS-CoV-2 infection. 

However, we consider the impact of vaccination in projections of the Omicron wave and post-

Omicron future. 

    In the rural site, baseline enrollment visits started prior to the peak of the first epidemic wave. 

The seroprevalence of anti-SARS-CoV-2 nucleocapsid antibodies was 1.1% (5/445) at enrollment, 20 

increased to 7.3% (42/574) after the first wave (third blood draw), 25.4% (151/595) after the 

second wave (fifth blood draw), and reached 39.1% (227/581) around the peak of the third wave 

(seventh blood draw).  The timing and individual results of the serological assay are visualized in 

Figure 1A.  During the study period (July 2020 to August 2021), 50.9% (327/643) of individuals 

tested positive by rRT-PCR for at least one infection episode. The cumulative infection rate 25 

(confirmed by either a rRT-PCR or a serological test) was 59.7% (384/643) by the end of the study 

in the rural cohort. In contrast, in the urban site, enrollment started near the time of the peak of the 

first wave and SARS-CoV-2 seroprevalence was higher at enrollment (14.3%, 73/511), increased 

to 27.0% (143/530) after the first wave, 40.3% (207/514) after the second wave, and reached 55.7% 

(279/501) around the peak of the third wave (see Figure 1B for bi-monthly results).  During the 30 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 26, 2022. ; https://doi.org/10.1101/2022.02.11.22270854doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.11.22270854
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

5 
 

study period, 53.1% (296/557) of participants tested positive by rRT-PCR for at least one infection 

episode. The cumulative infection rate (confirmed by either a rRT-PCR or a serological test) was 

69.4% (387/557) in the urban cohort by the end of the study. 

     In total across both sites, we observed 669 rRT-PCR-confirmed infection episodes, including 

599/669 (89.5%) primary infections and 70/669 (9.5%) reinfections. The weekly incidence of 5 

SARS-CoV-2 infections within each cohort (Figure S2) matches the epidemic trajectory at the 

district level (Figure 1A-B), except for a less pronounced third wave in the urban cohort compared 

to that of the district.  The Lineage-specific rRT-PCR and sequencing data revealed that 14.3% 

(96/669) of infections were D614G, 33.2% (222/669) were Beta, 44.1% (295/669) were Delta, 

2.7% (18/669) were other lineages including Alpha and C.1.2 variants, and 5.7% (38/669) were 10 

inconclusive. Figure 1E-F shows the relative prevalence of different lineages over time for the 

rural and urban site, respectively (details in Materials and Methods Section 3.2). 

Kinetics of viral RNA shedding. 

To study the risk of infection and re-infection in the cohort, and better understand acquisition 

of immunity before the rise of Omicron, we first built a time-varying model that captured the 15 

dynamics of viral RNA shedding for each individual in the cohort, adjusted for host characteristics 

and variant types. Household exposure depends on the level of viral shedding among household 

members; to obtain a correlate of shedding intensity, we used the serial Ct values of nasal swab 

specimens collected twice-weekly and tested for SARS-CoV-2 using rRT-PCR. We considered Ct 

value of the rRT-PCR test of a specimen as a proxy for the RNA shedding intensity. We used the 20 

serial rRT-PCR test results to model the shedding kinetics of SARS-CoV-2 infection episodes, 

following prior work (21, 22). To account for the potential role of adaptive immunity in limiting 

transmission in the later phases of infection, we allowed for different transmission risks during the 

viral RNA proliferation stage (before peak shedding) and the viral RNA clearance stage (after peak 

shedding), with shedding increases and decreases assumed to following linear curves on the scale 25 

of Ct values. Because the nasal swab sampling period ended on August 28, 2021, around the peak 
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of the Delta wave in both sites, we limit our analysis to infection episodes with first positive PCR 

specimen 30 days prior to the end of sampling to avoid censoring bias.  

Figure 2 A-C shows the RNA shedding kinetics of the D614G, Beta, and Delta variants 

respectively. All three variants had similar shedding kinetics characterized by a short proliferation 

stage (Figure 2E, median and interquartile range (IQR) for D614G: 3.2 (2.1 – 4.0) days, Beta: 3.3 5 

(2.2 – 4.3) days, Delta: 3.1 (2.0 – 3.8) days) and a longer clearance stage (Figure 2F, median and 

IQR for D614G: 7.4 (4.3 – 10.2) days, Beta: 7.5 (5.0 – 9.3) days, Delta: 8.0 (5.7 – 9.5) days). The 

symptomatic rates among infection episodes were low across all variants, at 13% for D614G, 16% 

for Beta, and 18% for Delta (Figure 2A-C). The timing of symptom onset coincided with the timing 

of peak viral shedding (Figure 2A-C), suggesting significant shedding had already occurred prior 10 

to symptom presentation. After adjusting for age, sex, body mass index (BMI), and HIV infection 

status, symptomatic infections had significantly lower trough Ct value (peak shedding intensity) 

than asymptomatic infections (Figure 3A).  Beta variant’s trough Ct value was lower than D614G, 

while Delta’s was the lowest among the three (Figure 3A). We also found that prior infection 

significantly reduced peak shedding by 4.0 Ct (95% CI 2.3 – 5.7) and shedding duration by 3.3 15 

days (95% CI 1.9 – 4.7) upon reinfection (Figure 3A-B). 

The population of the PHIRST-C cohort had a high prevalence of HIV, 13% in the rural site and 

16% in the urban site, reflecting the burden of HIV infections in South Africa (Table 1). However, 

in this cohort, most (93.8%) persons living with HIV (PLWH) had CD4+ T cell counts ≥ 200 

cells/ml (Table 1), and they did not differ from HIV-uninfected individuals in terms of SARS-20 

CoV-2 shedding (Figure 3A-B). We found that individuals with low CD4+ T cell counts (< 200 

cells/ml) tended to shed for longer and with lower trough Ct when compared to HIV-uninfected 

individuals but there was limited statistical power to detect these differences (Figure 3A-B). 

Infection risk and protection against reinfection. 

Reconstruction of the variant-specific shedding kinetics of each infected individual allowed us 25 

not only to infer the timing of their infections, but also to evaluate the daily intensity of exposure 

to SARS-CoV-2 within their households. We used a piecewise exponential hazard model (detailed 

in Materials and Methods Section 3.5) to explore how variant type and prior infection history affect 

the risk of SARS-CoV-2 infection and reinfection, after adjustment for time-varying SARS-CoV-
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2 exposure and host factors. We regressed the daily infection risk of each individual on covariates 

including variant type, time since prior SARS-CoV-2 infection, age (allowing for variant-specific 

age patterns), sex, BMI, HIV infection status, household size, crowding, study site, household 

exposures to SARS-CoV-2, and community SARS-CoV-2 infection prevalence within the cohort. 

The household exposure intensity is measured as the combined shedding intensity of all actively 5 

infected household members (detailed definition in Material and Method Section 3.5). We found 

that the hazard of acquiring infection increased with household exposure intensity, with a stronger 

effect in the proliferation than the clearance phase (Figure 3C). One-unit increase in the household 

exposure intensity during the proliferation stage led to a 103% (95% CI 76% – 136%) increase in 

the hazard of infection whereas one unit increase in the clearance stage led to 58% (95% CI 41% 10 

– 77%) increase in the hazard of infection. Compared to D614G, we found that infectiousness was 

highest for the Delta variant, followed by the Beta variant, after adjusting for household and 

community exposure intensity, among other risk factors (hazard ratio against D614G:  Delta 1.96, 

95% CI 1.27 – 3.05, Beta 1.51, 95% CI 1.03 – 2.21). The difference between Delta and Beta’s 

infectiousness was not statistically different, with overlapping confidence intervals in their hazard 15 

ratios. We found that prior infection provided durable protection against reinfection throughout 

the study period. Compared to seronegative individuals, prior infection was 92% (95% CI 84 – 

96%) protective against reinfection for the first 3 months and decreased marginally to 87% (95% 

CI 78 – 92%) after 9 months (Figure 3C). Individuals older than 65 years were significantly less 

affected during the D614G wave while children and adolescents aged 6 – 18 years were 20 

significantly more affected during the Delta wave (Figure 3C). In addition, higher BMI and 

residing in an urban setting were independently associated with increased risk of SARS-CoV-2 

infection. We found that individuals with low CD4 cell counts (< 200) tended to be more 

susceptible to acquisition of SARS-CoV-2 when compared to HIV-uninfected individuals, but 

there was limited statistical power to detect this difference (Figure 3C). Finally, we did not find 25 

significant associations between SARS-CoV-2 infection risk and sex, household size or crowding 

(Figure 3C) 

Projecting the Omicron Wave and post-Omicron futures in PHIRST-C’s urban site. 

The study cohorts provide estimates of the duration and degree of cross-protective immunity 

between SARS-CoV-2 variants predating Omicron, with evidence of persistence of clinical 30 
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protection beyond a year for these variants. Building on these estimates, we used mathematical 

models to explore a range of plausible scenarios compatible with the observed transmission 

dynamics of the Omicron epidemic wave in South Africa and project post-Omicron futures. 

Specifically, we explore how Omicron’s potential differences (relative to Delta) in infectivity, 

immune evasion, and severity could shape the scale and severity of the Omicron epidemic wave 5 

and the likelihood of recurrences of SARS-CoV-2 outbreaks post-Omicron. We focused the 

analysis on the study’s urban cohort, which is sampled from the city of Klerksdorp in Dr Kenneth 

Kaunda Health District located on a national transport route, and the population is well-mixed with 

the district population. 

    Details of the transmission model and calibration procedure can be found in Materials and 10 

Methods Section 4. To briefly summarize, we utilized PHIRST-C’s urban site data and district 

level SARS-CoV-2 surveillance information to reconstruct SARS-CoV-2’s antigen exposure(s) 

history in this population, considering infections and/or vaccinations through time. We then built 

a variant-specific transmission model to capture the declining phase of the Delta wave after the 

end of the PHIRST-C study and infer the population-level transmission rate during that time. Next, 15 

we added a second strain to our model to account for Omicron’s dynamics, with free parameters 

representing the relative infectiousness of Omicron vs Delta !!"#$%&'(/!!)*+,-, Omicron’s degree 

of immune evasion against infection among individuals infected by prior variants #"#$ , and 

Omicron’s degree of immune evasion against transmission given reinfection #"#,|$  (with higher 

values of #"#$ $#"#,|$ %  indicating higher degrees of immune evasion, where #"#$ $#"#,|$ % = 0 20 

corresponds to no evasion while #"#$ $#"#,|$ % = 1 indicates 100% evasion, detailed in Materials and 

Methods Section 4). We explored the parameter space and initial conditions of Omicron’s 

introduction and selected epidemic trajectories that were compatible with the observed growth 

advantage of Omicron over Delta and the peak timing of the Omicron wave – the two most reliable 

epidemiologic observations during the Omicron epidemic. We then evaluated Omicron’s possible 25 

epidemic trajectories for the remaining parameters conditional on the observed growth rate and 

peak timing. Lastly, we selected a reference scenario (RS) that was most compatible with 
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independent evidence on the degree of Omicron’s immune evasion and projected the likelihood of 

resurgence by different variants.  

Assuming that the Delta variant was in an exponentially declining phase after week 35 of 2021 

and that the Omicron variant was growing exponentially until week 48 of 2021 in the study urban 

district (20), we estimated that the daily growth rate was -0.063 for Delta and 0.275 for Omicron, 5 

which translates into a growth advantage of 0.338 per day for Omicron over Delta (Figure S7). 

The transmission models of Delta and Omicron were calibrated to match their observed growth 

rates during this period, respectively. In Figure 4A, we show the trade-off between the estimated 

ratio of basic reproduction numbers between Omicron and Delta !!"#$%&'(/!!)*+,- and different 

degrees of evasion of protection against infection #"#$  and transmission #"#,|$ . We assumed  mean 10 

intrinsic generation times of 5 and 4 days for Delta and  Omicron (23). We found that across the 

full range of immune evasion parameters, Omicron had a higher basic reproduction number than 

Delta. However, there was clear compensation between immune evasion and intrinsic 

transmissibility: a higher degree of immune evasion would require a lower basic reproduction 

number for the Omicron variant to match the observed epidemic trajectory. We also found that for 15 

all parameters explored, the Omicron epidemic led to higher infection rates than prior epidemic 

waves, with the most optimistic scenario resulting in an infection rate above 40%. We project 

Omicron’s infection rate positively correlated with its immune evasive property (Figure 4B). 

Omicron infections were expected to accumulate within a relatively short period of time, with 

epidemic duration (measured as 4 times the standard deviation of the onset dates of all infections 20 

within the epidemic wave) projected to range from 31 – 37 days depending on the parameters. 

Notably, our model projected that a large fraction of Omicron infections (>40%) would be 

reinfections or vaccine breakthrough infections, with higher proportions observed for higher 

immune evasion parameters (Figure 4D). Furthermore, a low rate of clinical cases was projected 

for Omicron, after controlling for the number of infections due to this variant. The projected 25 

infection case ratio (ICR) for Omicron ranged from 0.4% to 0.9% (Figure 4E), much lower than 

the ICRs of 3.6%, 3.3%, and 9.4% estimated for the D614G, Beta, and Delta waves (Table S2). In 
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sensitivity analyses (Figure S9), we further explored the impact of Omicron mean generation times 

ranging from 3-6 days (24). 

To estimate the immune footprint of the Omicron wave and project a post-Omicron future, we 

considered a reference scenario (RS) for Omicron’s immune evasion characteristics, guided by 

independent data. We set #"#$ = 0.7 and #"#,|$ = 0.2,	corresponding to a drop in protection against 5 

infection from 88% for pre-Omicron variants (Fig. 2J) to 47% for Omicron (17, 25), and a drop in 

protection against transmission from 60% (26) to 52%, reflecting weak immune evasion on onward 

transmission (18).  Under this scenario, the estimated !!"#$%&'(/!!)*+,- was 2.4, the infection rate 

was 69%, the epidemic lasted 32 days, and the fraction of reinfections and vaccine breakthroughs 

was 68% (Figure 4A-D, white dot). In Figure 4F, we visualize the observed incidence of reported 10 

SARS-CoV-2 cases in all four epidemic waves in the study district and report the reconstructed 

infection time series and population level history of SARS-CoV-2 antigen exposures. We found 

variable levels of under-reporting depending on the SARS-Cov-2 variant, with ICR of 3.6% (95% 

CI 3.4 – 3.8%) for D614G, 3.3% (95%CI 3.0 – 3.6%) for Beta, 9.4% (95%CI 8.7 – 10.2%) for 

Delta (Table S2), and 0.5% for Omicron’s reference scenario projection (Figure 4E). Findings for 15 

the D614G and Beta wave in agreement with previous findings (27). For the reference scenario, 

more than 90% of the population was projected to have been infected with one or more SARS-

CoV-2 variants by the end of the Omicron wave (Figure 4F). In particular, we estimated that 22.5% 

of the population would have seen Omicron as their first SARS-CoV-2 exposure, 16.8% would 

have been exposed to a pre-Omicron variant and this would remain their only SARS-CoV-2 20 

exposure, and 45.7% would have experienced Omicron reinfections or vaccine breakthrough 

infections. In a sensitivity analysis, we further explored a high immune escape scenario where 

#"#$ = 0.9 and #"#,|$ = 0.9 and a low immune escape scenario where #"#$ = 0.1 and #"#,|$ = 0.1. 

The epidemic trajectory and build-up of population immunity for the low and high immune escape 

scenarios are reported in Figure S5A and S5B respectively. 25 

Because the Omicron variant is antigenically distinct from all previously circulating variants in 

South Africa (14, 15, 28), the level of immunity conferred by Omicron’s primary and breakthrough 

infections/reinfections against itself, other circulating variants, and new variants, are key 

determinants for the likelihood of SARS-CoV-2 resurgence (29, 30). To study the post-Omicron 

phase, we explored how different exposure histories could confer different levels of protection 30 
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against infection with homologous and heterologous variants. Accordingly, in our model, the level 

of protection varied both with the variant that conferred immunity (either through infection or 

vaccine) and the hypothetical variant circulating in the post-Omicron future. Protection was 

expressed as a relative risk, compared to naïve individuals (where !!$ = 1	indicates no protection 

while !!$ = 0 indicates perfect protection). For simplicity, we assumed that protection against 5 

transmission remained constant at 60% (!!,|$ =0.4  (26)). We assessed the risk of future 

recurrences of different SARS-CoV-2 variants after the initial Omicron wave had subsided, 

assuming possible changes in contacts to account for erosion in adherence to SARS-CoV-2 

interventions over time (models detailed in Materials and Methods Section 6).  

