Supplementary Table 1

Brief summary of the EBV proteins analysed and the respective number of 15-mer peptides (antigens) per

EBV strain.

EBV Protein	Associated stage	Number of 15-mer peptides						
		Overall	AG876	B95.8	GD1	Cao	Raji	P3HR.1
BALF-2	Early lytic	290	278	278	278	0	0	0
BALF-5	Early lytic	256	250	250	250	0	0	0
BFRF-3	Late lytic	42	0	42	0	0	0	0
BLLF-1	Late lytic	273	204	202	199	0	0	204
BLLF-3	Early lytic	74	66	67	66	0	0	0
BLRF-2	Late lytic	41	38	38	38	0	0	0
BMRF-1	Early lytic	102	99	99	99	0	0	0
BZLF-1	Immediate early lytic	89	57	57	58	0	0	0
EBNA-1	Latency I, II, and III	182	98	107	111	0	0	0
EBNA-3	Latency III	446	223	226	224	0	0	0
EBNA-4	Latency III	469	229	221	224	0	0	0
EBNA-6	Latency III	461	254	234	230	0	0	0
LMP-1	Latency II and III	197	79	85	80	77	84	0
LMP-2	Latency II and III	132	120	120	120	0	0	0

Supplementary Table 2

Comparison among different null models (included the covariates age and gender and their interaction) using the Akaike's information criterion (AIC). The best model for each analysis (in bold) is the one with the lowest AIC estimate. ME/CFS_all, ME/CFS_inf and ME/CFS_noninf represent all the ME/CFS patients, ME/CFS patients with an infectious trigger, and ME/CFS patients with a non-infectious trigger, respectively

Analysis/Comparison	Model (Link function)	AIC	ROC (95% CI)	
ME/CFS_all vs Healthy Controls	Logit	189.973	0.577 (0.478;0.676)	
	Probit	189.964	0.576 (0.478;0.675)	
	Complementary log-log	189.936	0.574 (0.475;0.672)	
ME/CFS_inf vs Healthy Controls	Logit	147.055	0.610 (0.500;0.719)	
	Probit	147.029	0.606 (0.496;0.715)	
	Complementary log-log	147.220	0.609 (0.499;0.718)	
ME/CFS_noninf vs Healthy Controls	Logit	127.619	0.556 (0.429;0.683)	
	Probit	127.629	0.559 (0.432;0.687)	
	Complementary log-log	127.547	0.556 (0.429;0.683)	
ME/CFS_inf vs ME/CFS_noninf	Logit	129.205	0.596 (0.471;0.720)	
	Probit	129.236	0.597 (0.472;0.721)	
	Complementary log-log	129.529	0.596 (0.472;0.721)	

Supplementary Table 3

The top 5 most significant antibodies for each association analysis where the adjusted p-value is shown within brackets where ME/CFS_all, ME/CFS_inf and ME/CFS_noninf represent all ME/CFS patients, ME/CFS patients with an infectious trigger, and ME/CFS patients with a non-infectious trigger, respectively. For simplicity, the antibodies w

ere labelled according to their peptide. Statistically significant findings were obtained for $-\log_{10}(adjusted p-value) > 1.30$ (= $-\log_{10}(0.05)$) controlling for false discovery rate of 5%.

Analysis	Peptide	-log10(adjusted p-value)
ME/CFS_all vs Healthy controls	EBNA6_0066	0.743
	BLRF2_0005	0.486
	EBNA4_0392	0.486
	EBNA4_0497	0.486
	EBNA4_0529	0.486
ME/CFS_inf vs Healthy controls	EBNA6_0066	2.693
	EBNA6_0070	2.693
	EBNA4_0529	1.794
	EBNA3_0380	1.270
	EBNA6_0569	1.270
ME/CFS_noninf vs Healthy controls	EBNA6_0782	1.193
	BALF2_0358	1.153
	BALF2_0765	1.153
	BALF5_0041	1.153
	BALF5_0206	1.153

Supplementary Figure 1

Distributions of the Spearman's correlation coefficient between all the possible pairs of EBV-derived antibodies in healthy controls, all ME/CFS patients, ME/CFS patients with an infectious trigger, and ME/CFS patients with a non-infectious or unknown trigger.

