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ABSTRACT 

Background: Few studies have assessed the benefits of COVID-19 vaccines in settings where most of 
the population had been exposed to SARS-CoV-2 infection. 

Methods: We conducted a cost-effectiveness analysis of COVID-19 vaccine in Kenya from a societal 
perspective over a 1.5-year time frame. An age-structured transmission model assumed at least 80% of 
the population to have prior natural immunity when an immune escape variant was introduced. We 
examine the effect of slow (18 months) or rapid (6 months) vaccine roll-out with vaccine coverage of 
30%, 50% or 70% of the adult (> 18 years) population prioritizing roll-out in over 50-year olds (80% uptake 
in all scenarios). Cost data were obtained from primary analyses. We assumed vaccine procurement at 
$7 per dose and vaccine delivery costs of $3.90-$6.11 per dose. The cost-effectiveness threshold was 
USD 919.  

Findings: Slow roll-out at 30% coverage largely targets over 50-year-olds and resulted in 54% fewer 
deaths (8,132(7,914 to 8,373)) than no vaccination and was cost-saving (ICER=US$-1,343 (-1,345 to -
1,341) per DALY averted). Increasing coverage to 50% and 70%, further reduced deaths by 12% (810 (757 
to 872) and 5% (282 (251 to 317) but was not cost-effective, using Kenya’s cost-effectiveness threshold 
($ 919.11). Rapid roll-out with 30% coverage averted 63% more deaths and was more cost-saving 
(ICER=$-1,607 (-1,609 to -1,604) per DALY averted) compared to slow roll-out at the same coverage 
level, but 50% and 70% coverage scenarios were not cost-effective.  

Interpretation: With prior exposure partially protecting much of the Kenyan population, vaccination 
of young adults may no longer be cost-effective.  
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KEY QUESTIONS 

What is already known? 

• The COVID-19 pandemic has led to a substantial number of cases and deaths in low-and middle-
income countries. 
 

• COVID-19 vaccines are considered the main strategy of curtailing the pandemic. However, many 
African nations are still at the early phase of vaccination. 

 

• Evidence on the cost-effectiveness of COVID-19 vaccines are useful in estimating value for money 
and illustrate opportunity costs. However, there is a need to balance these economic outcomes 
against the potential impact of vaccination. 

What are the new findings? 

• In Kenya, a targeted vaccination strategy that prioritizes those of an older age and is deployed at 
a rapid rollout speed achieves greater marginal health impacts and is better value for money. 
 

• Given the existing high-level population protection to COVID-19 due to prior exposure, 
vaccination of younger adults is less cost-effective in Kenya. 

What do the new findings imply? 

• Rapid deployment of vaccines during a pandemic averts more cases, hospitalisations, and deaths 

and is more cost-effective. 

 

• Against a context of constrained fiscal space for health, it is likely more prudent for Kenya to 

target those at severe risk of disease and possibly other vulnerable populations rather than to 

the whole population. 
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INTRODUCTION  

As of early April 2022, Kenya has experienced five distinct waves of the COVID-19 pandemic with more 
than 320,000 reported cases and 5,600 deaths.[1] While at the global level vaccines to prevent severe 
disease from SARS-CoV-2 are the main strategy for curtailing the pandemic burden on health,[2] most 
African nations are still at a very early phase of vaccine roll-out, particularly in tropical sub-Saharan 
Africa, with most countries at less than 10% of the adult population fully vaccinated.[1] However, in 
contrast to other part of the world where low vaccine coverage in high risk groups has led to high 
mortality even from the omicron variant,[3] in Kenya cross-sectional serological surveys of anti-SARS-
CoV-2 spike protein antibodies together with transmission dynamic model forecasts indicate that 
about 80% of the population have been exposed to the virus at least once and thus generated 
considerable immunity[4] with similar estimates in the region.[5] This raises the question what 
additional benefit can vaccination still have in mitigating future disease burden from COVID-19?  