Even at the contact rate estimated during the Delta wave, the level of population immunity 10 

would not be able to prevent a recuring Omicron epidemic unless past Omicron infection conferred 

high and durable protection against itself (Figure S10A). If contact rates increased 100% relative 

to current levels, a return of the Omicron variant would likely cause outbreaks irrespective of the 

protection afforded by prior Omicron infections (outbreak conditions defined as growth rate larger 

than zero, Figure S10B). A 100% increase in contacts may be plausible given estimated levels of 15 

transmission reduction in South Africa at the end of 2021, which reflect the combined effect of 

population behavior and seasonality (see Materials and Methods, Section 5.5 and Table S5). In 

contrast, if contact rates were to remain the same as those observed during the Delta wave, the 

Delta variant would be unlikely to return and cause new outbreaks, across all ranges of Omicron-

specific immunity assumptions against Delta (Figure S10C). With 100% higher contact rates, some 20 

scenarios favored a re-emergence of Delta if immunity induced by Omicron did not protect well 

against Delta (Figure S10D). We also explored scenarios involving a hypothetical new variant X 

with the same basic reproduction number and generation time as the Delta variant, and at equal 

antigenic distance from Omicron and pre-Omicron variants. Accordingly, the relative risk of 

reinfection with variant X was assumed to be the same irrespective of whether an individual was 25 

primed with pre-Omicron or Omicron antigens. With an increased contact rate compared to Delta 

(Figure S10D), we found more opportunities for variant X to cause recuring epidemic waves in 

the explored ranges of parameters, primarily by escaping immunity conferred by pre-Omicron 

variants (Figure S10E). Emerging variants with such antigenic features need to be closely 

monitored in the future. On the other hand, if heterologous prime and boost infections (accounting 30 

for 45.7% of the population, Figure 4F) were found to elicit broadly protective antibodies and 
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confer a high level of cross-protection against new variant X, only a small parameter space would 

be favorable to variant X epidemics (Figure S10E). Given that a large fraction of the world’s 

population has been primed by vaccination or infection with pre-Omicron antigens, it is important 

to understand how heterologous boosting by Omicron may broaden the immune repertoire, and 

how this could translate into clinical protection against antigenically novel variants.  5 

Discussion 

For a period of 13 months, the PHIRST-C study carefully monitored SARS-CoV-2 infections in 

222 households at a rural and an urban site in South Africa. These data provide a unique 

opportunity to characterize variant-specific shedding kinetics, transmission dynamics within the 

household, and the degree of immune protection conferred by prior infection before the Omicron 10 

surge. Longitudinal rRT-PCR data available for each infection episode at roughly 3-day resolution 

allowed for reconstruction of the intensity of SARS-CoV-2 exposures exerted on each household 

member based on Ct values. We found that individuals were more infectious in the RNA 

proliferation than clearance stage. Prior to the emergence of Omicron, substantial population 

immunity had accumulated through prior infection, with high and durable protection against 15 

symptomatic and asymptomatic reinfection, in line with prior findings (31, 32).  These detailed 

cohort data allowed us to project the full scope of the Omicron epidemic and assess possible futures. 

Overall, even with a high degree of immunity post the Omicron wave (with over 90% of the 

population previously exposed to SARS-CoV-2 antigens), recurrence of past or antigenically novel 

variants is plausible, especially if post-Omicron behavioral changes increase contacts.  20 

    The disease burden of future SARS-CoV-2 epidemic waves depends on the intrinsic severity of 

the variants themselves as well as the level of protection conferred by pre-existing immunity (33). 

Current evidence suggests that while Omicron is able to evade immunity against infection to a 

significant degree, protection against severe outcomes remains high (17, 34, 35). Our model’s 

projections also suggest a low clinical burden of Omicron, with a greater than 10-fold reduction in 25 

infection case ratio relative to prior waves (Figure 4E, Table S2). If existing immunity can sustain 

protection against severe outcomes over long timescales, the disease burden of future epidemic 

waves would be attenuated even if infections were widespread. However, if protection against 
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severe outcomes waned over time, vaccine boosting would likely be needed to compensate for loss 

of protection. 

As the PHIRST-C sampling scheme was not symptom-driven, it allowed us to capture shedding 

kinetics in both symptomatic and asymptomatic individuals. We observed that most infections 

86.8% (581/669) were asymptomatic, but asymptomatically infected individuals transmitted the 5 

virus within their households. For context, in the South African winter seasons of 2017-2018, 

approximately half of the influenza infections within the PHIRST-C cohorts were asymptomatic 

(36). The transmission potential of asymptomatic or pre-symptomatic SARS-CoV-2 infections 

identified in our study is in sharp contrast with SARS-CoV-1, where most transmission occurs 

after symptom onset (37). It is also worth noting in our cohort data, prior infections, whether 10 

symptomatic or not, conferred durable protection against reinfection. We found that the shedding 

kinetics of SARS-CoV-2 were characterized by a rapid RNA proliferation stage until peak viral 

load, followed by a more gradual RNA clearance stage. The median duration of rRT-PCR 

positivity lasted 10.5 days (IQR 6.3 – 14.0 days) with median peak Ct = 23.1 (IQR 20.0 – 27.2), 

in agreement with other high-frequency sampling studies (21, 22).  Reinfections had shorter 15 

durations of rRT-PCR positivity and lower shedding peaks compared to primary infections (Figure 

2 H-I), which would be expected to decrease the probability of onward transmission. Our findings 

align with reports of reduction in viral shedding among vaccine breakthroughs relative to primary 

infections, prior to the occurrence of the Omicron variant (38–41). Interestingly, we observed 

variation in infectiousness through the course of infection, after adjusting for Ct values, whereby 20 

an individual in the proliferation stage tends to be more infectious than one in the clearance stage. 

The post-peak decline in infectiousness coincides with the onset of adaptive immune responses 

that work to suppress the on-going infection (42). The observed decline in infectiousness in the 

RNA clearance stage also could be due to neutralization of some viral particles by antibodies, 

precluding productive transmission. 25 

The peak of COVID-19 hospitalizations during the Omicron wave was lower than that during 

the Delta wave in South Africa (43), despite our model projecting a much higher infection rate for 

Omicron than Delta. This is compatible, however, with some lines of evidence suggesting a lower 

severity of the Omicron variant in naïve individuals, combined with robust infection and vaccine-

induced immunity against severe Omicron disease (17, 44). However, it is important to stress that, 30 
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in South Africa, immunity accumulated prior to the Omicron wave was mostly through prior 

infections, due to a delayed start and slow rollout of the vaccine campaign (45). As a result, the 

proportion of the population infected by pre-Omicron variants was substantially higher in South 

Africa than in countries that experienced faster vaccine rollout and/or effective mitigation 

strategies.  5 

Our study have several limitations. First, our findings about the persistence of infection-induced 

immunity are based on a 13-month study. The duration and quality of protective immunity over 

longer timescales remain open questions. Recent studies have found that antibody responses 

improve over time through affinity maturation (46, 47) and that long-lived plasma cells can be 

identified in the bone marrow at least one year after infection, suggesting that immunity conferred 10 

by infection or vaccination could be potent and durable against non-immune evasive variants (48). 

Persistent germinal center responses and durable T cell memory have also been observed among 

vaccine recipients (49–51). However, how the protection holds up against immune-evasive variant 

such as Omicron remains an outstanding question. Unfortunately, the PHIRST-C cohorts did not 

cover the Omicron wave, thus we could not directly measure immune protection at the individual 15 

level and relied on modelling of population-level dynamics. Post-Omicron serologic surveys 

following up the cohort population could provide deeper insight into the full impact of the Omicron 

wave. In our projections of SARS-CoV-2 resurgences, we did not consider waning explicitly since 

our cohort data did not support pronounced waning of infection-induced immunity. Accordingly, 

our projections are most relevant to short time scales, in the order of a few months. Interestingly, 20 

we find that resurgences are likely even over short time horizons. A second limitation relates to 

missed infection episodes, despite frequent rRT-PCR testing. In total, 21% (303407 person-

days/1472400 person days) of the total person-days of observation were excluded from the 

regression during the entire study period due to missing nasal swab visits, missing serologic status, 

or experiencing an active infection episode. For example, 14% (90/639) of individuals who 25 

seroconverted during the study lacked rRT-PCR confirmation of active infections (i.e., their first 

serologic test was negative, but they seroconverted later). This could possibly be due to 1) delayed 

seroconversion from infection episodes occurring prior to the first nasal specimen, 2) infection 

episodes that occurred during missed routine household visits, 3) a shorter duration of rRT-PCR 

positivity than the interval between consecutive nasal swabbing (3 days), 4) false positives in 30 

serology test results or 5) false negatives of the rRT-PCR assay specimen (due to specimen quality 
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issues or detection limit of the rRT-PCR). A third limitation relates to the simplicity of the contact 

structure in our transmission models. Projections of the trajectories of Delta, Omicron, and variant 

X did not address heterogeneity due to age-specific susceptibility, transmissibility, and contact 

patterns. Nor did we consider individual variation in infection and vaccine-derived protection. 

Heterogeneity in mixing patterns and immune protection could lead to a lower infection rate when 5 

compared to homogeneous models with the same basic reproduction number (52, 53), thus the size 

of the Omicron epidemic could be inflated in our projections. In addition, our size projections 

could be inflated if the Omicron’s serial interval was shorter (corresponding to a lower basic 

reproduction number) than that the range of values explored. Population surveys on active 

infections during the Omicron wave as well as paired-sera surveys before and after the Omicron 10 

wave will be necessary to confirm the true scale of the Omicron epidemic. 

In conclusion, our study provides an in-depth analysis of the kinetics of viral shedding, 

transmission dynamics, and persistence of immunity conferred by sequential exposures to different 

SARS-CoV-2 variants, and how these factors contribute to shaping the Omicron and post-Omicron 

phases. We found durable cross-protective immunity conferred by prior infection against pre-15 

Omicron variants. However, Omicron successfully breached population immunity due to a 

combination immune escape and increased transmissibility, reinfecting a large fraction of the 

population and leaving a complex immune landscape in its aftermath. With increasing contacts as 

the Omicron wave subsides, several possible scenarios for SARS-CoV-2 recurrences are possible, 

involving both old and new variants. Further work on how immunity may strengthen and broaden 20 

upon sequential exposures with different variants and vaccination episodes will be important to 

clarify the next phase of the pandemic. 

 

References and Notes: 

1. L. F. Buss, C. A. Prete Jr, C. M. M. Abrahim, A. Mendrone Jr, T. Salomon, C. de Almeida-Neto, R. F. 25 
O. França, M. C. Belotti, M. P. S. S. Carvalho, A. G. Costa, M. A. E. Crispim, S. C. Ferreira, N. A. Fraiji, 
S. Gurzenda, C. Whittaker, L. T. Kamaura, P. L. Takecian, P. da Silva Peixoto, M. K. Oikawa, A. S. 
Nishiya, V. Rocha, N. A. Salles, A. A. de Souza Santos, M. A. da Silva, B. Custer, K. V. Parag, M. 
Barral-Netto, M. U. G. Kraemer, R. H. M. Pereira, O. G. Pybus, M. P. Busch, M. C. Castro, C. Dye, V. H. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 26, 2022. ; https://doi.org/10.1101/2022.02.11.22270854doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.11.22270854
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

16 
 

Nascimento, N. R. Faria, E. C. Sabino, Three-quarters attack rate of SARS-CoV-2 in the Brazilian 
Amazon during a largely unmitigated epidemic. Science 371, 288–292 (2021). 

2. T. R. Bhuiyan, J. D. Hulse, S. T. Hegde, M. Akhtar, T. Islam, Z. H. Khan, I. I. Khan, S. Ahmed, M. 
Rashid, R. Rashid, E. S. Gurley, T. Shirin, A. I. Khan, A. S. Azman, F. Qadri, SARS-CoV-2 
Seroprevalence before Delta Variant Surge, Chattogram, Bangladesh, March-June 2021. Emerg. Infect. 5 
Dis. 28, 429–431 (2022). 

3. J. A. Huete-Pérez, K. C. Ernst, C. Cabezas-Robelo, L. Páiz-Medina, S. Silva, A. Huete, Prevalence and 
risk factors for SARS-CoV-2 infection in children with and without symptoms seeking care in Managua, 
Nicaragua: results of a cross-sectional survey. BMJ Open 11, e051836 (2021). 

4. C. Cohen, J. Kleynhans, A. von Gottberg, M. L. McMorrow, N. Wolter, J. N. Bhiman, J. Moyes, M. du 10 
Plessis, M. Carrim, A. Buys, N. A. Martinson, K. Kahn, S. Tollman, L. Lebina, F. Wafawanaka, J. D. du 
Toit, F. X. Gómez-Olivé, F. S. Dawood, T. Mkhencele, K. Sun, C. Viboud, S. Tempia, PHIRST-C Group, 
SARS-CoV-2 incidence, transmission, and reinfection in a rural and an urban setting: results of the 
PHIRST-C cohort study, South Africa, 2020-21. Lancet Infect. Dis. (2022), doi:10.1016/S1473-
3099(22)00069-X. 15 

5. H. Tegally, E. Wilkinson, R. J. Lessells, J. Giandhari, S. Pillay, N. Msomi, K. Mlisana, J. N. Bhiman, 
A. von Gottberg, S. Walaza, V. Fonseca, M. Allam, A. Ismail, A. J. Glass, S. Engelbrecht, G. Van Zyl, 
W. Preiser, C. Williamson, F. Petruccione, A. Sigal, I. Gazy, D. Hardie, N.-Y. Hsiao, D. Martin, D. York, 
D. Goedhals, E. J. San, M. Giovanetti, J. Lourenço, L. C. J. Alcantara, T. de Oliveira, Sixteen novel 
lineages of SARS-CoV-2 in South Africa. Nat. Med. 27, 440–446 (2021). 20 

6. H. Tegally, E. Wilkinson, M. Giovanetti, A. Iranzadeh, V. Fonseca, J. Giandhari, D. Doolabh, S. Pillay, 
E. J. San, N. Msomi, K. Mlisana, A. von Gottberg, S. Walaza, M. Allam, A. Ismail, T. Mohale, A. J. 
Glass, S. Engelbrecht, G. Van Zyl, W. Preiser, F. Petruccione, A. Sigal, D. Hardie, G. Marais, M. Hsiao, 
S. Korsman, M.-A. Davies, L. Tyers, I. Mudau, D. York, C. Maslo, D. Goedhals, S. Abrahams, O. 
Laguda-Akingba, A. Alisoltani-Dehkordi, A. Godzik, C. K. Wibmer, B. T. Sewell, J. Lourenço, L. C. J. 25 
Alcantara, S. L. Kosakovsky Pond, S. Weaver, D. Martin, R. J. Lessells, J. N. Bhiman, C. Williamson, T. 
de Oliveira, Emergence of a SARS-CoV-2 variant of concern with mutations in spike glycoprotein. 
Nature (2021), doi:10.1038/s41586-021-03402-9. 

7. R. Viana, S. Moyo, D. G. Amoako, H. Tegally, C. Scheepers, C. L. Althaus, U. J. Anyaneji, P. A. 
Bester, M. F. Boni, M. Chand, W. T. Choga, R. Colquhoun, M. Davids, K. Deforche, D. Doolabh, L. du 30 
Plessis, S. Engelbrecht, J. Everatt, J. Giandhari, M. Giovanetti, D. Hardie, V. Hill, N.-Y. Hsiao, A. 
Iranzadeh, A. Ismail, C. Joseph, R. Joseph, L. Koopile, S. L. Kosakovsky Pond, M. U. G. Kraemer, L. 
Kuate-Lere, O. Laguda-Akingba, O. Lesetedi-Mafoko, R. J. Lessells, S. Lockman, A. G. Lucaci, A. 
Maharaj, B. Mahlangu, T. Maponga, K. Mahlakwane, Z. Makatini, G. Marais, D. Maruapula, K. Masupu, 
M. Matshaba, S. Mayaphi, N. Mbhele, M. B. Mbulawa, A. Mendes, K. Mlisana, A. Mnguni, T. Mohale, 35 
M. Moir, K. Moruisi, M. Mosepele, G. Motsatsi, M. S. Motswaledi, T. Mphoyakgosi, N. Msomi, P. N. 
Mwangi, Y. Naidoo, N. Ntuli, M. Nyaga, L. Olubayo, S. Pillay, B. Radibe, Y. Ramphal, U. Ramphal, J. 
E. San, L. Scott, R. Shapiro, L. Singh, P. Smith-Lawrence, W. Stevens, A. Strydom, K. Subramoney, N. 
Tebeila, D. Tshiabuila, J. Tsui, S. van Wyk, S. Weaver, C. K. Wibmer, E. Wilkinson, N. Wolter, A. E. 
Zarebski, B. Zuze, D. Goedhals, W. Preiser, F. Treurnicht, M. Venter, C. Williamson, O. G. Pybus, J. 40 
Bhiman, A. Glass, D. P. Martin, A. Rambaut, S. Gaseitsiwe, A. von Gottberg, T. de Oliveira, Rapid 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 26, 2022. ; https://doi.org/10.1101/2022.02.11.22270854doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.11.22270854
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

17 
 

epidemic expansion of the SARS-CoV-2 Omicron variant in southern Africa. Nature (2022), 
doi:10.1038/d41586-021-03832-5. 

8. C. A. B. Pearson, S. P. Silal, M. W. Z. Li, J. Dushoff, B. M. Bolker, S. Abbott, C. van Schalkwyk, N. 
G. Davies, R. C. Barnard, W. J. Edmunds, J. Bingham, G. Meyer-Rath, L. Jamieson, A. Glass, N. Wolter, 
N. Govender, W. S. Stevens, L. Scott, K. Mlisana, H. Moultrie, J. R. C. Pulliam, Bounding the levels of 5 
transmissibility & immune evasion of the Omicron variant in South Africa. bioRxiv (2021), 
doi:10.1101/2021.12.19.21268038. 

9. Alaa Abdel Latif, Julia L. Mullen, Manar Alkuzweny, Ginger Tsueng, Marco Cano, Emily Haag, Jerry 
Zhou, Mark Zeller, Emory Hufbauer, Nate Matteson, Chunlei Wu, Kristian G. Andersen, Andrew I. Su, 
Karthik Gangavarapu, Laura D. Hughes, and the Center for Viral Systems Biology, Omicron Variant 10 
Report. outbreak.info (2022) (available at https://outbreak.info/situation-
reports/omicron?loc=ZAF&loc=GBR&loc=USA&selected=ZAF). 

10. the Nextstrain team, Genomic epidemiology of novel coronavirus - Global subsampling. Nextstrain 
(2022) (available at https://nextstrain.org/ncov/gisaid/global). 

11. J. R. C. Pulliam, C. van Schalkwyk, N. Govender, A. von Gottberg, C. Cohen, M. J. Groome, J. 15 
Dushoff, K. Mlisana, H. Moultrie, Increased risk of SARS-CoV-2 reinfection associated with emergence 
of Omicron in South Africa. Science , eabn4947 (2022). 