The Kenyan government is pursuing a phased COVID-19 vaccination strategy that aims to follow a risk-
prioritization matrix leading sequentially to the vaccination of all adults by December 2022.[6] The 
prioritized population are an estimated 30% of the adult population and include health and other 
essential workers, individuals at high risk of severe disease (those above 58 years, and those above 18 
years with co-morbidities), and individuals at high risk of infection (individuals in congregate settings, 
and those working in hospitality and transport sectors).[6] Vaccine roll-out commenced in early March 
2021. As of early April, 2022 more than 17.7 million doses had been administered with 30% of Kenya's 
adult population above the age of 18 years being fully vaccinated.[7] The initial procurement 
comprised of the Oxford/Astra Zeneca vaccine mainly sourced through the COVID-19 Vaccines Global 
Access Facility (COVAX) mechanism and bilateral negotiations, evolving more recently to a multi-
vaccine type deployment through additional sources including the African Union’s (AU) African 
Vaccine Acquisition Task Team (AVATT) mechanism.[6] 

Economic evaluations are useful in providing evidence of the value for money for different health 
interventions and illustrates the opportunity costs of the interventions in a setting with many 
competing priorities. However, there is a need to balance these economic outcomes against the 
potential impact of the interventions. Therefore, this study evaluates the potential epidemiological 
impact and cost-effectiveness of different vaccine roll-out scenarios in a Kenyan population that has 
already acquired a high-level immunity due to prior infections. The study employs a partially 
retrospective perspective with vaccination scenarios beginning September 2021 and with an immune 
escape variant striking in November 2021. 

 

METHODS   

Study design 

This study is an impact and cost-effectiveness analysis of COVID-19 vaccine roll-out strategies that uses 
cost estimates from primary costing studies and vaccine effectiveness measures from an age 
structured transmission model. The costs and effects are estimated from a societal perspective for a 
period of 1.5 years (1st September 2021 to 28th February 2023) starting at the peak of the Kenyan delta 
wave and simulating the emergence of a partial immune escape variant (omicron-like) from November 
2021.  
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Intervention comparators 

i. Primary analysis 

We carry out an incremental analysis of four vaccination coverage scenarios deployed over an 18-
month period (non-rapid deployment), starting at 0% coverage in September 2021 (Table 1): No 
vaccination (0% coverage), or 30%, 50% and 70% coverage of the population older than 18 years with 
prioritization of those aged 50 years and above (until 80% of those >50y old are fully vaccinated), 
then the remaining doses given to those 18-49y old).  

ii. Secondary analysis 

We consider a secondary analysis that assesses the same scenarios under the primary analysis but with 
rapid vaccine deployment in which the targeted vaccine coverage is attained within 6 months of 
starting vaccination. 

An assumption was made that all the vaccination coverage scenarios and deployment strategies were 
implemented alongside a low intensity mix of non-pharmaceutical interventions (NPI). The low 
intensity NPI is matched with how government progressively lifted or modified the restrictions and 
refers to re-opening of international borders, relaxed curfew, controlled public gatherings, controlled 
re-opening of restaurants and bars, controlled re-opening of schools, ban lift on mandatory use of 
masks, and adherence to hand hygiene from November 2020 to the time of writing this manuscript.  

Table 1: Intervention comparators and number vaccinated within 1.5 years’ time horizon 

Vaccination strategy Number of >50y olds who 
were vaccinated  
(proportion of those>50y) 

Number of 18-49y olds who 
were vaccinated  
(proportion of those 18-49y) 

No vaccination   

30% adult coverage strategy  4,133,775 (80%) 3,186,225 (19%) 

50% adult coverage strategy 4,133,775 (80%) 8,366,225 (41%) 

70% adult coverage strategy 4,133,775 (80%) 13,366,225 (65%) 

 
Transmission modelling and parameter inference 

We extended a dynamic SARS-CoV-2 transmission model previously designed to estimate population 
level immunity from natural infection in Kenya by fitting to case notification and serological data[3] to 
include additional age structure and vaccination status. In common with other approaches to 
modelling SARS-CoV-2 transmission,[8,9] we assume that the rate of new infections depends on: (i) 
age and setting-specific contact rates within the population, (ii) frequency of Alpha, Beta and Delta 
variants of SARS-CoV-2 among the infected sub-population, (iii) the first and second dose vaccine 
protection against infection in each age group which were assumed to wane over time, and, (iv) prior 
primary infections. The probability of being infected with SARS-CoV-2 per infectious contact, and the 
chance of developing symptoms upon infection, increased substantially with age (see supplementary 
information for details of the transmission model).  

The goal of the transmission model is to project the health gains of the vaccine deployment strategies 
described above in comparison with the no vaccine scenario. This requires estimation of parameters 
pertaining to the risk of transmission, and, of risk factors associated with infection given age, and the 
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infecting variant of SARS-CoV-2 in the Kenyan setting. These parameters were inferred by fitting the 
model to the following Kenyan epidemiological data (see SI for inference methods): 

• Daily reported numbers of positive and negative PCR tests from the Kenyan Ministry of Health 
COVID-19 linelist (between 1st January 2021 and 1st November 2021). 