12. Neil Ferguson, Azra Ghani, Anne Cori, Alexandra Hogan, Wes Hinsley, Erik Volz on behalf of the 
Imperial College COVID-19 response team, Report 49 - Growth, population distribution and immune 
escape of Omicron in England (MRC Centre for Global Infectious Disease Analysis, Imperial College 20 
London, 2021; https://www.imperial.ac.uk/mrc-global-infectious-disease-analysis/covid-19/report-49-
omicron/). 

13. K. van der Straten, D. Guerra, M. J. van Gils, I. Bontjer, T. G. Caniels, H. D. G. van Willigen, E. 
Wynberg, M. Poniman, J. A. Burger, J. H. Bouhuijs, J. van Rijswijk, A. H. A. Lavell, B. Appelman, J. J. 
Sikkens, M. K. Bomers, A. X. Han, B. E. Nichols, M. Prins, H. Vennema, C. Reusken, M. D. de Jong, G. 25 
J. de Bree, C. A. Russell, D. Eggink, R. W. Sanders, Mapping the antigenic diversification of SARS-
CoV-2. bioRxiv (2022), doi:10.1101/2022.01.03.21268582. 

14. S. Cele, L. Jackson, D. S. Khoury, K. Khan, T. Moyo-Gwete, H. Tegally, J. E. San, D. Cromer, C. 
Scheepers, D. G. Amoako, F. Karim, M. Bernstein, G. Lustig, D. Archary, M. Smith, Y. Ganga, Z. Jule, 
K. Reedoy, S.-H. Hwa, J. Giandhari, J. M. Blackburn, B. I. Gosnell, S. S. Abdool Karim, W. Hanekom, 30 
NGS-SA, COMMIT-KZN Team, A. von Gottberg, J. N. Bhiman, R. J. Lessells, M.-Y. S. Moosa, M. P. 
Davenport, T. de Oliveira, P. L. Moore, A. Sigal, Omicron extensively but incompletely escapes Pfizer 
BNT162b2 neutralization. Nature (2021), doi:10.1038/s41586-021-04387-1. 

15. J. M. Carreño, H. Alshammary, J. Tcheou, G. Singh, A. Raskin, H. Kawabata, L. Sominsky, J. Clark, 
D. C. Adelsberg, D. Bielak, A. S. Gonzalez-Reiche, N. Dambrauskas, V. Vigdorovich, PSP/PARIS Study 35 
Group, K. Srivastava, D. N. Sather, E. M. Sordillo, G. Bajic, H. van Bakel, V. Simon, F. Krammer, 
Activity of convalescent and vaccine serum against SARS-CoV-2 Omicron. Nature (2021), 
doi:10.1038/s41586-022-04399-5. 

16. E. Cameroni, J. E. Bowen, L. E. Rosen, C. Saliba, S. K. Zepeda, K. Culap, D. Pinto, L. A. 
VanBlargan, A. De Marco, J. di Iulio, F. Zatta, H. Kaiser, J. Noack, N. Farhat, N. Czudnochowski, C. 40 
Havenar-Daughton, K. R. Sprouse, J. R. Dillen, A. E. Powell, A. Chen, C. Maher, L. Yin, D. Sun, L. 
Soriaga, J. Bassi, C. Silacci-Fregni, C. Gustafsson, N. M. Franko, J. Logue, N. T. Iqbal, I. Mazzitelli, J. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 26, 2022. ; https://doi.org/10.1101/2022.02.11.22270854doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.11.22270854
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

18 
 

Geffner, R. Grifantini, H. Chu, A. Gori, A. Riva, O. Giannini, A. Ceschi, P. Ferrari, P. E. Cippà, A. 
Franzetti-Pellanda, C. Garzoni, P. J. Halfmann, Y. Kawaoka, C. Hebner, L. A. Purcell, L. Piccoli, M. S. 
Pizzuto, A. C. Walls, M. S. Diamond, A. Telenti, H. W. Virgin, A. Lanzavecchia, G. Snell, D. Veesler, D. 
Corti, Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shift. Nature (2021), 
doi:10.1038/s41586-021-04386-2. 5 

17. UKHSA Genomics Cell UKHSA Outbreak Surveillance Team UKHSA Epidemiology Cell UKHSA 
Immunisations Team UKHSA Contact Tracing Data Team UKHSA Environmental Monitoring for 
Health Protection Team UKHSA SIREN Study Team UKHSA Public Health Incident Directors 
Contributions from the Variant Technical Group Members, SARS-CoV-2 variants of concern and variants 
under investigation in England Technical briefing 34 ( UK Health Security Agency, 2022; 10 
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/104685
3/technical-briefing-34-14-january-2022.pdf). 

18. F. P. Lyngse, L. H. Mortensen, M. J. Denwood, L. E. Christiansen, C. H. Møller, R. L. Skov, K. 
Spiess, A. Fomsgaard, M. M. Lassaunière, M. Rasmussen, M. Stegger, C. Nielsen, R. N. Sieber, A. S. 
Cohen, F. T. Møller, M. Overvad, K. Mølbak, T. G. Krause, C. T. Kirkeby, SARS-CoV-2 Omicron VOC 15 
transmission in Danish households. bioRxiv (2021), doi:10.1101/2021.12.27.21268278. 

19. A. C. Ulloa, S. A. Buchan, N. Daneman, K. A. Brown, Early estimates of SARS-CoV-2 Omicron 
variant severity based on a matched cohort study, Ontario, Canada. bioRxiv (2021), 
doi:10.1101/2021.12.24.21268382. 

20. WEEKLY EPIDEMIOLOGICAL BRIEF - NICD (2020) (available at 20 
https://www.nicd.ac.za/diseases-a-z-index/disease-index-covid-19/surveillance-reports/weekly-
epidemiological-brief/). 

21. S. M. Kissler, J. R. Fauver, C. Mack, S. W. Olesen, C. Tai, K. Y. Shiue, C. C. Kalinich, S. Jednak, I. 
M. Ott, C. B. F. Vogels, J. Wohlgemuth, J. Weisberger, J. DiFiori, D. J. Anderson, J. Mancell, D. D. Ho, 
N. D. Grubaugh, Y. H. Grad, Viral dynamics of acute SARS-CoV-2 infection and applications to 25 
diagnostic and public health strategies. PLoS Biol. 19, e3001333 (2021). 

22. T. C. Jones, G. Biele, B. Mühlemann, T. Veith, J. Schneider, J. Beheim-Schwarzbach, T. Bleicker, J. 
Tesch, M. L. Schmidt, L. E. Sander, F. Kurth, P. Menzel, R. Schwarzer, M. Zuchowski, J. Hofmann, A. 
Krumbholz, A. Stein, A. Edelmann, V. M. Corman, C. Drosten, Estimating infectiousness throughout 
SARS-CoV-2 infection course. Science (2021), doi:10.1126/science.abi5273. 30 

23. J. A. Backer, D. Eggink, S. P. Andeweg, I. K. Veldhuijzen, N. van Maarseveen, K. Vermaas, B. 
Vlaemynck, R. Schepers, S. van den Hof, C. B. Reusken, J. Wallinga, Shorter serial intervals in SARS-
CoV-2 cases with Omicron BA.1 variant compared with Delta variant, the Netherlands, 13 to 26 
December 2021. Euro Surveill. 27 (2022), doi:10.2807/1560-7917.ES.2022.27.6.2200042. 

24. National Institute of Infectious Diseases Disease Control and Prevention Center, National Center for 35 
Global Health and Medicine, Active epidemiological investigation on SARS-CoV-2 infection caused by 
Omicron variant (Pango lineage B.1.1.529) in Japan: preliminary report on infectious period国立感染症
研究所 (2022) (available at https://www.niid.go.jp/niid/en/2019-ncov-e/10884-covid19-66-en.html). 

25. B. J. Willett, J. Grove, O. A. MacLean, C. Wilkie, N. Logan, G. D. Lorenzo, W. Furnon, S. Scott, M. 
Manali, A. Szemiel, S. Ashraf, E. Vink, W. Harvey, C. Davis, R. Orton, J. Hughes, P. Holland, V. Silva, 40 
D. Pascall, K. Puxty, A. da Silva Filipe, G. Yebra, S. Shaaban, M. T. G. Holden, R. M. Pinto, R. Gunson, 
K. Templeton, P. Murcia, A. H. Patel, J. Haughney, D. L. Robertson, M. Palmarini, S. Ray, E. C. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 26, 2022. ; https://doi.org/10.1101/2022.02.11.22270854doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.11.22270854
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

19 
 

Thomson, The COVID-19 DeplOyed VaccinE (DOVE) Cohort Study investigators, The COVID-19 
Genomics UK (COG-UK) Consortium, The G2P-UK National Virology Consortium, The Evaluation of 
Variants Affecting Deployed COVID-19 Vaccines (EVADE) investigators, The hyper-transmissible 
SARS-CoV-2 Omicron variant exhibits significant antigenic change, vaccine escape and a switch in cell 
entry mechanism. bioRxiv (2022), doi:10.1101/2022.01.03.21268111. 5 

26. T. Braeye, L. Cornelissen, L. Catteau, F. Haarhuis, K. Proesmans, K. De Ridder, A. Djiena, R. 
Mahieu, F. De Leeuw, A. Dreuw, N. Hammami, S. Quoilin, H. Van Oyen, C. Wyndham-Thomas, D. Van 
Cauteren, Vaccine effectiveness against infection and onwards transmission of COVID-19: Analysis of 
Belgian contact tracing data, January-June 2021. Vaccine 39, 5456–5460 (2021). 

27. J. Kleynhans, S. Tempia, N. Wolter, A. von Gottberg, J. N. Bhiman, A. Buys, J. Moyes, M. L. 10 
McMorrow, K. Kahn, F. X. Gómez-Olivé, S. Tollman, N. A. Martinson, F. Wafawanaka, L. Lebina, J. du 
Toit, W. Jassat, M. Neti, M. Brauer, C. Cohen, PHIRST-C Group, SARS-CoV-2 Seroprevalence in a 
Rural and Urban Household Cohort during First and Second Waves of Infections, South Africa, July 
2020-March 2021. Emerg. Infect. Dis. 27, 3020–3029 (2021). 

28. A. Rössler, L. Riepler, D. Bante, D. von Laer, J. Kimpel, SARS-CoV-2 Omicron Variant 15 
Neutralization in Serum from Vaccinated and Convalescent Persons. N. Engl. J. Med. (2022), 
doi:10.1056/NEJMc2119236. 

29. K. Khan, F. Karim, S. Cele, J. E. San, G. Lustig, H. Tegally, M. Bernstein, Y. Ganga, Z. Jule, K. 
Reedoy, N. Ngcobo, M. Mazibuko, N. Mthabela, Z. Mhlane, N. Mbatha, J. Giandhari, Y. Ramphal, T. 
Naidoo, N. Manickchund, N. Magula, S. S. Abdool Karim, G. Gray, W. Hanekom, A. von Gottberg, 20 
COMMIT-KZN Team, B. I. Gosnell, R. J. Lessells, P. L. Moore, T. de Oliveira, M.-Y. S. Moosa, A. 
Sigal, Omicron infection enhances neutralizing immunity against the Delta variant. medRxiv (2021), 
doi:10.1101/2021.12.27.21268439. 

30. H. Altarawneh, H. Chemaitelly, P. Tang, M. R. Hasan, S. Qassim, H. H. Ayoub, S. AlMukdad, H. M. 
Yassine, F. M. Benslimane, H. A. A. Khatib, P. Coyle, Z. A. Kanaani, E. A. Kuwari, A. Jeremijenko, A. 25 
H. Kaleeckal, A. N. Latif, R. M. Shaik, H. F. Abdul Rahim, G. K. Nasrallah, M. G. Al Kuwari, A. A. 
Butt, H. E. Al Romaihi, M. H. Al-Thani, A. A. Khal, R. Bertollini, L. J. Abu-Raddad, Protection afforded 
by prior infection against SARS-CoV-2 reinfection with the Omicron variant. bioRxiv (2022), 
doi:10.1101/2022.01.05.22268782. 

31. V. J. Hall, S. Foulkes, F. Insalata, A. Saei, P. Kirwan, A. Atti, E. Wellington, J. Khawam, K. Munro, 30 
M. Cole, C. Tranquillini, A. Taylor-Kerr, N. Hettiarachchi, D. Calbraith, N. Sajedi, I. Milligan, Y. 
Themistocleous, D. Corrigan, L. Cromey, L. Price, S. Stewart, E. de Lacy, C. Norman, E. Linley, A. D. 
Otter, A. Semper, J. Hewson, The SIREN Study Group, M. A. Chand, C. S. Brown, T. Brooks, J. Islam, 
A. Charlett, S. Hopkins, Effectiveness and durability of protection against future SARS-CoV-2 infection 
conferred by COVID-19 vaccination and previous infection; findings from the UK SIREN prospective 35 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 26, 2022. ; https://doi.org/10.1101/2022.02.11.22270854doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.11.22270854
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

20 
 

cohort study of healthcare workers March 2020 to September 2021. medRxiv , 2021.11.29.21267006 
(2021). 

32. C. H. Hansen, D. Michlmayr, S. M. Gubbels, K. Mølbak, S. Ethelberg, Assessment of protection 
against reinfection with SARS-CoV-2 among 4 million PCR-tested individuals in Denmark in 2020: a 
population-level observational study. Lancet (2021), doi:10.1016/S0140-6736(21)00575-4. 5 

33. A. Sigal, Milder disease with Omicron: is it the virus or the pre-existing immunity? Nat. Rev. 
Immunol. (2022), doi:10.1038/s41577-022-00678-4. 

34. M. G. Thompson, Effectiveness of a Third Dose of mRNA Vaccines Against COVID-19–Associated 
Emergency Department and Urgent Care Encounters and Hospitalizations Among Adults During Periods 
of Delta and Omicron Variant Predominance — VISION Network, 10 States, August 2021–January 2022. 10 
MMWR Morb. Mortal. Wkly. Rep. 71 (2022), doi:10.15585/mmwr.mm7104e3. 

35. J. A. Lewnard, V. X. Hong, M. M. Patel, R. Kahn, M. Lipsitch, S. Y. Tartof, Clinical outcomes 
among patients infected with Omicron (B.1.1.529) SARS-CoV-2 variant in southern California. bioRxiv 
(2022), doi:10.1101/2022.01.11.22269045. 

36. C. Cohen, J. Kleynhans, J. Moyes, M. L. McMorrow, F. K. Treurnicht, O. Hellferscee, A. Mathunjwa, 15 
A. von Gottberg, N. Wolter, N. A. Martinson, K. Kahn, L. Lebina, K. Mothlaoleng, F. Wafawanaka, F. X. 
Gómez-Olivé, T. Mkhencele, A. Mathee, S. Piketh, B. Language, S. Tempia, PHIRST group, 
Asymptomatic transmission and high community burden of seasonal influenza in an urban and a rural 
community in South Africa, 2017-18 (PHIRST): a population cohort study. Lancet Glob Health 9, e863–
e874 (2021). 20 

37. C. Fraser, S. Riley, R. M. Anderson, N. M. Ferguson, Factors that make an infectious disease 
outbreak controllable. Proc. Natl. Acad. Sci. U. S. A. 101, 6146–6151 (2004). 

38. S. D. Pollett, S. A. Richard, A. C. Fries, M. P. Simons, K. Mende, T. Lalani, T. Lee, S. Chi, R. Mody, 
C. Madar, A. Ganesan, D. T. Larson, C. J. Colombo, R. Colombo, E. C. Samuels, C. C. Broder, E. D. 
Laing, D. R. Smith, D. Tribble, B. K. Agan, T. H. Burgess, The SARS-CoV-2 mRNA vaccine 25 
breakthrough infection phenotype includes significant symptoms, live virus shedding, and viral genetic 
diversity. Clin. Infect. Dis. (2021), doi:10.1093/cid/ciab543. 

39. M. G. Thompson, J. L. Burgess, A. L. Naleway, H. Tyner, S. K. Yoon, J. Meece, L. E. W. Olsho, A. 
J. Caban-Martinez, A. L. Fowlkes, K. Lutrick, H. C. Groom, K. Dunnigan, M. J. Odean, K. Hegmann, E. 
Stefanski, L. J. Edwards, N. Schaefer-Solle, L. Grant, K. Ellingson, J. L. Kuntz, T. Zunie, M. S. Thiese, 30 
L. Ivacic, M. G. Wesley, J. Mayo Lamberte, X. Sun, M. E. Smith, A. L. Phillips, K. D. Groover, Y. M. 
Yoo, J. Gerald, R. T. Brown, M. K. Herring, G. Joseph, S. Beitel, T. C. Morrill, J. Mak, P. Rivers, B. P. 
Poe, B. Lynch, Y. Zhou, J. Zhang, A. Kelleher, Y. Li, M. Dickerson, E. Hanson, K. Guenther, S. Tong, A. 
Bateman, E. Reisdorf, J. Barnes, E. Azziz-Baumgartner, D. R. Hunt, M. L. Arvay, P. Kutty, A. M. Fry, 
M. Gaglani, Prevention and Attenuation of Covid-19 with the BNT162b2 and mRNA-1273 Vaccines. N. 35 
Engl. J. Med. (2021), doi:10.1056/NEJMoa2107058. 

40. M. Levine-Tiefenbrun, I. Yelin, R. Katz, E. Herzel, Z. Golan, L. Schreiber, T. Wolf, V. Nadler, A. 
Ben-Tov, J. Kuint, S. Gazit, T. Patalon, G. Chodick, R. Kishony, Initial report of decreased SARS-CoV-2 
viral load after inoculation with the BNT162b2 vaccine. Nat. Med. 27, 790–792 (2021). 