• Cross-sectional serological surveys of (a) donor samples from the Kenyan National Blood and 
Transfusion Service (KNBTS)[10] and (b) demographic surveillance systems (between 1st 
January 2021 and 27th May 2021).[11] 

We used a Bayesian hierarchical inference approach aimed at allowing inference on reporting fraction 
in counties with higher numbers of serological tests to influence inference of reporting fraction in 
counties with lower numbers of serological tests (see supplementary information for details on 
underlying data for age-specific effects and details on inference methodology). 

Infection outcome modelling and risk factor inference 

Bayesian inference of transmission model parameters generated a posterior predictive distribution for 
the number of SARS-CoV-2 infections in Kenya broken down by day, county, age of infected, infecting 
variant of SARS-CoV-2, and, whether it was a primary infection event or a re-infection event. We 
categorized the outcome of each infection as being either deadly, critical (requiring treatment in an 
intensive care unit (ICU)), severe (requiring in-patient hospitalization in a general ward), mild or 
asymptomatic. Severe and critical infections were assumed to cause admission to a health facility’s 
general ward or ICU for an average of 12 days post-infection. Severe infection was assumed to lead to 
an average 7 day stay in a general COVID ward before discharge. Critical infection leads to an average 
7 day stay in ICU,[12] before transfer to a general COVID ward for a further average 7 day stay before 
discharge (see supplementary information for details on hospital durations of stay). 

Risk factors for infection outcome were inferred using reported Kenya outcome data: 

• Daily reported numbers occupying general health facilities with COVID-19 as the diagnosed 
cause (1st March 2021 – 1st November 2021). 

• Daily reported numbers occupying ICUs with COVID-19 as the diagnosed cause (1st March 2021 
– 1st November 2021). 

• Daily reported incidence of death with COVID-19 as the diagnosed cause (1st January 2021 – 1st 
November 2021). 

Vaccination rollout modelling 

We used the fitted model to predict the course of the pandemic from 1st September 2021 (historically 
this was past the peak of the fourth wave of cases in Kenya) to 30 June 2023 and the impact of 
vaccination on, severe and critical disease, and deaths. We distribute the total number of doses 
planned under each vaccination scenario to the 47 counties proportionally according to population 
size above the age of 18 years.[13] We assume that the number of doses given per day will be the same 
during the study period. Doses will be offered to adults older than 50 years first, until take up of 
available vaccines dropped off, which we assumed would occur once 80% of over 50s had taken up 
both doses. The remaining doses will subsequently be randomly allocated to all 18- to 50-year-olds. 
Within the model, individuals are either unvaccinated, partially vaccinated (14 days after receipt of the 
first dose), fully vaccinated (14 days after receipt of the second dose) or have waned vaccine 
effectiveness. We assumed vaccine effectiveness against death (delta variant) to range from 90% to 
95% after the first dose and 95% to 99% after the second dose.[14] Vaccine effectiveness against severe 
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or critical disease (delta variant) of 80% to 90% and 95% to 99% after the first and second dose 
respectively.[14] The vaccine effectiveness against acquisition of infection per infectious contact 
(delta variant) was 55% to 65% and 65% to 80% after the first and second dose respectively.[14] We 
assumed an effectiveness of 0% to 35% and 0% to 69% against onward transmission, per infection (delta 
variant), after either the first or second dose.[15] We assume that immunity due to either past infection 
of vaccination eventually wanes to 70% protection against disease and 0% protection against infection, 
with a mean time to complete waning of 460 days after the second dose of vaccine and 5 years 
following natural infection.[16] Furthermore, we assume that protection due to prior infection 
combined constructively with vaccination; that is that people who had previously had a natural 
infection episode of SARS-CoV-2 were further protected from reinfection by vaccination (see 
supporting information). 

Immune escape variant  

The scenarios investigated in this paper involve the rapid spread of a new variant of SARS-CoV-2 that, 
due to evolutionary adaptation, partially avoids protection from infection due to prior naturally 
acquired immunity and/or vaccination. Concretely, we assume that the immune escape variant enters 
Kenya in early November 2021 and rapidly dominates transmission by 15th November 2021. Compared 
to homologous protection against reinfection with the Delta variant, the protection afforded by prior 
infection and/or vaccination against acquiring the novel immune escape variant is assumed to be 
decreased by 50%, with all epidemiological rates increased such that the mean generation time of 
transmission is reduced by 30% compared to the transmission of the Delta variant. However, we also 
assume that the fundamental reproductive number and risk factors for severe, critical and deadly 
outcomes are unchanged compared to Delta. (see supplementary information for the details of how a 
50% decrease in protection from infection was implemented). 