41. G. Regev-Yochay, S. Amit, M. Bergwerk, M. Lipsitch, E. Leshem, R. Kahn, Y. Lustig, C. Cohen, R. 40 
Doolman, A. Ziv, I. Novikov, C. Rubin, I. Gimpelevich, A. Huppert, G. Rahav, A. Afek, Y. Kreiss, 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 26, 2022. ; https://doi.org/10.1101/2022.02.11.22270854doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.11.22270854
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

21 
 

Decreased infectivity following BNT162b2 vaccination: A prospective cohort study in Israel. The Lancet 
Regional Health - Europe 7, 100150 (2021). 

42. L. Guo, L. Ren, S. Yang, M. Xiao, D. Chang, F. Yang, C. S. Dela Cruz, Y. Wang, C. Wu, Y. Xiao, L. 
Zhang, L. Han, S. Dang, Y. Xu, Q.-W. Yang, S.-Y. Xu, H.-D. Zhu, Y.-C. Xu, Q. Jin, L. Sharma, L. 
Wang, J. Wang, Profiling Early Humoral Response to Diagnose Novel Coronavirus Disease (COVID-19). 5 
Clin. Infect. Dis. 71, 778–785 (2020). 

43. The National Institute For Communicable Diseases Of South Africa, NICD National COVID-19 
Hospital Surveillance (The National Institute For Communicable Diseases Of South Africa, 2022; 
https://www.nicd.ac.za/wp-content/uploads/2022/02/NICD-COVID-19-Daily-Sentinel-Hospital-
Surveillance-report-National-20220203.pdf). 10 

44. N. Wolter, W. Jassat, S. Walaza, R. Welch, H. Moultrie, M. Groome, D. G. Amoako, J. Everatt, J. N. 
Bhiman, C. Scheepers, N. Tebeila, N. Chiwandire, M. du Plessis, N. Govender, A. Ismail, A. Glass, K. 
Mlisana, W. Stevens, F. K. Treurnicht, Z. Makatini, N.-Y. Hsiao, R. Parboosing, J. Wadula, H. Hussey, 
M.-A. Davies, A. Boulle, A. von Gottberg, C. Cohen, Early assessment of the clinical severity of the 
SARS-CoV-2 omicron variant in South Africa: a data linkage study. Lancet (2022), doi:10.1016/S0140-15 
6736(22)00017-4. 

45. South Africa National Department Of Health, Latest Vaccine Statistics (South Africa)SA Corona 
Virus Online Portal (2021) (available at https://sacoronavirus.co.za/latest-vaccine-statistics/). 

46. A. Cho, F. Muecksch, D. Schaefer-Babajew, Z. Wang, S. Finkin, C. Gaebler, V. Ramos, M. Cipolla, 
P. Mendoza, M. Agudelo, E. Bednarski, J. DaSilva, I. Shimeliovich, J. Dizon, M. Daga, K. G. Millard, M. 20 
Turroja, F. Schmidt, F. Zhang, T. B. Tanfous, M. Jankovic, T. Y. Oliveria, A. Gazumyan, M. Caskey, P. 
D. Bieniasz, T. Hatziioannou, M. C. Nussenzweig, Anti-SARS-CoV-2 receptor-binding domain antibody 
evolution after mRNA vaccination. Nature 600, 517–522 (2021). 

47. F. Muecksch, Y. Weisblum, C. O. Barnes, F. Schmidt, D. Schaefer-Babajew, Z. Wang, J. C. C 
Lorenzi, A. I. Flyak, A. T. DeLaitsch, K. E. Huey-Tubman, S. Hou, C. A. Schiffer, C. Gaebler, J. Da 25 
Silva, D. Poston, S. Finkin, A. Cho, M. Cipolla, T. Y. Oliveira, K. G. Millard, V. Ramos, A. Gazumyan, 
M. Rutkowska, M. Caskey, M. C. Nussenzweig, P. J. Bjorkman, T. Hatziioannou, P. D. Bieniasz, Affinity 
maturation of SARS-CoV-2 neutralizing antibodies confers potency, breadth, and resilience to viral 
escape mutations. Immunity 54, 1853-1868.e7 (2021). 

48. J. S. Turner, W. Kim, E. Kalaidina, C. W. Goss, A. M. Rauseo, A. J. Schmitz, L. Hansen, A. Haile, 30 
M. K. Klebert, I. Pusic, J. A. O’Halloran, R. M. Presti, A. H. Ellebedy, SARS-CoV-2 infection induces 
long-lived bone marrow plasma cells in humans. Nature 595, 421–425 (2021). 

49. J. S. Turner, J. A. O’Halloran, E. Kalaidina, W. Kim, A. J. Schmitz, J. Q. Zhou, T. Lei, M. Thapa, R. 
E. Chen, J. B. Case, F. Amanat, A. M. Rauseo, A. Haile, X. Xie, M. K. Klebert, T. Suessen, W. D. 
Middleton, P.-Y. Shi, F. Krammer, S. A. Teefey, M. S. Diamond, R. M. Presti, A. H. Ellebedy, SARS-35 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 26, 2022. ; https://doi.org/10.1101/2022.02.11.22270854doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.11.22270854
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

22 
 

CoV-2 mRNA vaccines induce persistent human germinal centre responses. Nature (2021), 
doi:10.1038/s41586-021-03738-2. 

50. J. Mateus, J. M. Dan, Z. Zhang, C. Rydyznski Moderbacher, M. Lammers, B. Goodwin, A. Sette, S. 
Crotty, D. Weiskopf, Low-dose mRNA-1273 COVID-19 vaccine generates durable memory enhanced by 
cross-reactive T cells. Science 374, eabj9853 (2021). 5 

51. J. M. Dan, J. Mateus, Y. Kato, K. M. Hastie, E. D. Yu, C. E. Faliti, A. Grifoni, S. I. Ramirez, S. 
Haupt, A. Frazier, C. Nakao, V. Rayaprolu, S. A. Rawlings, B. Peters, F. Krammer, V. Simon, E. O. 
Saphire, D. M. Smith, D. Weiskopf, A. Sette, S. Crotty, Immunological memory to SARS-CoV-2 
assessed for up to 8 months after infection. Science 371 (2021), doi:10.1126/science.abf4063. 

52. D. Mistry, M. Litvinova, A. Pastore Y Piontti, M. Chinazzi, L. Fumanelli, M. F. C. Gomes, S. A. 10 
Haque, Q.-H. Liu, K. Mu, X. Xiong, M. E. Halloran, I. M. Longini Jr, S. Merler, M. Ajelli, A. 
Vespignani, Inferring high-resolution human mixing patterns for disease modeling. Nat. Commun. 12, 
323 (2021). 

53. T. Britton, F. Ball, P. Trapman, A mathematical model reveals the influence of population 
heterogeneity on herd immunity to SARS-CoV-2. Science 369, 846–849 (2020). 15 

54. C. Cohen, M. L. McMorrow, N. A. Martinson, K. Kahn, F. K. Treurnicht, J. Moyes, T. Mkhencele, O. 
Hellferscee, L. Lebina, M. Moroe, K. Motlhaoleng, F. X. Gómez-Olivé, R. Wagner, S. Tollman, F. 
Wafawanaka, S. Ngobeni, J. Kleynhans, A. Mathunjwa, A. Buys, L. Maake, N. Wolter, M. Carrim, S. 
Piketh, B. Language, A. Mathee, A. von Gottberg, S. Tempia, PHIRST group, Cohort profile: A 
Prospective Household cohort study of Influenza, Respiratory syncytial virus and other respiratory 20 
pathogens community burden and Transmission dynamics in South Africa, 2016-2018. Influenza Other 
Respi. Viruses 15, 789–803 (2021). 

55. Elecsys® Anti-SARS-CoV-2 (available at 
https://diagnostics.roche.com/us/en/products/params/elecsys-anti-sars-cov-2.html). 

56. M. J. Peluso, S. Takahashi, J. Hakim, J. D. Kelly, L. Torres, N. S. Iyer, K. Turcios, O. Janson, S. E. 25 
Munter, C. Thanh, J. Donatelli, C. C. Nixon, R. Hoh, V. Tai, E. A. Fehrman, Y. Hernandez, M. A. 
Spinelli, M. Gandhi, M.-A. Palafox, A. Vallari, M. A. Rodgers, J. Prostko, J. Hackett Jr, L. Trinh, T. 
Wrin, C. J. Petropoulos, C. Y. Chiu, P. J. Norris, C. DiGermanio, M. Stone, M. P. Busch, S. K. Elledge, 
X. X. Zhou, J. A. Wells, A. Shu, T. W. Kurtz, J. E. Pak, W. Wu, P. D. Burbelo, J. I. Cohen, R. L. 
Rutishauser, J. N. Martin, S. G. Deeks, T. J. Henrich, I. Rodriguez-Barraquer, B. Greenhouse, SARS-30 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 26, 2022. ; https://doi.org/10.1101/2022.02.11.22270854doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.11.22270854
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

23 
 

CoV-2 antibody magnitude and detectability are driven by disease severity, timing, and assay. Sci Adv 7 
(2021), doi:10.1126/sciadv.abh3409. 

57. CDC, Frequently Asked Questions about Coronavirus (COVID-19) for Laboratories (2021) (available 
at https://www.cdc.gov/coronavirus/2019-ncov/lab/faqs.html). 

58. Public Health England, Cycle threshold (Ct) in SARS-CoV-2 RT-PCR (2020) (available at 5 
https://www.gov.uk/government/publications/cycle-threshold-ct-in-sars-cov-2-rt-pcr). 

59. M. Kang, H. Xin, J. Yuan, S. T. Ali, Z. Liang, J. Zhang, T. Hu, E. H. Y. Lau, Y. Zhang, M. Zhang, B. 
J. Cowling, Y. Li, P. Wu, Transmission dynamics and epidemiological characteristics of Delta variant 
infections in China. bioRxiv (2021), doi:10.1101/2021.08.12.21261991. 

60. T. R. Holford, The analysis of rates and of survivorship using log-linear models. Biometrics 36, 299–10 
305 (1980). 

61. N. Laird, D. Olivier, Covariance Analysis of Censored Survival Data Using Log-Linear Analysis 
Techniques. J. Am. Stat. Assoc. 76, 231–240 (1981). 

62. A. Marc, M. Kerioui, F. Blanquart, J. Bertrand, O. Mitjà, M. Corbacho-Monné, M. Marks, J. Guedj, 
Quantifying the relationship between SARS-CoV-2 viral load and infectiousness. Elife 10 (2021), 15 
doi:10.7554/eLife.69302. 

63. D. R. Cox, Regression Models and Life-Tables. J. R. Stat. Soc. Series B Stat. Methodol. 34, 187–220 
(1972). 

64. Douglas Bates and Martin Machler and Ben Bolker and Steve Walker, Fitting Linear Mixed-Effects 
Models Using lme4. Journal of Statistical Software 67, 1–48 (2015). 20 

65. R. A. Neher, R. Dyrdak, V. Druelle, E. B. Hodcroft, J. Albert, Potential impact of seasonal forcing on 
a SARS-CoV-2 pandemic. Swiss Med. Wkly 150, w20224 (2020). 

 

Acknowledgment: The findings and conclusions in this report are those of the authors and do 

not necessarily represent the official position of the NIH or the U.S. Centers for Disease Control 25 

and Prevention. Funding: This work was supported by the National Institute for Communicable 

Diseases of the National Health Laboratory Service and the U.S. Centers for Disease Control and 

Prevention [cooperative agreement number: 6 U01IP001048] and Wellcome Trust (grant number 

221003/Z/20/Z) in collaboration with the Foreign, Commonwealth and Development Office, 

United Kingdom. Author contributions: KS, ST, JK, AvG, MLM, NW, JM, NAM, KK, STo, 30 

LL, CV, CC designed the experiments. CC, JK, and ST accessed and verified the underlying 

data. ST, JK, AvG, MLM, NW, JNB, JM, MdP, MC, AB, NAM, KK, STo, LL, FW, JdT, FXG, 

FSD, TMK, CC collected the data and performed laboratory experiments. KS, ST, JK, AvG, 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 26, 2022. ; https://doi.org/10.1101/2022.02.11.22270854doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.11.22270854
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

24 
 

MLM, NW, JNB, JM, MdP, MC, AB, NAM, KK, STo, LL, FW, JdT, FXG, FSD, TMK, CV, 

and CC analyzed the data and interpreted the results. KS, ST, JK, AvG, CV, and CC drafted the 

manuscript. All authors critically reviewed the Article. All authors had access to all the data 

reported in the study. Competing interests: CC has received grant support from Sanofi Pasteur, 

Advanced Vaccine Initiative, and payment of travel costs from Parexel. AvG has received grant 5 

support from Sanofi Pasteur, Pfizer related to pneumococcal vaccine, CDC and the Bill & 

Melinda Gates Foundation. NW reports grants from Sanofi Pasteur and the Bill & Melinda Gates 

Foundation. NAM has received a grant to his institution from Pfizer to conduct research in 

patients with pneumonia and from Roche to collect specimens to assess a novel TB assay. JM 

has received grant support from Sanofi Pasteur. Ethics statement: The PHIRST-C protocol was 10 

approved by the University of Witwatersrand Human Research Ethics Committee (Reference 

150808) and the U.S. Centers for Disease Control and Prevention’s Institutional Review Board 

relied on the local review (#6840). The protocol was registered on clinicaltrials.gov on 6 August 

2015 and updated on 30 December 2020 (https://clinicaltrials.gov/ct2/show/NCT02519803). 

Participants receive grocery store vouchers of ZAR50 (USD 3) per visit to compensate for time 15 

required for specimen collection and interview. 

Supplementary Materials: 

Materials and Methods 

Figures S1-S10 

Tables S1-S7 20 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 26, 2022. ; https://doi.org/10.1101/2022.02.11.22270854doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.11.22270854
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

25 
 

 

Fig. 1. PHIRST-C study June 2020 – September 2021, description of the epidemiology of SARS-CoV-2 in the two study 
sites, along with serology and rRT-PCR data. (A) Dots in different colors represent the timing and the readouts (axis on the left) 

of Roche Elecsys Anti-SARS-CoV-2 assay of serum specimens collected from 4 different blood draws of the rural cohort. The 

dash line is the positive cutoff of the Roche Elecsys Anti-SARS-CoV-2 assay, above which a specimen is considered sero-positive. 5 

The red lines (from light to dark) are the cumulative SARS-CoV-2 variant exposures (axis on the right) over time, captured by 

positive rRT-PCR of mid-turbinate nasal swab samples only; by either positive serum antibody or positive mid-turbinate nasal 

swabs by rRT-PCR, and by either positive serum antibody or positive mid-turbinate nasal swabs by rRT-PCR or at least one dose 

of vaccine. The light and dark blue lines are the cumulative fraction of population receiving a 1st and 2nd dose of vaccine. The grey 

bars are the weekly SARS-CoV-2 incidence per 40,000 population (sharing the same axis on the right) captured by the surveillance 10 

system of Ehlanzeni District in Mpumalanga Province, where the rural site is located. (B) Same as (A) but for the urban site of 

Klerksdorp in the Dr Kenneth Kaunda District, North West Province. (C) rRT-PCR test results for all mid-turbinate nasal specimens 

collected from individuals in the rural cohort over 80 visits during the 13-month study period.  Color white indicates missing 

specimens; color red indicates the Ct value of the rRT-PCR test, the darker the red color, the lower the Ct value. (D) Same as (C) 

but for the urban cohort. (E) The bi-monthly relative prevalence of D614G mutation, Beta, Delta and other variants over time at 15 

the rural site. (F) Same as (E) but for the urban site. 
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 Rural Urban 

Characteristics No. (%) No. (%) 

All 643 (100) 557 (100) 

Age group, in years   

    0-5 99 (15) 55 (10) 

    6-18 299 (47) 211 (38) 

    19-65 218 (34) 260 (47) 

    >65 27 (4) 31 (5) 

Sex   

    Male 234 (36) 249 (45) 

    Female 409 (64) 308 (55) 

Household size   

    <4 44 (7) 62 (11) 

    4-6 282 (44) 296 (53) 

    7-10 257 (40) 141 (25) 

    >10 60 (9) 58 (10) 

BMI   

    Underweight 259 (40) 140 (25) 

    Healthy weight 206 (32) 192 (35) 

    Overweight 93 (14) 103 (18) 

    Obesity 85 (13) 120 (22) 

    Unknown 0 (0) 2 (0) 

HIV status   

   Negative 520 (81) 451 (81) 

PLWH*: CD4 < 200 5 (1) 9 (2) 

PLWH*: CD4 ≥200 75 (12) 78 (14) 

Unknown 43 (7) 19 (3) 

Vaccination status   

None 593 (92) 488 (88) 

J&J 12 (2) 9 (2) 

Pfizer first dose only 27 (4) 32 (6) 

Pfizer first and second doses 11 (2) 28 (5) 

Table 1: PHIRST-C study June 2020 – August 2021, characteristics of the population and SARS-CoV-2 infections 

at two study sites, South Africa. *PLWH: persons living with HIV 
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Fig. 2. (A) Characterization of the RNA shedding kinetics for D614G infections. The solid dots are longitudinal Ct 

values observation for each infection episode, aligned based on the estimated timing of trough Ct. The solid line is the 

population median of all individual fits, the dark shade is the interquartile range, and the light shade is the 95% 

confidence interval.  Dashed vertical line indicate the timing of peak viral load. The square marker and the horizontal 5 

line indicate the median time and interquartile range of symptom onset for symptomatic infections. We also reported 

the fraction of symptomatic infections among all infections (symptomatic rate) for D614G. (B) Same as (A) but for 

Beta variant. (C) Same as (A) but for Delta variant. Distribution of the estimated duration of the viral RNA 

proliferation stage. (D) Distribution of the estimated duration of the viral RNA proliferation stage for D614G, Beta, 

and Delta variants. Boxplots show median, interquartile range, minimum and maximum of the distribution (E) Same 10 

as (D) but for the distribution of the estimated duration of the viral RNA clearance stage. (F) Same as (D) but for the 

distribution of the estimated full duration (proliferation stage + clearance stage) of rRT-PCR positivity. (G) Same as 

(D) but for the distribution of the estimated peak dCt.  
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Fig. 3. (A) The association between peak shedding (trough Ct) and age, sex BMI, HIV infection status, symptom 

presentation, variant type, and prior infection history, based on gaussian multiple regression. Regression coefficients 

along with 95%CIs are reported as solid dots and horizontal lines relative to the value of the regression intercept. The 

hollow dots are reference class for each of the categorical variable.  (B) Same as (A) but for shedding duration. (C) 5 

Piecewise exponential hazard model on risk factors associated with infection acquisition. Hazard ratios (HR) along 

with 95%CIs are reported as solid dots and horizontal lines. The hollow dots are reference class for each of the 

categorical variable. Protection is measured as 1 − #$. 