Cost estimates 

The cost estimates used in this study were derived using a hybrid method that involved both an 
ingredients approach (bottom-up) and a top-down approach.[17,18] The analysis used economic costs, 
which reflect the opportunity cost and incorporated both recurrent and capital costs. Capital costs 
were annuitized using a discount rate of 3% over their useful life. Costs incurred in other years were 
adjusted for inflation using the Gross domestic product (GDP) deflator and reported in 2021 United 
States Dollars (USD). Key model cost input parameters are shown in Table 2 and the three main cost 
components are described below. The costs of NPIs were excluded as all vaccination strategies 
employed the same NPI regime (low NPI intensity) and would therefore not change the reported 
incremental cost-effectiveness ratios (ICERs). 

i. Vaccination costs 

We included vaccine and related supplies costs, as well as vaccine delivery costs. Vaccine and related 
supply costs were the economic costs to purchase the vaccine and related supplies such as syringes 
and safety boxes through the COVAX facility. A base cost of $7 was used for vaccine procurement, 
which is the country’s procurement cost from the COVAX facility. Additionally, the freight costs, 
insurance costs, import declaration fees, clearance fees, and the railway development levy associated 
with the vaccines and its supplies were included. Vaccine and syringe wastage rates of 10% were 
assumed.[19] Vaccine delivery costs referred to costs associated with delivering COVID-19 
immunizations to the adult population and were estimated across six components 1) vaccine supply 
chain 2) vaccine safety monitoring and adverse events following immunization management 3) 
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training 4) advocacy, communication and social mobilization 5) data management, monitoring and 
supervision 6) vaccine administration. The resource used and costs were estimated through the 
analysis of programmatic budgets, and through key informant interviews. Details of the vaccine 
procurement and delivery cost analysis and results are reported elsewhere.[19] This analysis assumed 
equivalent vaccine delivery costs for both the rapid and non-rapid vaccination strategies. 

ii. Treatment costs 

The direct medical costs of COVID-19 treatment were sourced from a recently conducted study that 
examined the unit costs for COVID-19 case management in Kenya.[20] This costing analysis employed  
an ingredients-based approach to estimate health care costs across the disease severity categories; 
with the exclusion of adverse events costs.[20] 

iii. Productivity losses 

Productivity losses due to illness and mortality were estimated using a human capital approach.[21] 
The impact of COVID-19 on lost time through illness or morbidity was estimated by accounting for the 
average Kenyan’s productivity measure (GDP per capita) and duration of disease/duration of 
quarantine; the latter was used where duration of illness was less than the 14 day quarantine period in 
Kenya. For asymptomatic and mild disease, the testing rate was accounted for and an assumption was 
made that only those in the informal sector are likely not to be productive as they isolate. Further, the 
economic impact of COVID-19-related mortality was estimated by considering the years of life lost 
because of premature mortality and the average productivity measure. We did not account for 
productivity losses from long COVID, as the burden is poorly defined in our setting. (See equation (a) 
in the supplementary information) 

Disability-adjusted life-years 

The outcome of the cost-effectiveness analysis was reported in terms of disability-adjusted life-years 
(DALYs); the sum of years of life lost (YLL) and years lost due to disability (YLD) [22]. (See equations 
(b), (c), and (d) in the supplementary information). 

DALYs were calculated considering a discount rate of 3%, the Kenyan 2019 standardized life 
expectancies,[23] assumed duration of illness of 7 days for asymptomatic and mild disease and 12 and 
20 days for severe and critical disease respectively,[24] as well as disability weights. COVID-19 is a novel 
disease, and its disability weights are currently not available. Therefore, for asymptomatic COVID-19 
disease we assumed a disability weight of 0. For mild-to-moderate COVID-19 symptoms and severe 
disease, we used disability weights from the 2013 Global Burden of disease of 0.051 (0.032-0.074) and 
0.133 (0.088-0.190) assigned to infectious disease with moderate acute episodes and severe episodes 
respectively.[25] For critical disease, we assume disability weights of 0.655 (0.579-0.727) assigned to 
intensive care unit admissions.[26] This analysis did not incorporate age-weighting in the DALYs. These 
input parameters are reported in Table 2. 