*Indicates p<0.05; ** indicates p<0.01; *** indicates p < 0.001. Abbreviations: HIV- (HIV-uninfected individuals), 

PLWH+ CD4 <200 (Persons living with HIV, CD4+ T cell count under 200 cells/ml), PLWH+ CD4 >=200 (Persons 10 

living with HIV, CD4+ T cell count equal or above 200 cells/ml). 
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Fig. 4. (A) Phase diagram of estimated reproduction number ratio between Omicron and Delta ($!"#$%&'(/$!)*+,-) as 

a function of immune escape parameters (&"#$ =escape on infection) and &"#,|$ (escape on transmission reduction 

conditional on infection). Parameters shown are those that matched the observed growth advantage of Omicron over 

Delta and the timing of the Omicron peak in the urban district of the PHIRST-C study (B) Phase diagram of the 5 

infection rate of the Omicron wave as a function of &"#$  and &"#,|$   and the corresponding $!"#$%&'(/$!)*+,- in (A). 

(C) Phase diagram of the epidemic duration of the Omicron wave as a function of &"#$  and &"#,|$   and the 

corresponding $!"#$%&'(/$!)*+,- in (A). (D) Phase diagram of the fraction of reinfections of the Omicron wave as a 

function of &"#$  and &"#,|$   and the corresponding $!"#$%&'(/$!)*+,- in (A). (E) Phase diagram of the infection case 

ratio (ICR) of the Omicron wave as a function of &"#$  and &"#,|$   and the corresponding $!"#$%&'(/$!)*+,- in (A). In 10 

(A)-(E), white dots marks three specific scenarios including a reference scenario (RS) with &"#$ = 0.7 and &"#,|$ =
0.2, a low immune escape scenario (LE) with &"#$ = 0.1 and &"#,|$ = 0.1, and a high immune escape scenario (HE) 
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with &"#$ = 0.9 and &"#,|$ = 0.9. (F) For the reference scenario (RS), reconstruction of infection time series and 

exposure histories by variant: Top panel y axis upwards: Weekly incidence per 10,000 individuals of SARS-CoV-2 

cases reported to the District till January 2022, in the period before Omicron (dark blue bars) and during Omicron 

(dark red bars). Top panel y axis downwards: Weekly incidence per 100 individuals of SARS-CoV-2 infections 

reconstructed based on PHRIST-C data (prior to September 2021) and estimated using Delta/Omicron-specific 5 

transmission models from September 2021 to the end of the Omicron wave at the end of January 2022. Pre-Omicron 

infections are in light blue and Omicron infections are in light red. For the top panel, the y axis upwards and 

downwards have different scales (by a factor of 100). Insert panel: the prevalence of the population with specific 

SARS-CoV-2 antigen exposure histories.  

Legend abbreviations: D614G: individuals who only experienced one D614G infection; Beta: individuals who only 10 

experienced one Beta infection; Delta: individuals who only experienced one Delta infection; Omicron: individuals 

who only experienced one Omicron infection; Others: individuals who only experienced one SARS-CoV-2 infection 

with genotype other than the D614G, Beta, Delta and Omicron variants; Vacc: individuals who had received at least 

one dose of vaccines but had not yet been infected by SARS-CoV-2; Vacc-Omicron: individuals who were 

vaccinated first then infected by Omicron; D614G-Omicron: individuals who were first infected by D614G then 15 

infected by Omicron; Beta-Omicron: individuals who were infected by Beta first then infected by Omicron; Delta-

Omicron: individuals who were infected by Delta first then infected by Omicron; Others-Omicron: individuals who 

were infected by a variant other than  D614G, Beta, Delta and Omicron  first then infected by Omicron; Repeat 

exposures: individuals who were exposed to SARS-CoV-2 antigens more than once (through vaccination or 

infection) without Omicron infection; Repeat exposures-Omicron: individuals who were exposed to SARS-CoV-2 20 

antigens more than twice (through vaccination or infection) then infected by Omicron. 
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Materials and Methods 

1. Cohort design 

We conducted a prospective household cohort study of SARS-CoV-2 transmission at an urban and a rural site in South 

Africa from July 2020 to August 2021(4). The rural site was in Agincourt, a rural community in Mpumalanga 

Province, which has been a longstanding health and socio-demographic surveillance system site. The urban site was 5 

in Klerksdorp, an urban community located in the North West Province. This study was built upon the larger multi-

year Prospective Household cohort study of Influenza, Respiratory Syncytial virus and other respiratory pathogens 

community burden and Transmission dynamics (PHIRST), which was conducted from 2016 to 2018 to monitor 

transmission of respiratory pathogens (54). The study was repurposed for SARS-CoV-2 during the pandemic. To study 

infection and reinfection with SARS-CoV-2, a total of 222 households (114 in the rural site and 108 in the urban site) 10 

with at least 3 household members were enrolled between July 2020 and August 2021, consisting of 638 and 557 

participants in the rural and urban site, respectively. In the rural site, we first approached households from the 2017 

and 2018 cohorts, and in the urban site, those from the 2016, 2017 and 2018 cohorts. To supplement the sample size 

of the cohorts, we enrolled additional households at each site using the same methods as for the initial PHIRST study. 

Baseline demographic factors and information on underlying medical conditions were collected at enrollment (Table 15 

1). Throughout the study period, household members were visited twice a week by study nurses and trained lay field 

workers for collection of biological and clinical data. At each visit, upper respiratory tract specimens were collected 

using mid-turbinate nasal swabs, irrespective of symptom presentation. Data on symptoms, healthcare seeking 

behavior, hospitalization and death were captured at each follow up visit on a REDCap tablet-based real-time database. 

Respiratory specimens were tested by rRT-PCR for SARS-CoV-2. The lineage types of positive rRT-PCR specimens 20 

were determined by variant-specific rRT-PCR assay. Sera were collected at enrollment and approximately every 2 

months during the 11-month follow-up period from all participants (see Figure 1 for timeline) and tested for the 

presence of SARS-CoV-2 antibodies.  

2. Laboratory methods 

The detailed laboratory methods were previously described (4). To briefly summarize, nucleic acids for real-time 25 

reverse transcription polymerase chain reaction (rRT-PCR) tests were extracted using the Hamilton Microlab 

NIMBUS Instrument (Hamilton, Nevada, USA) with the STARMag Universal Cartridge kit (Hamilton, Nevada, USA) 

and the STARMag Universal Cartridge kit (Seegene Inc., Seoul, Korea) according to the manufacturer’s instructions. 

Specimens were tested for the presence of SARS-CoV-2 by rRT-PCR using the Seegene Allplex™ 2019-nCoV kit 

(Seegene Inc., Seoul, Korea). Initial positive specimens were re-extracted and tested again. Only specimens with at 30 

least two out of three gene targets confirmed positive during the second test were considered as positive specimens. 

The cycle threshold (Ct) value of each rRT-PCR test was recorded for further analysis. SARS-CoV-2 lineage was 

determined through Seegene variant I and II typing assays which differentiate variants Alpha (B.1.1.7), Beta (B.1.351), 

Delta (B1.617.2) and Gamma (P.1) (4). 

    Serum specimens were collected using venous blood, centrifuged into serum separator tubes and stored refrigerated 35 

immediately and transported to NICD. Aliquots of prespecified volume according to manufacturer instructions 
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were tested for the presence of SARS-CoV-2 antibodies by the Roche Elecsys Anti-SARS-CoV-2 assay against 

nucleocapsid (N) antigen (55). Assay readout above or equal to cutoff index 1 is considered as sero-positive, while 

below cutoff index 1 is considered as sero-negative. Negative control validations were performed using serum 

specimens from participants at both study sites prior to 2020 (4). An independent study benchmarking performances 

of available commercial and laboratory serologic assays demonstrated that the Roche Elecsys Anti-SARS-CoV-2 5 

assay had high sensitivity and specificity across a wide range of severity spectrum for at least 6 months post-infection 

(56).  

3. Statistical analysis 

3.1 Seroconversion and vaccination.  

Combining the longitudinal rRT-PCR assays and serological test results from the two study sites, we found that the 10 

seroconversion rate was 97.6% (583/600) among primary infection episodes with at least one blood specimen collected 

30 days after their first rRT-PCR positive test. Among 639 individuals with negative serological specimen(s) after 

their first blood specimen was taken but who seroconverted later, 86% (549/639) were confirmed by rRT-PCR during 

the study period, suggesting that twice-weekly rRT-PCR testing captured most of the infections during the study 

period. Among 706 seroconverted individuals with at least one follow-up blood specimens after seroconversion, only 15 

40 (5.7%) later sero-reverted (sero-reversion is defined as sero-converted individual who became sero-negative the 

subsequent serologic test). The baseline characteristics of all individuals are reported in Table 1. 10% individuals 

received at least one dose of SARS-CoV-2 vaccine and 5% were fully vaccinated within the study period of PHIRST-

C.  

3.2 Defining and typing variant-specific infection episodes.  20 

For each individual in the study, we defined the duration of a SARS-CoV-2 infection episode as the time interval 

between the first and the last of a set of positive rRT-PCR test, where consecutive positive tests were separated by 

less than 30 days. If at least one positive rRT-PCR test within the infection episodes was identified as any of the 

variants of concern (VOC) (defined by the WHO) Alpha (B.1.1.7), Beta (B.1.351), Delta (B.1.617.2), the lineage of 

the infection episode was assigned to the identified VOC. If all lineage-typed rRT-PCR tests within an infection 25 

episode were identified as the D614G, then the lineage of the infection episode was assigned to D614G. If none of the 

positive rRT-PCR specimens within an infection episode had a lineage defined, the lineage of the infection episode 

was labeled as inconclusive. In total, we observed 669 infection episodes, including 634/669 (95%) with defined 

lineages. For the 35/669 (5%) infection episodes with inconclusive lineages, we assigned the infection to the dominant 

SARS-CoV-2 lineage at the study site identified within the month of the infection episode. After lineage extrapolation, 30 

108/669 (16%) of the infection episodes were estimated to be caused by D614G lineage; 245/669 (37%) infection 

episodes were estimated to be caused by VOC Beta lineage; 299/669 (45%) infection episodes were estimated to be 

caused by VOC Delta lineage; 17/669 (3%) were estimated to be caused by other lineages.  

3.3 Characterizing the relative viral RNA shedding kinetics of SARS-CoV-2 infection episodes.  

When interpreting Ct values from rRT-PCR test by the Seegene Allplex™ 2019-nCoV kit, it is important to stress that 35 

the Ct value of a single rRT-PCR test is not a direct measurement of the quantity of viral genetic material present in 

an individual specimen (in absolute terms) (57). Many factors could influence the Ct value of a rRT-PCR test, 
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including but not limited to the specimen quality, extraction method, chemistry of reagents, gene targets. Further, Ct 

values cannot be directly compared between assays of different types (58). However, comparing serial Ct values and/or 

Ct values of different groups of population collectively, based on rRT-PCR tests from the same assay and laboratory 

setting, does reflect the relative variation in terms of viral genetic material concentration over time and between 

population subgroups (57, 58). 5 

    We measure the viral RNA shedding intensity of a given specimen as the cycle threshold value of Seegene Allplex™ 

2019-nCoV kit’s N gene target Ct value of the specimen, i.e., -.//0*%$#*(1 = ./+$#$, − .//0*%$#*(1 . For the Ct value, 

we are only considering the N gene target to avoid between-target variation. In this study, instead of directly 

interpreting the Ct value of a single rRT-PCR test, we fit a mathematical model to capture the temporal kinetics of Ct 

for longitudinally collected specimens and extract statistical summaries of RNA shedding intensity for each infection 10 

episode. In particular, following the method presented in (21), for each infection episode, we modelled the Ct kinetics 

during the “RNA proliferation stage”, characterized by linear decrease in Ct until a trough in Ct is reached; and during 

the “RNA clearance stage”, characterized by linear increase (in Ct) from the trough until the last rRT-PCR positive 

result. The duration of the “RNA proliferation stage” 00 was defined as the time from Ct first exceeding the detection 

threshold (i.e., .//0*%$#*(1 < 40)	until the trough of Ct; the duration of the “RNA clearance stage” 0% was defined as 15 

the time from trough Ct to Ct reaching above detection threshold (i.e., .//0*%$#*(1 ≥ 40). The duration of rRT-PCR 

positivity 0/ for each infection episode was defined as the total duration of the RNA proliferation and RNA clearance 

stages: 0/ = 00 + 0%. The duration of RNA proliferation 00, RNA clearance 0%, rRT-PCR positivity 0/, as well as the 

trough shedding intensity .//0*%$#*(1  were estimated for each infection episodes using Markov Chain Monte Carlo 

(MCMC) method.  20 

    The fit of the RNA shedding trajectories for each variant are shown in Figure 2A-G. In addition, we performed 

multivariable regression analysis to evaluate the dependencies of duration of rRT-PCR positivity and trough Ct on 

participants’ characteristics including age, sex, BMI, HIV infection status, symptom status, variant type, and evidence 

of prior infection. Since the nasal swab sampling period ended on August 28, 2021, around the peak of the Delta wave 

in both sites, we limit our analysis to infection episodes with first positive PCR sample 30 days prior to the end of 25 

sampling to avoid censoring bias. The result of the regression is presented in Figure 3A-B. 

3.4 Assigning the lineage of prior infections among seropositive individuals.  

For individuals who seroconverted without a rRT-PCR confirmed infection episode (prior to the start of the PHIRST-

C cohort), we assigned the lineage type of the individual’s unobserved infection according to lineages’ prevalence 

(based on the infection episodes that had lineage information) at the study site in the month of the earliest seropositive 30 

specimen.  

3.5 Risk factors associated with SARS-CoV-2 (re)infections.  

For each individual in the urban and rural sites, we first reconstructed the status of prior and ongoing infections at a 

daily time resolution, based on the lineage-typed infection episodes and serologic results described in Section 3.3 and 

3.4 above. Specifically, we denoted a person-day observation of individual 7’s infection status at day / as 8$,. We set 35 

8$, = 1 if individual 7 acquired infection on day / (i.e., the date of viral acquisition, marking the start of an infection 

episode), and set 8$, = 0 if individual 7 didn’t acquire infection on day /. Individuals without rRT-PCR positive results 
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throughout the study period were assumed to escape infection throughout the observation period (8$, = 0, for all t). 

For individuals with observed infection episodes during the study period, the individual Ct kinetics were modelled as 

in Section 3.3. The model allowed us to estimate the time at which Ct crossed the rRT-PCR detection limit (./	 =
	40). We assumed that the time /$(2 of acquiring infection (8$

,!"# = 1)	occurred 9:%&30,$% = 4 days prior to the Ct 

crossing the detection threshold (59). The time period from infection onset to 30 days after viral RNA clearance (i.e., 5 

the estimated time of Ct crossing below the rRT-PCR detection limit at cycle threshold of 40) was considered a period 

of active infection, when an individual cannot get infected again. Thus, this refractory period was excluded from the 

survival analysis of (re)infection hazard. We also considered a sensitivity analysis with a 15-day exclusion after viral 

RNA clearance. We also censored participants after they received their first dose of vaccine. In Figure S1, we visualize 

the vaccine uptake overtime for both J&J/Janssen Ad26.COV2.S and the Pfizer/BioNTech BNT162b2. 10 

After having reconstructed the daily infection status of each individual, we modeled the risk of (re)infection for 

each individual using piecewise exponential models of survival analysis with time varying covariates (60, 61). The 

piecewise exponential model is estimated by performing Poisson regression with the daily infection status of each 

individual as the binary outcome and daily covariates (60, 61). The covariates considered in the regression analysis 

included the individual’s age (allowing for variant-specific age effects), sex, body mass index (BMI), HIV infection 15 

status, household size, household crowding, variant type, study site, time since prior infection, SARS-CoV-2 exposure 

intensity from household members with on-going SARS-CoV-2 infection, and SARS-CoV-2 prevalence in the 

community. We estimated that the SARS-CoV-2 exposure intensity from household members with on-going SARS-

CoV-2 infections at time / as the sum of the estimated dCts of all infected household members (62). The dCt of 

household member ; at time / was measured as  d./4, = ./+$#$, − ./4, . Thus, the household exposure intensity =$, 20 

exerted on individual 7 at time / can be expressed as =$, ∝ ∑ d./4,45$ , where ; is the sum over all infected household 

members at time /. We further discriminated the household exposure intensity during the RNA proliferation and RNA 

clearance phases of infections in household members. We estimated the weekly SARS-CoV-2 community prevalence 

as the prevalence of each variant in the entire study site (no of variant-specific infections that week/population tested 

that week) and use the variant-specific prevalence as a proxy for the SARS-CoV-2 community exposure intensity. We 25 

included household- and individual-level hierarchical random effects, as well as “day-of-week” and “day-of-year” 

random effects in the regression model. The full model selection procedure is reported in Table S1 (the model selected 

was model 16, corresponding to regression results presented in Figure 3C). 