The incremental cost-effectiveness ratio (ICER) was the measure of cost-effectiveness calculated as 
the net change in total costs and DALYs averted between comparators. The ICER was compared with 
the opportunity cost-based on Kenya’s cost-effectiveness threshold (USD 919.11).[27,28] 

ICER = (Costindex − Costbaseline)/(DALYbaseline − DALYindex) 

Where:  
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Costindex =cost of strategy of interest 
Costbaseline=cost of the next less effective strategy 
DALYindex= total DALYs under the strategy of interest.  
DALYbaseline=total DALYs under the next less effective strategy 
 
ICERs are estimated within each of the two roll-out scenarios slow and rapid and are not comparable 
between the two vaccine-deployment cases except when the baseline is no vaccination. 

Table 2: Key analysis parameters 

Parameter Values (Lb; Ub) Source 

Cost-effectiveness parameters 

Treatment costs (2021 US$)   

Per day, per patient unit cost of management of 
asymptomatic COVID-19 

$19.75*testing rate [20] 

Per day, per patient unit cost of management of 
mild to moderate COVID-19 

$19.75*testing rate [20] 

Per day, per patient unit cost of management of 
severe COVID-19 

$129.45  [20] 

Per day, per patient unit cost of management of 
critical COVID-19 

$623.14  [20] 

Testing rate 
+Testing rate in the population 0.52% Proportion of reported to 

modelled cases  

Vaccination costs (2021 US$) 

Vaccine procurement costs per dose $8.67 (Base cost: $7 and 
including importation costs) 

[19] 

Supplies procurement costs per dose $0.08 [19] 

Vaccine delivery cost per dose (no vaccination) $0 [19] 

Vaccine delivery cost per dose (30% coverage) $6.11  [19] 

Vaccine delivery cost per dose (50% coverage) $4.16  [19] 

Vaccine delivery cost per dose (70% coverage) $3.90  [19] 

Duration of disease and length of hospitalization 

Length of hospitalization for severe episode 7 days (4-11) Assumption 

Length of ICU stay for critical episode 7 days (4-11) [12] 

Duration of asymptomatic disease 7 days Assumption 

Duration of mild to moderate disease 7 days Assumption 

Duration of severe disease 12 days [24] 

Duration of critical disease 20 days [24] 

DALYs   

Disability weight for asymptomatic episode 0  

Disability weight for mild/moderate episode 0.051 (0.032; 0.074) [25] 

Disability weight for severe episode 0.133 (0.088; 0.191) [25] 

Disability weight for critical episode 0.655 (0.579; 0.727) [26] 

*Average age at death 
0-19 years 
20-49 years 

 
9.27years 
31.75 years 

[13] 
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50-59 years 
60-69 years 
70-79 years 
80+ years 

54.10 years 
63.85 years 
73.41 years 
86.00 years 

Life expectancy 
0-19 years 
20-49 years 
50-59 years 
60-69 years 
70-79 years 
80+ years 

 
64.10 years 
40.94 years 
24.71 years 
17.64 years 
11.41 years 
4.84 years 

[29] 

Cost-effectiveness threshold per DALY averted 0.5*GDP per capita.  
[GDP per capita =$1,838.21] 

[27,28,30] 

Transmission dynamic model parameters 

Transmission dynamic model values See Table S1  
+Testing rate: A proxy estimate is used that is calculated as a proportion of reported cases to modelled cases across all 
severity levels from Jan1 to Sep 19, 2021. 
*Average age at death is based on the weighted mean age across the different age groups 

Sensitivity analysis for the model 

Vaccine effectiveness against different epidemiological outcomes such as the acquisition of disease, 
onward transmission, severe disease and death does vary with age, duration between vaccination and 
testing of efficacy, variant of infection, and type of vaccine being used amongst other factors.[31–34] 
Therefore, to determine the robustness of the epidemiological model predictions to the vaccine 
effectiveness parameter values, we performed a sensitivity analysis across a range of values using a 
vaccine waning effectiveness model fitted to the UK Health Security Agency (UKHSA) COVID-19 
data.[14,15] 

A univariate sensitivity analysis was done on the economic model to determine the robustness of the 
unit cost estimates with variations in vaccine procurement costs (base cost of $3 and $10 used) and 
discounting rates of DALYs (rate of 0% used). Further, given the current evidence gap to confidently 
determine the magnitude of underreporting of COVID-19 deaths,[35] the baseline cost-effectiveness 
analysis assumed an under-reporting of hospitalization and deaths by a factor of 5 and a one-way 
sensitivity analysis was done by varying the under-reporting factor (1-4). 