    We considered whether saturation effects could possibly affect our estimates of infection risk in the proliferation 

and clearance phases. If the risk of transmission in the household setting was very high during the proliferation stage, 30 

so that most household members were infected at the end the proliferation stage of the index case, there may not be 

enough observations to power the estimate of transmission hazard during the clearance stage. Empirically, however, 

we found that transmission saturation was uncommon for the participating households. We define a household 

transmission cluster as a group of infections separated no more than 14 days by their time of infections (equivalent to 

hierarchical clustering based on infected individuals’ time of infection with single-linkage). In Figure S3, we plot the 35 

distribution of the size of household clusters as a function of the number of individuals in the household (household 

size). We found than only 10 household transmission clusters were saturated (all members were infected), and the 
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median size of the household cluster was 38% (proportion of household members infected). Thus, saturation was not 

an issue, and there were enough susceptible individuals to power the estimation of the hazard of transmission form 

infected individual during the clearance phase of infection. 

Since the nasal swab sampling period ended on August 28, 2021, around the peak of the Delta wave in both sites, 

we limit our analysis to infection episodes with first positive PCR sample 30 days prior to the end of sampling to avoid 5 

censoring bias. In total, 21% (303407 person-days/1472400 person days) of the total person-days of observation were 

excluded from the regression during the entire study period due to missing nasal swab visits, missing serologic status, 

or individuals experiencing an active infection episode. A household with an individual with chronical SARS-CoV-2 

infection was also excluded. The hazard ration of the piecewise exponential model is presented in Figure 3C 

(corresponding to Model 16 in Table S1). We conducted two additional sensitive analyses with slight variation of this 10 

model: in the first sensitivity analysis (Figure S4A) we censored individuals until 15 days post viral RNA clearance 

(instead of 30 days in the main analysis); in the second one (Figure S4B) we used logistic regression (logic link) rather 

than Poisson regression (log-link) (63). 

 

  15 
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Table S1 Model selections on the covariates of the piecewise exponential model for the individual risk of (re)infection. 
Model  0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Akaike Information Criterion (AIC) 8539 8473 8352 8347 8349 8324 8130 8134 8105 8093 8079 8072 8073 8021 8015 7908 7852 
ΔAIC 0 -66 -187 -192 -190 -215 -409 -405 -434 -446 -460 -467 -466 -518 -524 -631 -686 

                                              Model parameters 

Fi
x 

community exposure intensity * * * * * * * * * * * * * * * * * 
household exposure intensity (overall)†  *                

household exposure intensity (proliferation)   * * * * * * * * * * * * * * * 
household exposure intensity (clearance)   * * * * * * * * * * * * * * * 

sex    * * * * * * * * * * * * * * 
age      * * * * *         

BMI      * * * * * * * * * * * * 
sero-positivity       * * * * * * * * * * * 

HIV infection status        * * * * * * * * * * 
variant type         * * * * * * * * * 

age (WT)          * * * * * * * * 
age (Beta)          * * * * * * * * 

age (Delta)          * * * * * * * * 
site           * * * * * * * 

household size            * * * * * * 
crowding             * * * * * 

R
an

do
m

 household              *    
household/individual‡                * * * 

day-of-week                * * 
day-of-year-symmetrical§                 * 

† “household exposure intensity (overall)” do not differentiate weather the viral shedding is in the proliferation or the clearance stage. 
‡ “household/individual” represents household and individual level hierarchical random effects. 
§ “day-of-year-symmetrical” is calculated as the mode of the day of the year minus 365/2 so that the first and last day of the year have the same label, reflecting 
the temporal symmetry in seasonality. 5 
* Indicates covariates included in the model. 
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4. Reconstructing the SARS-CoV-2 prior infection/vaccination history in the Dr Kenneth Kaunda District by 
September 2021. 
In this Section, we use PHIRST-C’s urban site as a sentinel for SARS-CoV-2 antigen exposure(s) history (including 

both infection and vaccination) for the broader district where the study is located (Dr Kenneth Kaunda District). We 

reconstruct the population-level prevalence of different type of antigen exposures over time before Omicron and use 5 

this information as the initial condition in models that project the impact of Omicron. We focus on the urban site 

(Klerksdorp) as it is a major city of the Dr Kenneth Kaunda District.  

4.1 Estimating the reporting rates of D614G, Beta, and Delta during the first three epidemic waves in the Dr 

Kenneth Kaunda District. 

Here we compare the carefully monitored weekly PHIRST-C infection data with weekly surveillance data for the 10 

broader district to estimate aspects of SARS-CoV-2 dynamics in the district, including the rate of under-reporting for 

each of the pre-Omicron variants, pre-Omicron infection histories, and the impact of the Omicron wave. The dark blue 

bars in Figure 4F top panel shows the weekly incidence !!"#$(#) of SARS-CoV-2 cases in the Dr Kenneth Kaunda 

District, North West Province, South Africa during the first three epidemic waves captured by SARS-CoV-2 

surveillance. We calculate the weekly cumulative case rate %!"#$(#) at time # as %!"#$(#) = ∑ !!"#$(()
%
&'($$)	+,,,.,. , 15 

where week 12, 20202 is the week when the district starts reporting SARS-CoV-2 cases. We denote the cumulative 

infection attack rate at time # (proportion of the population infected by each of these variants at time t) for D614G, 

Beta, Delta (and others) variant as %/01$!%/2034+56 (#) , %/01$!%/207$%" (#) , and %/01$!%/203$8%"	&	:%;$<#(#)  respectively. We estimate 

%/01$!%/20
34+56 (#), %/01$!%/207$%" (#), and %/01$!%/203$8%"	&	:%;$<#(#) within the time period of the PHIRST-C cohort based on PHIRST-

C’s serology and variant-typed SARS-CoV-2 infection episodes (Detailed in Materials and Methods Section 3). We 20 

denote the reporting rate of D614G, Beta, and Delta (equal to Others) in the urban site as )34+56 , )7$%" , and 

)3$8%"	&	:%;$<#. We assume that the reporting rate for each variant (within each epidemic wave) is constant and that 

Other variants (low frequency, mostly in between second and the third waves. See Figure 1F) have the same reporting 

rate as Delta. The cumulative case rate %!"#$(#)  and cumulative infection rates %/01$!%/2034+56 (#) , %/01$!%/207$%" (#) , and 

%/01$!%/20
3$8%"	&	:%;$<#(#)  at time #  satisfy %!"#$(#) = 	)34+56 × %/01$!%/2034+56 (#) +	 	)7$%" × %/01$!%/20

7$%" (#) + )3$8%"	&	:%;$<# . 25 

Given %!"#$(#) ,  %/01$!%/2034+56 (#) , %/01$!%/207$%" (#) , and %/01$!%/203$8%"	&	:%;$<#(#)  for #  within the PHIRST-C cohort, we can 

estimate )34+56 , )7$%" , and )3$8%"	&	:%;$<#  using linear regression without intercept. The regression analysis was 

performed using R package lme4 version 1.1-27.1 (64).The estimates are reported in Table S2. 

 

Table S2: Reporting rate for each variant during the first three epidemic waves in Dr Kenneth Kaunda district, 30 

estimated by comparing infections in the PHIRST study with passive surveillance data in the broader district. 

Parameter Estimate 95% CI 

)34+56  0.036 0.035 – 0.038 

)7$%"  0.033 0.030 – 0.036 

)3$8%"	&	2%;$<# 0.094 0.087 – 0.010 
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4.2 Estimating the weekly incidence rate of SARS-CoV-2 infection based on case incidence and reporting rate 

in Dr Kenneth Kaunda 

Based on the variant-specific reporting rate )= (- ∈ {06144, 67#8, 079#8	&	;#ℎ7=>}) estimated in Section 4.1 and 

the variants’ proportions @=(#) at a given time point #, we can express the overall reporting rate )2>$<"88(#) at time # 

as: 5 

)2>$<"88(#) =A)= × @=(#)

=	

= !!"#$(#) !/01$!%/20(#)⁄  

 

Where !!"#$(#) is the weekly incidence rate of SARS-CoV-2 cases reported to the Dr Kenneth Kaunda District at time 

# and !/01$!%/20(#) is the weekly incidence rate of SARS-CoV-2 infections. We can thus estimate !/01$!%/20(#) as  

!/01$!%/20(#) = !!"#$(#)/)2>$<"88(#) 10 

The estimated !/01$!%/20(#) prior to the end of PHIRST-C (September 2021) is visualized in Figure 4F top panel (light 

blue bars prior to September 2021). 

4.3 Reconstructing the SARS-CoV-2 antigen exposure history in Dr Kenneth Kaunda by September 2021. 

In addition to allowing to trace SARS-CoV-2 infection history in detail, the PHIRST-C cohort also recorded 

participants’ timing of vaccinations. Specifically, at time #, we denote the proportion of the PHIRST-C urban site 15 

population with a single prior SARS-CoV-2 infection, which is to D614G, as @34+56
$?@2

(#); with @7$%"
$?@2

(#) and @3$8%"
$?@2

(#) 

representing the same quantities for Beta and Delta. We denote past vaccination (at least one dose) as @A"!!
$?@2

(#); with 

repeat exposures (including repeat infections, vaccination followed by infection, or infection followed by vaccination) 

as @BC
$?@2

(#). Then we can express the proportion of population with past SARS-CoV-2 infections at time t as: 

@/01$!%/20(#)
$?@2

(#) = 	@34+56
$?@2

(#) +	@7$%"
$?@2

(#) +	@3$8%"
$?@2

(#) +	@BC
$?@2

(#) 20 

 If we denote the cumulative infection attack rate in Dr Kenneth Kaunda %/01$!%/20(#) = ∑ !/01$!%/20(()
%
&'.  and 

assume the PHIRST-C urban site is a representative survey of the population in Dr Kenneth Kaunda, we can express 

the cumulative prevalence of past exposure of a given exposure type - at time # as: 

%=(#) = %/01$!%/20(#) × @=
$?@2

@/01$!%/20(#)
$?@2

D 	 

Where - ∈ {06144, 67#8, 079#8, E7@78#	FG@H>I=7>, J8KKLM8#7N}. In Figure S6 (below) and Figure 4F bottom 25 

panel, we visualize the proportion of population with a specific SARS-CoV-2 antigen exposure history. 

5. Modelling the transmission dynamics of the Delta and Omicron variant from September 2021 to the end of 

Omicron wave 

5.1 Overview of protective immunity 

To project the impact of Omicron, we need to model how immunity from infection with pre-Omicron variants and/or 30 

vaccination will impact the probabilities of infection, transmission and severe outcomes. The effectiveness of 

protective immunity (!F) can be measured very broadly as !F = 1 − EE where EE is the relative risk of an outcome 

of interest (infection, transmission, hospitalization, etc.) and the comparison is against individuals with no prior 

immunity or with different types of immunity. In particular, we consider three aspects of protection from prior 

infection/vaccination:  35 
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1) Prior infection/vaccination could reduce the host’s susceptibility to reinfection !F/, measured as !F/ = 1 −

EE/ where EE/ is the relative risk of reinfection/breakthrough infection when compared to the infection risk 

in a naïve population, controlling for same level of exposure.  

2) Prior infection/vaccination could reduce the risk of onward transmission given reinfection/breakthrough 

infection !F%|/ , measured as !F%|/ = 1 − EE%|/  where EE%|/  is the relative risk of onward transmission for 5 

reinfections/breakthrough infection when compared to that of primary infections, conditional on the same 

contact rate. Here EE%|/ = EE%G|/ × E%#|/ can be further broken down into the product of reduction in the 

duration and intensity of shedding (EE%G|/ and EE%#|/).  

3) Prior infection/vaccination could reduce the risk of disease given reinfection/breakthrough infection. The 

concept of COVID-19 disease is generic and could encompass a wide spectrum of severity endpoint including 10 

symptomatic cases, hospitalizations, and deaths. In this study, we used symptomatic illness as the severity 

end point. The effectiveness of protective immunity against being symptomatic case, conditional on infection 

can be measured as !F!|/ = 1 − EE!|/ , where EE!|/  is the relative risk of disease for 

reinfections/breakthrough infections compared to primary infections. 

5.2 Modelling boosting and evasion of protective immunity in the Omicron era 15 

Repeat exposures to SARS-CoV-2 antigens can result from repeated infections, booster shots following primary 

vaccine schedule(s), infection following vaccination or vice versa. Multiple exposures could stimulate a recall 

response and boost the level of protective immune effectiveness !F through reducing EE further from the baseline 

protective immunity provided by primary exposure. For example, let’s denote the protective immunity conferred by 

primary infection with a pre-Omicron (pOm) strain as !F@:H(@;P) = 1 − EE@:H(@;P). We can express the level 20 

of protective immunity conferred by reinfection with pre-Omicron strains as !F@:HI@:H(@;P) = 1 −

EE@:HI@:H(@;P) = 1 − QEE@:H(@;P)R
+JK!"#

, with S@:H > 0 measuring the degree of immunity boosted by 

reinfection with a pre-Omicron strain. For EE@:H(@;P) < 1 ), the larger S@:H , the greater the reduction 

EE@:HI@:H(@;P) when compared to EE@:H(@;P), and the higher the protection conferred by boosting.  

    On the other hand, in face of an antigenically distinct variant like Omicron, prior immunity may not be as efficacious 25 

due to reduced ability to recognize the antigen through immune memory, leading to elevation in EE and consequently 

reduction in !F.  For example if we denote the protective immunity conferred by primary infection with a pre-Omicron 

strain against refection by pre-Omicron as !F@:H(@;P) = 1 − EE@:H(@;P), we can express the level of protective 

immunity conferred by pre-Omicron strain infection against Omicron (Om) as !F@:H(;P) = 1 − EE@:H(;P) =

1 − QEE@:H(@;P)R
+IL"#

, where W:H  measures the degree of immune evasion by Omicron. When W:H = 0 , 30 

!F@:H(;P) = !F@:H(@;P), indicating no immune escape. When W:H = 1 , !F@:H(;P) = 0 , indicating 100% 

immune escape. We can further model the combined effects of boosting and immune escape. For example, if we 

consider an individual first infected with a pre-Omicron strain, followed by an Omicron infection, we can express the 

individual’s level of protective immunity against further Omicron infection as !F@:HI:H(;P) = 1 −

EE@:HI:H(;P) = 1 − QEE@:H(@;P)R
+IL"#JK"#

. 35 
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5.3 Notation conventions and an exhaustive list of different types of protective immunity considered. 

Following Section 5.1 and 5.2, we use 1 − EE as a measurement of the level of protective immunity. In particular, 

EE = EEM
=(X)  can be broken down into three independent dimensions: 1) the type of protective immunity - 

(superscript), 2) the antigen exposure history Y that confers immunity (subscript), 3) the viral strain X against which 

immunity is directed (brackets).  5 

Where - ∈ {L, #|L, #N|L, #>|L, ℎ|L} and: 

• L	denotes protection in terms of susceptibility against infection. 

• #|L denotes protection against transmission given infection. 

• #N|L denotes protection against transmission through reduced duration of shedding, given infection. 

• #>|L denotes protection against transmission through reduced intensity of shedding, given infection. 10 

• ℎ|L denotes protection against hospital admission given infection. 

Where Y ∈ {@;P,;P, @;P − @;P, @;P − ;P} and: 

• @;P  denotes immune histories including only one antigen exposure by either pre-Omicron (including 

D614G, Alpha, Beta, Delta, and other non-Omicron variants in South Africa) infection or a primary schedule 

of vaccination. 15 

• ;P denotes immune histories consisting in a single exposure to SARS-CoV-2 via an Omicron infection. 

• @;P − @;P denotes immune histories including at least two antigen exposures with first exposure being 

either pre-Omicron strain or vaccination and second exposure either pre-Omicron strain or vaccination. 

• @;P − ;P denotes immune history including at least two antigen exposures with the first exposure being 

either pre-Omicron strain or vaccination and the second exposure being an Omicron infection. 20 

Where X ∈ {@;P,;P} and: 

• @;P denotes protection against pre-Omicron strains. 

• ;P denotes protection against Omicron. 

 

In this study, since the antigenic difference between Omicron and all previously circulating strains (D614G, Alpha, 25 

Beta, Delta) is much larger than antigenic differences among previously circulating strains (17, 25, 31), we do not 

differentiate immunity between pre-Omicron variants (all pre-Omicron variants confer the same type of homologous 

and heterologous immunity to each other, and we also consider the vaccine to be antigenically similar to pre-Omicron 

strains since it is based on wild type strain). For simplicity, considering the low vaccination rate in South Africa, we 

assume that a full vaccination schedule confers similar levels of protection as an infection with a pre-Omicron strain 30 

(i.e., D614G, Alpha, Beta, Delta). In reality, a full schedule of vaccination likely confers lower level of protection 

against infection over long time scales due to waning, irrespective of the vaccine platforms (15). Differences in long-

term protection against onward transmission and hospitalization remain unclear. For simplicity and given the relatively 

short time scale being considered, we also assume that the first two antigen exposures dominate the acquisition of 

immunity and subsequent infections by Omicron beyond the first two may not change immune memory against 35 

Omicron (26). An exhaustive list of all immunity protection scenarios considered in this study is shown in Table S3. 
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Table S3: List of the definitions of different types of protective immunity. 
Variable name Definition Value/Expression Notes & Reference 

!!!"#$ (#$%)  Relative risk of infection by a pre-Omicron variant 

among individuals previously infected by a pre-

Omicron variant, or in vaccinated individuals 

(breakthrough infection), compared to naïve 

individuals, and conditional on the same contacts. 

0.12 Estimated from this study. 

!!!"#
%|$ (#$%)  

 

Relative risk of onward transmission of pre-

Omicron variants among individuals infected with 

pre-Omicron variant for the second time, or in 

vaccinated individuals (breakthrough infection), 

compared to naïve individuals, and conditional on 

infection.  

0.4 (17) 

'"#$   Degree of immune evasion with respect to 

susceptibility to infection by the Omicron variant. 

NA Free parameter to be 

explored in this study 

(Figure 4A). See also 

expression for !!!"#$ ($%). 

'"#
%|$   Degree of immune evasion with respect to 

reduction in onward transmission by the Omicron 

variant, conditional on infection. 

NA Free parameter to be 

explored in this study 

(Figure 4A). 

)!"#$   Degree of boosted immunity by pre-Omicron 

infection/vaccination with respect to reducing 

susceptibility to infection. 

0.5 Assumed, see also 

expression for 

!!!"#'!"#$ (#$%) 

)!"#
%|$   Degree of boosted immunity by pre-Omicron 

infection/vaccination with respect to reduction in 

onward transmission. 

0.5 Assumed. 

)!"#
(|$   Degree of boosted immunity by pre-Omicron 

infection/vaccination with respect to reduction in 

hospital admission. 

0.5 Assumed. 

)"#$   Degree of boosted immunity by Omicron 

infection/vaccination with respect to reduction in 

susceptibility to infection. 

NA Free parameter to be 

explored in this study 

(Figure 4D). 

)"#
%|$   Degree of boosted immunity by Omicron 

infection/vaccination with respect to reduction in 

onward transmission. 

NA Free parameter to be 

explored in this study 

(Figure 4D). 

!!!"#$ ($%)  Relative risk of infection by Omicron strain 

between population with prior infection by pre-

Omicron strain/full schedule of vaccination* and 

naïve population, conditional on the same 

exposure. 

*!!!"#$ (#$%)+
)'*!"#

  
 

!!!"#
%|$ ($%)  Relative risk of onward transmission by Omicron 

strain (given infection) between population with 

prior infection by pre-Omicron strain/full schedule 

of vaccination* and naïve population, conditional 

on infection. 

*!!!"#
%|$ (#$%)+

)'*!"
$|#
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!!!"#'!"#$ (#$%)  Relative risk of infection by a pre-Omicron strain 

in individuals with more than one prior 

infection/vaccination* (both primary and 

secondary infections are pre-Omicron), compared 

to naïve individuals. 

*!!!"#$ (#$%)+
)+,&!"#

  
 

!!!"#'!"#
%|$ (#$%)  Relative risk of onward transmission (given 

infection by a pre-Omicron strain) in individuals 

with more than one prior infection/vaccination* 

(both primary and secondary infections are pre-

Omicron), compared to naïve individuals. 

*!!!"#
%|$ (#$%)+

)+,&!"
$|#

  
 

!!!"#'!"#$ ($%)  Relative risk of infection by Omicron in 

individuals with more than one prior 

infection/vaccination* (both primary and 

secondary infections are pre-Omicron), compared 

to naïve individuals. 

*!!!"#$ (#$%)+
)+,&!"# '*!"#

  
 

!!!"#'!"#
%|$ ($%)  Relative risk of onward transmission (given 

infection by Omicron) in individuals with more 

than one prior infection/vaccination* (both 

primary and secondary infections are pre-

Omicron), compared to naïve individuals. 

*!!!"#
%|$ (#$%)+

)+,&!"
$|# '*!"

$|#

  
 

!!!"#'"#$ ($%)  Relative risk of infection by Omicron in 

individuals with more than one prior 

infection/vaccination* (with primary infection by a 

pre-Omicron strain/vaccination and secondary 

infection by Omicron), compared to naïve 

individuals. 

*!!!"#$ (#$%)+
)'*!"# +,!"#

  
 

!!!"#'"#
%|$ ($%)  Relative risk of onward transmission (given 

infection by Omicron) in individuals with more 

than one prior infection/vaccination* (with 

primary infection by a pre-Omicron 

strain/vaccination and secondary infection by 

Omicron), compared to naïve individuals. 

*!!!"#
%|$ (#$%)+

)'*!"
$|# +,!"

$|#

  
 

!!"#$ ($%)  Relative risk of infection by Omicron strain in 

individuals with prior infection by Omicron, 

compared to naïve individuals, conditional on the 

same contacts. 

!!!"#$ (#$%)  Assuming similar level of 

protection when compared to 

pre-Omicron strains 

!!"#
%|$ ($%)  Relative risk of onward transmission (given 

infection by Omicron) in individuals with prior 

infection with Omicron, compared to naïve 

individuals. 

!!!"#
%|$ (#$%)  Assuming similar level of 

protection when compared to 

pre-Omicron strains 

!!"#'"#$ ($%)  Relative risk of infection by Omicron in individuals 

with more than one prior infection (both primary 

and secondary infections are with Omicron), 

compared to naïve individuals. 

!!!"#'!"#$ (#$%)  Assuming similar level of 

protection when compared to 

pre-Omicron strains 
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!!"#'"#
%|$ ($%)  Relative risk of onward transmission (given 

infection by Omicron) in individuals with more than 

one prior infection (both primary and secondary 

infections are with Omicron), compared to naïve 

individuals. 

!!!"#'!"#
%|$ (#$%)  Assuming similar level of 

protection when compared to 

pre-Omicron strains 

!!"#'"#
%|$ ($%)  Relative risk of hospital admission (given infection 

by Omicron) in individuals with more than one prior 

infection (both primary and secondary infections 

are with Omicron), compared to naïve individuals. 

!!!"#'!"#
%|$ (#$%)  Assuming similar level of 

protection when compared to 

pre-Omicron strains 

 
* For simplicity, given the low vaccination rate in South Africa, we assume that a full schedule of vaccination confers a similar level of protection 

as infection with pre-Omicron strains (i.e., D614G, Alpha, Beta, Delta). In reality, infection-induced immunity may confer superior protection 

against infection in the long run, relative to vaccination (20), while differences in magnitude and duration of protection against transmission and 

hospitalization remain unclear. 5 
5.4 Estimating the growth advantage of Omicron over Delta during its initial emergence. 

When Omicron was discovered in South Africa, the Delta epidemic had already declined and the Delta variant was 

circulating at low level in most locations (20). In Figure S7, the dots show the logarithmic of SARS-CoV-2 weekly 

incidence in the District of Kenneth Kaunda between weeks 35 and 48 in 2021. The epidemic curve can be viewed as 

the supposition of an exponential decay and an exponential growth, with the transition occurring around week 45 of 10 

2021 (coinciding with the emergence of Omicron in South Africa). Here we assume that the exponential decay (prior 

to week 45, 2021) was driven by the Delta variant and the exponential growth (post week 45, 2021) was driven by the 

Omicron variant. We can thus model the epidemic curve as supposition of exponential decay and exponential growth, 

i.e. 

!!"#$(#) = [ × 7N% + 6 × 7O% 15 

Here \ is the growth rate of Delta and ) is the growth rate of Omicron and [ and 6 are the initial Incidence rate for 

Delta and Omicron when # = 0. We fit this function to the observed epidemic curve between week 35 and week 48 

using maximum likelihood method. We find a growth rate of -0.063 per day for the Delta variant (exponential decay) 

and 0.275 per day for the Omicron variant (exponential growth), indicating a growth advantage of 0.338 per day of 

Omicron over Delta in Dr Kenneth Kaunda District. Figure S7 shows the results of the fitting. 20 

5.5 State-space transmission model for Delta variant and projection of Delta spread from weeks 35 to 45, 2021 

Here we consider a “Susceptible-Infectious-Recovered-Susceptible” (SIRS) model for Delta that that tracks infection 

history up to 3 repeat infections/immunizations. The equations governing the model are as follows: 

 
N>.

N#
= −].>. + ^ − _(#)>. − `>. 25 

 
NL.

N#
= ].>. − a.

3$8%"L. − `L. 

 
N=.

N#
= a.

3$8%"L. −b.=. − `=. 
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N>+

H

N#
= −]+

H>+
H + Ω+

H − _(#)>+
H − `>+

H 

 
NL+

H

N#
= ]+

H>+
H − a+

HL+
H − `L+

H 

 5 
N=+

H

N#
= a+

HL+
H −b+=+

H − `=+
H 

 
N>,

N#
= −],>, +A b+=+

H

H
+A _(#)>+

H

H
+b,=, − `>, 

 
NL,

N#
= ],>, − a,L, − `L, 10 

 
N=,

N#
= a,L, −b,=, − `=, 

 

With the following expression for the force-of-infection: 

 15 

]. = \#!"8/0P × )3$8%" × (1 + d)KH>(2f(# + g)/h)) × iL. +A j+
HL+

H

H∈R
+ j,L,k 

 

]+
H = l+

H]. 

 

], = l,]. 20 

 

The infectious periods for L+H and L, can be expressed as follows with respect to L.’s: 

 
1

a+
H =

m+
H

a.
3$8%" 

 25 
1

a,
=

m,

a.
3$8%" 

 

The definitions of the state variables are presented in Table S4, and the definitions of the model parameters are in 

Table S5. We initialized the model based on the reconstructed exposure history (Figure S6) by week 34. The only free 

parameter of the model was the rescaling factor on transmissibility \#!"8/0P (Table S5). We optimized \#!"8/0P so that 30 

the projected curve of new incidence would decay at a rate of -0.063 day-1, matching the observation (Figure S7). The 
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best fit for \#!"8/0P was 0.44. We further projected the SARS-CoV-2 antigen exposure history from week 35 to week 

45 (prior to the emergence of the Omicron variant (Figure S8). 

 

Table S4: State variables of the Delta variant compartmental transmission model. 
Variable name Variable type Definition 

% ∈ - Categorical % Indicates the type of primary SARS-CoV-2 antigen exposure from the set - =
{06144, 6789, 07:89, 07:89, $8ℎ7<=, >9??} denotes immune history including only one antigen 

exposure by pre-Omicron infection (including D614G, Beta, Delta, and other variants other than 

Omicron (“Others”) in South Africa) or a primary schedule of vaccination (“Vacc”). 

=- State variable Fraction of susceptible in the population who are fully naïve against any SARS-CoV-2 infection and are 

unvaccinated. 

=)# State variable Fraction of susceptible in the population who have experienced one infection or a full schedule of 

vaccination, with % denoting the type of primary antigen exposure (i.e., variant type if infection or if 

primed by vaccination). 

=. State variable Fraction of susceptible in the population who have experienced two or more infections and 

immunization combined. We assume that the first two immunizations will have the strongest impact on 

the level of long-term protective immunity. 

A- State variable Fraction of population who got infected by Delta from population in =- 

A)# State variable Fraction of population who got infected by Delta from population in =)# 

A. State variable Fraction of population who got infected by Delta from population in =. 

<- State variable Fraction of population who recovers from Delta in A- compartment and enjoys a temporary period of full 

immunity (100% protection) against any reinfection. 

<)# State variable Fraction of population who recovers from reinfection/breakthrough of Delta infection in A)# 

compartment and enjoys a temporary period of full immunity (100% protection) against any reinfection. 

<. State variable Fraction of population who recovers from further reinfection/breakthrough of Delta infection in the A. 

compartment and enjoys a temporary period of full immunity (100% protection) against any reinfection. 

 5 

Table S5: Model parameters for the Delta variant transmission model. 
Parameter  Definition Value Notes/Reference 

B Annual birth rate in South Africa  0.026 year-1  

C	 Annual death rate in South Africa	 0.008 year-1 	

E/01%2 Baseline transmission rate of Delta 1.02 day-1 Assuming that D614G has a basic reproduction 

number of 2, Alpha is 1.7 times more infectious 

than D614G and Delta is 1.5 times more infectious 

than Alpha and D614G, Alpha, and Delta share the 

same generation interval of 1\G-/01%2 = 5	I9J=. 

ΔE Magnitude of seasonal forcing 0.15 https://smw.ch/article/doi/smw.2020.20224 

L Phase of seasonal forcing in South Africa 180 days *South Africa locates in the Southern Hemisphere; 

we assume a peak of seasonal transmission during 

winter months 

M)# Reduction in susceptibility to infection due 

to protection from primary antigen 

exposure 

!!!"#$ (#$%) See Table S3. 
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M. Reduction in susceptibility to infection due 

to protection from primary and secondary 

antigen exposures 

!!!"#'!"#$ (#$%) See Table S3. 

N3421$56 Transmission scaling factor to account for 

factors such as non-pharmaceutical 

interventions or heterogeneity in mixing 

patterns 

0.44 (Fitted) Estimated for time period after week 35 of 2021, 

see Section 5.6 

1/G-/01%2 Infectious period of Delta’s primary 

infection A- 

5 days In the SIRS model, the generation interval is equal 

to the infectious period. 

P)# Reduction in terms of duration of shedding 

due to protection from primary antigen 

exposure 

*!!!"#
%|$ (#$%)+

)
. 

 

Assuming that reduction of onward transmission 

(Table S3) is evenly split between reduction in 

duration and intensity of shedding. 

1/G)# Infectious period of Delta’s first 

reinfection/breakthrough of infection A)#  

P)#/G-/01%2 NA 

P. Reduction in terms of duration of shedding 

due to protection from primary and 

secondary antigen exposures 

*!!!"#'!"#
%|$ (#$%)+

)
. 

 

Assuming that reduction of onward transmission 

(Table S3) is evenly split between reduction in 

duration and intensity of shedding. 

1/G. Infectious period of Delta’s second 

reinfection/breakthrough infection A.  

P./G-/01%2 NA 

Q)# Reduction in terms of intensity of shedding 

due to protection from primary antigen 

exposures 

*!!!"#
%|$ (#$%)+

)
. 

 

Assuming that reduction of onward transmission 

(Table S3) is evenly split between reduction in 

duration and intensity of shedding. 

Q. Reduction in terms of intensity of shedding 

due to protection from primary and 

secondary antigen exposures 

*!!!"#'!"#
%|$ (#$%)+

)
. 

Assuming that reduction of onward transmission 

(Table S3) is evenly split between reduction in 

duration and intensity of shedding. 

R(8) Vaccination rate over time Time dependent Estimated based on the vaccination rate for 

population in the PHIRST-C urban cohort. 

1/S- Duration of period of full immunity 

following primary infection with Delta 

60 days Assumed 

1/S) Duration of period of full immunity 

following primary infection with Delta 

following first reinfection with Delta 

60 days Assumed 

1/S. Duration of period of full immunity 

following primary infection with Delta 

following repeat reinfections with Delta 

60 days Assumed 

Ω)# Operator that maps the primary exposure 

(Delta infection/vaccination) to different 

susceptible compartment =)# following the 

primary infection. 

Ω)#78244 = R(8)=- 

Ω)#7/01%2 = S-<- 

Ω)
#9/01%2
#98244		 = 0 

 

NA 

 

5.6 State-space transmission model for the Omicron variant and projection of Omicron spread from week 45, 

2021 to the end of the Omicron wave. 

For simplicity, we consider a hypothetical scenario where Omicron has successfully displaced all other circulating 

variants in South Africa and explore how the transmission dynamics of Omicron is shaped by the immune history of 5 
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previously circulating strains and vaccination. Accordingly, at the time of writing, Omicron had replaced Delta in 

many countries that report variant-specific prevalence estimates, including South Africa. We do not consider variant 

co-circulation and the emergence of new variant during the Omicron wave, although such scenarios are certainly 

possible.  Similar to the Delta variant, we consider a “Susceptible-Infectious-Recovered-Susceptible” model for 

Omicron that tracks infection history up to 3 repeat infections/immunizations, with additional Omicron-specific 5 

properties of immune evasion and enhanced transmissibility. The equations governing the model are as follows: 
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With the following expression for the force-of-infection: 
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],
0 = l,

0]. 

 

The infectious periods for L+H and L,0 can be expressed as follows with respect to L.’s: 

 
1

a+
H =

m+
H

a.
:H/!<20 5 

 
1

a,
0 =

m,
0

a.
:H/!<20 

 

The definitions of the state variables are presented in Table S6, and the definitions of the model parameters are in 

Table S7.  10 

Based on the transmission model, we explored how the degree of Omicron’s immune evasion against infection W:H/  

and onward transmission W:H
%|/  would shape the trajectory of the epidemic (See Section 5.2 and Table S3 for the 

definition of W:H/  and  W:H
%|/ ). We scanned through values of W:H/  and  W:H

%|/  ranging from 0 to 1, with a step size of 

1/30. We also considered a potential change in the generation interval (GI) of Omicron when compared to the Delta 

variant. We explored possible values for Omicron’s generation time, including 3, 4, 5, and 6 days. For each pair value 15 

pair of W:H/  and  W:H
%|/  and GI, we fit the ratio of basic reproduction number between Omicron and Delta /$

"#%&'()

/$*+,-.
  so 

that the growth rate of Omicron matched the observed initial growth of the Omicron wave (Figure S7). We fit the 

fraction of individual in the L. compartment at week 45, 2021 so that the peak of the projected incidence of Omicron 

infections matched the observed Omicron case incidence.  

We then calculated the characteristics of the projected Omicron wave, including the estimated 1) infection attack rate, 20 

2) epidemic duration, 3) fraction of reinfections/breakthrough infections among all infections, 4) the relative reduction 

of realized GI (average GI over both primary infections and reinfections/breakthrough of infections) with respect to 

intrinsic GI, and the 5) infection case ratio (number of cases reported to the Dr Kenneth Kaunda District during the 

Omicron wave divided by the total number of projected Omicron infections),  for a  given W:H/  and  W:H
%|/  and GI. 