A probabilistic sensitivity analysis to explore the influence of some economic parameters on the ICERs 
was done using Sobol sampling and was based on the statistical distributions in Table S2. Sobol 
sequences belong to the family of quasi-random sequences which are designed to generate samples 
of multiple parameters as uniformly as possible over the multi-dimensional parameter space.[36] For 
the parameters used in the probabilistic sensitivity analysis, the statistical distributions were chosen 
to model the available prior knowledge represented by existing data, as reported in Table 2. For the 
cost estimates range, a 20% increase or decrease was assumed for the parameters. 

Stakeholder engagement 

The results of the study have been disseminated to key policy makers and relevant stakeholders 
involved in COVID-19 vaccine deployment in Kenya.  
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RESULTS 

Clinical Impacts of Vaccination Strategies and scenarios 

The non-rapid deployment of vaccinating 30% of the adult population results in 10% (32 (24 to 38) per 
100,000) fewer infections, 54% (8,132 (7,914 to 8,373) fewer deaths compared to no vaccination, and 
978 (949 to 1,005) people would need to be vaccinated to prevent 1 death. An increase of vaccine 
coverage of the adult population to 50% results in a further 1% (4 (3 to 5) per 100,000) reduction in 
infections, a further 12% (810 (757 to 872) reduction in deaths, and 5,617 (5,218 to 6,011) more people 
would need to be vaccinated to prevent an additional death. Similarly, an increase of vaccine coverage 
to 70% leads to a 1% reduction in cases, a 5% reduction in deaths, and 17,730 (15,773 to 19,920) more 
people would need to be vaccinated to prevent an additional death compared to the 50% vaccination 
coverage.  

In the rapid vaccine rollout strategy, the 30% vaccine coverage averts 12% of cases preventing an 
average of 39 (29 to 48) per 100,000 infections and 63% of deaths saving an average of 9,433 (9,197 to 
9,711) lives compared to no vaccination. Therefore, 843 (819 to 864) people would need to be 
vaccinated to prevent a death. The 30% coverage under a rapid deployment averts more cases and 
saves more lives compared to a non-rapid rollout with the same level of coverage. See Table 3 and 
Figure 1.  

Cost-Effectiveness of Vaccination Strategies 

Table 3 shows the total costs, DALYs and ICERs of the vaccination scenarios considered in the analysis 
from a societal perspective. Under the non-rapid vaccination scenario, vaccinating 30% of the adult 
population is cost-saving (ICER=$-1,343 (-1,345 to -1,341) per DALY averted) and hence highly cost-
effective. Increasing vaccine coverage to 50% of the adult population was not cost-effective 
(ICER=$3,291 (3,287 to 3,295) per DALY averted) compared to 30% coverage. Similarly, increasing 
vaccine coverage to 70% was deemed not cost-effective (ICER=$22,623 (22,602 to 22,645) per DALY 
averted) compared to 50% coverage at a cost-effectiveness threshold of $919.11. 

Under the rapid vaccination scenario, a 30% vaccine coverage strategy was even more cost-effective 
ICER=$-1,607 (-1,609 to -1,604) per DALY averted compared to the same coverage level under the non-
rapid scenario, and hence is more cost-effective. The ICERs of 50% and 70% coverage strategies under 
the rapid scenario are $18,257 (18,226 to 18,287) and $44,250 (44,126 to 44,374) per DALY averted 
compared to 30% and 50% coverage strategies respectively and hence are not cost-effective.  

 Sensitivity Analysis 

Table 3 presents the univariate sensitivity analysis of under-reporting of hospitalizations and deaths, 
from a societal perspective. Assuming no under-reporting or adjusting the under-reporting factor to 
2, results in all the scenarios having ICERs above the cost-effectiveness threshold, except the 30% 
coverage with a rapid deployment. On the other hand, with an under-reporting factor of 3 or 4, 30% 
coverage with a rapid and non-rapid vaccination scenario remained cost-saving. 

Figure S6 summarizes the effects of vaccine prices and discounting rates of DALYs on the ICER. Vaccine 
prices, of the two parameters had the largest effect on the ICERs: leading to a 32-103% decrease and a 
36-77% increase in ICERs across the different vaccination scenarios.  
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The one-way sensitivity analysis focusing solely on a health system’s perspective is presented in Table 
S3. When considering this perspective, the total costs across the vaccination strategies increase as 
coverage increases, as reported from a societal perspective. However, the no vaccination scenario 
affords the least costs ($313 million). The reported ICERs increase with increased coverage and the 30% 
coverage with a non-rapid and rapid vaccination pace are below the threshold: ICER=$555 (553 to 557) 
and $291 (290 to 295) per DALY averted respectively and considered cost-effective from a health 
system’s perspective. 