Figure S9 visualizes projected characteristics of the Omicron wave as a function of W:H/  and  W:H
%|/  and GI. Figure 4A-25 

E represents a scenario where the GI of Omicron is 4 days, shorter than Delta (11, 17, 18, 26), where white dots 

represent our best knowledge of the degree of Omicron’s evasion of prior immunity against infection and onward 

transmission (64).  

 

Table S6: State variables of the Omicron variant compartmental transmission model. 30 
Variable name Variable type Definition 

#$% ∈ {#$%} Categorical #$% ∈ {#$%} = {06144, 6789, 07:89, 07:89, $8ℎ7<=, >9??} denotes immune history including only 

one antigen exposure by pre-Omicron infection (including D614G, Beta, Delta, and other variants 

other than Omicron (“Others”) in South Africa) or a primary schedule of vaccination (“Vacc”) 
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% ∈ - Categorical % Indicates the type of primary SARS-CoV-2 antigen exposure from the set - = {#$%} ∪ {$%}, 

where and $% denotes immune history including only one antigen exposure to Omicron. 

W ∈ X Categorical W Indicates the specific combination of primary and secondary SARS-CoV-2 antigen exposures from 

the set X = {#$% − #$%} ∪ {#$% − $%} ∪	{$% − $%}, where #$% − #$% denotes immune 

history including at least two antigen exposures with first exposure being either pre-Omicron infection 

or vaccination and second exposure either pre-Omicron infection or vaccination; #$% − $% denotes 

immune history including at least two antigen exposures with first exposure being either pre-Omicron 

infection or vaccination and second exposure being Omicron infection; $% − $% denotes immune 

history including at least two antigen exposures with first and second exposure both being Omicron 

infections. 

=- State variable Fraction of susceptible in the population who are fully naïve against any SARS-CoV-2 infection and 

are unvaccinated. 

=)# State variable Fraction of susceptible in the population who have experienced one infection or a full schedule of 

vaccination, with % denoting the type of primary antigen exposure (i.e., variant type if infection or if 

primed by vaccination). 

=.5 State variable Fraction of susceptible in the population who have experienced two or more infections and 

immunization combined, with W denoting the type of primary and secondary antigen exposure 

(conferred by (re)infections or vaccinations). We assume that the first two immunizations will have the 

strongest impact on the level of long-term protective immunity. 

A- State variable Fraction of population who got infected by Omicron from population in =- 

A)# State variable Fraction of population who got infected by Omicron from population in =)# 

A.5 State variable Fraction of population who got infected by Omicron from population in =35 

<- State variable Fraction of population who recovers from Omicron in A- compartment and enjoys a temporary period 

of full immunity (100% protection) against any reinfection. 

<)# State variable Fraction of population who recovers from reinfection/breakthrough of Omicron infection in A)# 

compartment and enjoys a temporary period of full immunity (100% protection) against any 

reinfection. 

<.5 State variable Fraction of population who recovers from further reinfection/breakthrough of Omicron infection in the 

A.5 compartment and enjoys a temporary period of full immunity (100% protection) against any 

reinfection. 

 

Table S7: Model parameters for the Omicron variant transmission model. 
Parameter Definition Value Notes/Reference 

B Annual birth rate in South Africa  0.026 year-1  

C	 Annual death rate in South Africa	 0.008 year-1 	

E/01%2 Baseline transmission rate of Delta 1.02 day-1 See Table S5. 

ΔE Magnitude of seasonal forcing 0.15 (65) 

L Phase of seasonal forcing in South 

Africa 

180 days *South Africa is located in the Southern 

Hemisphere; we assume a peak of seasonal 

transmission during winter months 

M)# Reduction in susceptibility to 

Omicron infection due to protection 

from primary antigen exposure. 

!!#$ ($%) Taken into consideration of Omicron’s 

ability ('"#$ ) to evade immunity conferred by 

non-Omicron variant See Table S3 for 

detailed definition for each term of 
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!!#$ ($%) when % (Table S6) takes 

different value. 

M.5 Reduction in susceptibility to 

Omicron infection due to protection 

from primary and secondary antigen 

exposures. 

!!5$ ($%) Taken into consideration of Omicron’s 

ability ('"#$ ) to evade immunity conferred by 

non-Omicron variant See Table S3 for 

detailed definition for each term of 

!!5$ ($%) when W (Table S6) takes different 

value. 

N3421$56 Transmission scaling factor to 

account for factors such as non-

pharmaceutical interventions or 

heterogeneity in mixing patterns 

0.44 (Fitted) Estimated during the Delta period, and 

assuming this has not change during the 

period of Delta wave. See also Table S5 

1/G-/01%2 Infectious period of  

Delta’s primary infection A- 

5 days See Table S5. 

1/G-"#$4;<5 Infectious period of Omicron’s 

primary infection A- 

3, 4, 5, 6 days 4 days (shorter than Delta) for the reference 

scenario (18, 26), while sensitivity analysis 

of 3-6 days to explore the deviation of 

Omicron’s infectious period deviating from 

Delta. 

='!"#()*+

=',-.$/
 Ratio between Omicron and Delta’s 

reproduction number 

Free parameter  Free parameter to be explored along with 

degree of immune evasion from Omicron 

against susceptibility '"#$  and transmission 

'"#
%|$  (see Table S3). 

P)# Reduction in terms of duration of 

shedding due to protection from 

primary antigen exposure 

*!!#
%|$($%)+

0
1  

 

Assuming that reduction of onward 

transmission (Table S3) is evenly split 

between reduction in duration and intensity 

of shedding. See Table S3 for detailed 

definition for each term of !!#
%|$($%) when 

% (Table S6) takes different value. 

1/G)# Infectious period of Omicron’s first 

reinfection/breakthrough of infection 

A)#  

P)#/G-  NA 

P.5 Reduction in terms of duration of 

shedding due to protection from 

primary and secondary antigen 

exposures 

*!!5
%|$($%)+

0
1  

Assuming that reduction of onward 

transmission (Table S3) is evenly split 

between reduction in duration and intensity 

of shedding. See Table S3 for detailed 

definition for each term of !!5
%|$($%) when 

W (Table S6) takes different value. 

1/G.5 Infectious period of Omicron’s 

second reinfection/breakthrough 

infection A.5  

P.5/G-  NA 

Q)# Reduction in terms of intensity of 

shedding due to protection from 

primary antigen exposures 

*!!#
%|$($%)+

)
. 

 

Assuming that reduction of onward 

transmission (Table S3) is evenly split 

between reduction in duration and intensity 

of shedding. See Table S3 for detailed 
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definition for each term of !!#
%|$($%) when 

% (Table S6) takes different value. 

Q.5 Reduction in terms of intensity of 

shedding due to protection from 

primary and secondary antigen 

exposures 

*!!5
%|$($%)+

)
. 

Assuming that reduction of onward 

transmission (Table S3) is evenly split 

between reduction in duration and intensity 

of shedding. See Table S3 for detailed 

definition for each term of !!5
%|$($%) when 

W (Table S6) takes different value. 

1/S- Duration of period of full immunity 

following primary infection with 

Omicron 

60 days Assumed 

1/S) Duration of period of full immunity 

following primary infection with 

Omicron following first reinfection 

with Omicron 

60 days Assumed 

1/S. Duration of period of full immunity 

following primary infection with 

Omicron following repeat 

reinfections with Omicron 

60 days Assumed 

Ω)# Operator that maps the primary 

exposure (Delta 

infection/vaccination) to different 

susceptible compartment =)# 

following the primary infection. 

Ω)#7"#$4;<5 = S-<- 

Ω)#9"#$4;<5 = 0 

 

NA 

Ω.5 Operator that maps the circulating 

variant of interest to the imprinted 

susceptible compartment 

=.5following the first reinfection 

Ω.
57!"#'!"# = 0 

Ω.
59!"#'!"# = S)<)#'"# 

 

NA 

 

6. Modelling the transmission dynamics of Omicron, Delta and a hypothetical variant X after the Omicron 

wave 

Here we modify the transmission model described in Section 5 to evaluate the possibility of a fifth epidemic wave 

after the Omicron wave.  Specifically, we evaluate the potential recurrence of three variants independently: Omicron, 5 

Delta, and a hypothetical variant X, where X is at equal antigenic distance from Omicron and Delta. We consider the 

projected Omicron wave for the reference scenario (RS) shown in Figure 4F. After the Omicron wave, two new 

population groups need to be taken into consideration based on their antigen exposure(s): 1) individuals who were 

primed by the Omicron variant, which accounts for 23% of the population; and 2) individuals who were primed by a 

non-Omicron variant (through infection or vaccination) then reinfected by Omicron, which accounts for 46% of the 10 

population. For any given variant of interest, we denote the level of protection (against infection) conferred after 

primary Omicron infection as 1 − EE:H/ (n8=L8M#	Ho	LM#7=7>#) and after Omicron reinfection/vaccine breakthrough 

as 1 − EE0:HI:H/ (n8=L8M#	Ho	LM#7=7>#), where as EE/  stands for the relative risk of acquiring infection when 

compared to an immunologically naïve individual (1 − EE/ = 0% indicates no protection while 1 − EE/ = 100% 
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indicates perfect protection). For simplicity, we assume protection against transmission 1 − EE%|/ remains constant at 

60% (18, 26).  

6.1 Omicron transmission model 

For the Omicron transmission model, we first consider the same parameters as in the reference scenario as shown in 

Figure 4F, with generation time of 4 days, W:H/ = 0.7 , W:H
%|/

= 0.2 , and the estimated E.:H/!<20/E.3$8%" = 2.37 . 5 

However, for the two population groups of interest 1) those who were primed by Omicron 2) those who have 

experienced a Omicron reinfection/breakthrough we consider their relative risk (with respect to naïve population) of 

acquiring Omicron infection as EE:H/ (;PLK=HM) and EE0:HI:H/ (;PLK=HM), respectively. In Figure S10A, we use 

the transmission model to evaluate the growth rate of Omicron when Omicron is reintroduced into the population for 

all combinations of E:H/ (;PLK=HM) and EE0:HI:H/ (;PLK=HM) ranging from 0 to 1. A growth rate larger than 0 10 

indicates that the Omicron variant is above the epidemic threshold, leading to a recurring fifth epidemic wave, while 

a growth rate lower than 0 indicates that the Omicron variant will not trigger another outbreak after the fourth wave. 

We further consider a scenario (Figure S10B) where the contact rate is twice that of the one during the fourth wave, 

i.e., \#!"8/0P = 0.44 × 2 = 0.88. 

6.2 Delta transmission model 15 

To evaluate the risk of Delta recurrence, we consider the same Delta transmission model described in Materials and 

Methods Section 5.5. However, for the population groups 1) who were primed by Omicron 2) who have experienced 

a Omicron reinfection/vaccine breakthrough, we consider their relative risk (with respect to naïve individuals) of 

acquiring Delta infection as EE:H/ (079#8)  and EE0:HI:H/ (079#8) , respectively. In Figure S10C, we use the 

transmission model to evaluate the growth rate of the Delta variant when it is reintroduced into the population for any 20 

combination of E:H/ (079#8) and EE0:HI:H/ (079#8) ranging from 0 to 1. We further consider a scenario (Figure 

S10D) where the contact rate is twice that of the one during the fourth wave, i.e., \#!"8/0P = 0.44 × 2 = 0.88 (Table 

S5). 

6.3 Transmission model of the hypothetical variant X 

For the transmission model of a hypothetical new variant X (Figure S10E), we consider that variant X has the same 25 

basic reproduction number and generation time as the Delta variant, and the contact rate is twice that of the fourth 

wave, i.e., \#!"8/0P = 0.44 × 2 = 0.88. We additionally assume that variant X is antigenically equally distinct from 

both Omicron and pre-Omicron variant so that the relative risks of reinfection are equal irrespective of the primed 

strain i.e.,  EE:H/ (-) = EE0:H
/ (-). The rest of the model is the same as for Delta. 

  30 
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Fig. S1: Vaccination rate by vaccine types, including J&J/Janssen Ad26.COV2.S (J&J) and the Pfizer/BioNTech 

BNT162b2 (Pfizer). The dashed lines indicate the end of PHIRT-C (August 28, 2021). 

 

  5 
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Fig. S2: (A) Weekly incidence (blue bar) and cumulative incidence (red line) of SARS-CoV-2 infection among 

participants in the rural cohort. (B) Same as (A) but in the urban cohort. 

 
  5 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 26, 2022. ; https://doi.org/10.1101/2022.02.11.22270854doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.11.22270854
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

56 
 

 
Fig. S3: Distribution of the size of the household infection cluster at different household sizes across 222 households 

in both the rural and urban cohort. A household infection cluster with size larger than one is defined as a group of 

infections within the same household with at least two infection episodes within the same cluster with infection time 

separated no more than 14 days. An isolated infection episode is considered an infection cluster with cluster size one. 5 

The sizes of the dots are proportional to the frequency of occurrence for each “household size – cluster size” pair 

among 192 infection clusters. 
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Fig. S4: (A) Discrete time survival analysis using piecewise exponential model (Poisson regression). Hazard ratios 

(HR) along with 95%CIs are reported as solid dots and horizontal lines. The hollow dots are reference class for each 

of the categorical variable. Comparing to results presented in Figure 3C, we consider a censoring time window from 5 

the time of infection to 15 days after viral RNA clearance for each infection episode.  (B) Discrete time survival 

analysis using piecewise logistic model (logistic regression). Comparing to results presented in Figure 3C, we consider 

the piecewise logistic model rather than Poisson model, with the same censoring time window. Odds ratios (OR) along 

with 95%CIs are reported as solid dots and horizontal lines. The hollow dots are reference class for each of the 

categorical variable. *Indicates p<0.05; ** indicates p<0.01; *** indicates p < 0.001. Abbreviations: HIV- (HIV-10 

uninfected individuals), PLWH+ CD4 <200 (Persons living with HIV, CD4+ T cell count under 200 cells/ml), 

PLWH+ CD4 >=200 (Persons living with HIV, CD4+ T cell count equal or above 200 cells/ml). 

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 26, 2022. ; https://doi.org/10.1101/2022.02.11.22270854doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.11.22270854
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

58 
 

 

Fig. S5: (A) Same as Figure 4F but for a low immune escape (LE) scenario with W:H/ = 0.1 and W:H
%|/

= 0.1. (B) Same 

as Figure 4F but for a high immune escape (HE) scenario with W:H/ = 0.9 and W:H
%|/

= 0.9. 
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Fig. S6: SARS-CoV-2 antigen exposure history by the end of PHIRST-C (September 2021) at the District of Dr 

Kenneth Kaunda. 
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Fig. S7: Estimated case growth rate of Delta and Omicron between weeks 35 and 52 of 2021.  Dots are the 

logarithmic of the weekly incidence of SARS-CoV-2 cases reported to the District of Dr Kenneth Kaunda between 

weeks 35 and 52 of 2021. The blue line is the fitted exponential decaying of Delta Incidence while the red line is the 

fitted exponential growth of Omicron wave and the dashed line is the fitted convolution of the two variants. 5 
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Fig. S8: Projection of SARS-CoV-2 antigen exposure history from the end of PHIRST-C (week 35 of 2021, dashed 

line) and until the emergence of Omicron (week 45 of 2021, Figure S7) at the District of Dr Kenneth Kaunda. 
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Fig. S9: The characteristics of the Omicron epidemic wave as a function of vUVW  and  vUV
X|W  and generation time. 

Each row corresponds to different values of generation time (GI) of primary infection. Column one corresponds to 

ratio of basic reproduction number between Omicron and Delta. Column two corresponds to infection attack rate. 

Column three corresponds to duration of the epidemic. Column four corresponds to fraction of 5 

reinfections/breakthrough of infections among all infections. Column five corresponds to the relative reduction of 

realized GI (average GI over both primary infections and reinfections/breakthrough infections) with respect to the 

intrinsic GI. 
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Fig. S10: Possible post-Omicron futures, exploring potential resurgences of Omicron, Delta, or a new variant X, 

under different contact scenarios. Projections are based on the reconstructed immune histories at the end of January 

2022 shown in Fig 4F (i.e., given a reference scenario for Omicron’s immune escape W:H/ = 0.7 and W:H
%|/

= 0.2 ). 

(A) Risk of recurrence of Omicron: phase diagram of the growth rate of Omicron in a recurrent wave, as a function 5 

of the level of protection conferred by Omicron primary infections against Omicron 1 − EE:H/ (;P),  and the level 

of protection conferred by Omicron reinfections/breakthroughs against Omicron 1 − EE0:HI:H/ (;P). Contact 

rates are assumed to remain the same as during the Omicron wave. (B) same as (A) but assuming the contact rate is 

twice of that during the Omicron wave. (C) Risk of recurrence of Delta: Phase diagram of the growth rate of Delta, 

after the initial Omicron wave has subsided, as a function of the level of protection conferred by Omicron primary 10 

infection against Delta 1 − EE:H/ (079#8), and the level of protection conferred by Omicron 

reinfections/breakthroughs against Delta 1 − EE0:HI:H/ (079#8). Contact rates are assumed to remain the same as 

during the Omicron wave. (D) same as (C) but assuming the contact rate is twice of that during the Omicron wave. 

(K) Risk of occurrence of hypothetical new variant X, where X is at equal antigenic distance of Delta and Omicron: 

Phase diagram of the growth rate of variant X, after the initial Omicron wave has subsided, as a function of the level 15 

of protection conferred by any variant primary infection on infection with X 	(1 − EE:H'0:H/ (-), assuming 

Omicron and pre-Omicron infections confer the same level of protection against X), and the level of protection 

conferred by Omicron reinfections/breakthroughs on X infection,  1 − EE0:HI:H/ (-).	 Contact rate is assumed to 

be twice of that of the Omicron wave. 

 20 
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