Figure 2 represent the findings of the probabilistic sensitivity analysis from a societal perspective. The 
region below the cost-effectiveness threshold line and within the grey region, shows all the points that 
are cost-effective at a cost effectiveness threshold of $919.11. For instance, the dominance of the 30% 
coverage scenarios (i.e. more effectiveness at a lower cost) compared to no vaccination, was shown 
in 100% of the replications (i.e. 100% of the cost-effect pairs were in the southeast quadrant). Further, 
100% of the replications for 50% coverage and 70% coverage strategies (both rapid and non-rapid 
rollout) were in the northeast quadrant (implying that these strategies were more costly but also more 
effective compared to the 30% and 50% coverage strategies respectively).  

Figure 3 presents the cost-effectiveness acceptability curves (CEAC) of the analysis from a societal 
perspective based on a range of cost-effectiveness thresholds. Under the non-rapid vaccination 
rollout and given a $3,300 willingness to pay threshold, the probability of the 50% coverage strategy 
being cost-effective compared to 30% coverage would be 0.5. Further, there was 0.5 probability that 
the 70% coverage in comparison to 50% coverage would be cost-effective at a threshold of $22,600 in 
the non-rapid deployment.
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Table 3: Projected clinical outcomes, costs, and the cost-effectiveness of different vaccination strategies in Kenya from a societal 
perspective 

 
Health Outcomes Economic Outcomes One-way sensitivity analysis of under-reporting in hospitalizations and 

deaths (factor of under-reporting) 

  *Averted 
SARS-CoV-2 
infections  
per 100,000 
Median (2.5th 
to 97.5th 
percentile) 

*Averted SARS-
CoV-2 deaths 
Median (2.5th 
to 97.5th 
percentile) 

Total costs 
($ millions), 
Median (2.5th 
to 97.5th 
percentile) 

Total DALYs 
(thousands) 
Median (2.5th 
to 97.5th 
percentile) 

+ICER, ($ per DALY 
averted) 
Mean (95%CI) 

ICER 
(4) 

ICER 
(3)  

ICER 
(2)  

ICER 
(1)  

Non-rapid vaccination strategy (administered within 1.5years)     

No 
vaccination 
 

- - 787 
(740 to 882) 

247  
(243 to 252) 

 

- - - - - 

30% 
coverage 

32  
(24 to 38) 

 

8,132 
(7,914 to 8,373) 

614 
(589 to 659) 

114  
(110 to 118) 

 

-1,343 
(-1,345 to -1,341) 

Dominant 

-905  
(-907 to -902) 

Dominant 

-175 
(-178 to -173)  

Dominant 

1,278 
(1,275 to 1,280) 

5,595  
(5592 to 5598) 

50% 
coverage 

4  
(3 to 5) 

 

810 
(757 to 872) 

658 
(636 to 699) 

101  
(97 to 104) 

 

3,291 
(3,287 to 3,295) 

4,908 
(4,903 to 4,913) 

7,598 
(7,592 to 7,605) 

12,958 
(12,949 to 12,967) 

28,878  
(28,860 to 28,896) 

70% 
coverage 

2  
(1 to 3) 

 

282 
(251 to 317) 

763 
(742 to 801) 

96  
(92 to 100) 

 

22,623 
(22,602 to 22,645) 

29,075 
(29,048 to 

29,101) 

39,791 
39,756 to 39,827) 

61,093 
(61,040 to 61,146) 

123,967 
(123,863 to 124,072) 

Rapid vaccination strategy (administered within 6 months)      

No 
vaccination 

- - 787 
(740 to 882) 

247  
(243 to 252) 

 

- - - - - 

30% 
coverage 

39  
(29 to 48) 

 

9,433 
(9,197 to 9,711) 

545 
(524 to 582) 

93  
(89 to 96) 

 

-1,607 
(-1,609 to -1,604) 

Dominant 

--1,230 
(-1,232 to -1,227) 

Dominant 

-603 
(-605 to -600) 

Dominant 

646  
(644 to 649) 

4,357 
(4,354 to 4,360) 

50% 
coverage 

1  
(0.5 to 2) 

 

250 
(201 to 296) 

620 
(599 to 655) 

88 
(85 to 92) 

 

18,257 
(18,226 to 18,287) 

23,582 
(23,543 to 23,620) 

32,440 
(32,389 to.32,491)  

50,096  
(50,020 to 50,173) 

102,582  
(102,430 to 102,733) 

70% 
coverage 

0.5  
(-0.05 to 1) 

161 
(106 to 208) 

731 
(713 to 765) 

86  
(82 to 89) 

44,250 
(44,126 to 44,374) 

56,074 
(55,919 to 56,230) 

75,768 
(75,560 to 75,976) 

115,100 
(114,788 to 115,413)  

232,667  
(232,036 to 233,298) 
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*Averted SARS-Cov-2 infections and deaths = This is the incremental averted infections/deaths compared to the vaccination strategy that appears in the row above. 
+ICER=Baseline ICER used in analysis where under-reporting in hospitalizations and deaths is adjusted with a factor of 5.  
ICER (4), ICER (3), ICER (2), and ICER (1 )= under-reporting factors for hospitalization and deaths used were 4, 3, 2, and 1 respectively.  
Total averted infections=rounded off to the nearest 100,000; Total Cost=rounded off to the nearest 1,000,000; Total DALY rounded off to the nearest 1,000; Total deaths 
and ICERs=rounded off to the nearest whole number
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Figure 1: Model-based projections and vaccine scenarios: Model-based prediction intervals for daily occupancy 
of general wards in health facilities in Kenya (top), daily occupancy of intensive care units in Kenya (middle), and 
daily reported incidence of death with COVID in Kenya (bottom). All scatter points represented data used in 
inference of the infection outcome model. Grey curves are the posterior mean model prediction (background 
shading 95% CIs) with no vaccinations. Colored curves represent a target of 30% (blue), 50% (red) and 70% (green) 
of over 18 year old population in Kenya over 18 months (solid) or 6 months (dashed). Insets: Projections of 
cumulative number of severe (top), critical (middle) and deadly (bottom) cases after 1st September 2021 under 
each vaccine target scenario
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Figure 2: Probabilistic sensitivity analysis of different vaccination strategies from a societal perspective. The first row shows the vaccine 
scenarios comparisons under a non-rapid rollout pace while the second row shows the rapid roll out results. Each grey dot represents a pair 
of values of incremental cost and incremental effectiveness and the red point is the mean ICER points for each vaccine comparison. The grey 
shaded area below the diagonal cost-effectiveness threshold line (k=919.11 USD) shows the cost-effective region
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Figure 3: Cost-effectiveness acceptability curves showing the probability that each index scenario is cost-effective compared to the 
comparator over a range of cost-effectiveness thresholds (k=cost-effectiveness thresholds, pr=probability of cost-effectiveness) 
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DISCUSSION  

We assessed the epidemiological impact and cost-effectiveness of a range of COVID-19 vaccine 
deployment strategies and scenarios in Kenya. Our findings show that if Kenya had started with a full-
scale vaccination programme in September 2021 and with an omicron-like variant introduced in 
November 2021, the deployment of COVID-19 vaccines in the Kenya population would likely avert a 
substantial number of cases, hospitalizations, and deaths from COVID-19. We find that a strategy to 
vaccinate mostly older adults (80% of those over 50y) who are at high risk of severe disease but which 
achieves low (30%) overall population coverage, yields the greatest reductions in severe infections and 
deaths per fully vaccinated adult. The marginal health benefits decrease with higher vaccine coverage 
levels (50% and 70%) as an increasing proportion of low risk younger adults, most with some immunity 
from previous infection, are vaccinated. These diminishing returns of increased coverage result in only 
the programme for older adults (i.e. the 30% coverage scenario) being cost effective while the 
expansion to younger age groups (i.e., 50% and 70%) was found not cost effective. Further, where an 
upsurge of SARS-CoV-2 occurs shortly after scale-up of vaccination (as modelled in this study) then 
deployment strategies that achieve rapid coverage of the target groups are more effective compared 
to slow vaccine deployment strategies. 

Our findings are similar to evidence from South Africa, Madagascar, Pakistan, United Kingdom (UK), 
and United States of America (USA) that found vaccinating their population would decrease COVID-19 
infections and deaths compared to a no vaccination scenario[8,37–40] and increasing vaccination 
coverage would increase the clinical benefits.[37,39] The South African study also found that a rapid 
vaccination roll-out pace resulted in “better” clinical outcomes (infections and deaths averted) and 
economic effectiveness compared to a non-rapid roll out pace.[37] The studies done in Madagascar, 
UK, and USA reported a greater impact when distribution of vaccines was prioritised according to the 
number of people of an older age in the region or among the elderly, reflecting similar findings to our 
study.[8,38,40] However, in contrast to the South African and Pakistan studies[37,39] who found that 
higher coverage scenarios had higher marginal impacts, we found that a minimal vaccine coverage of 
30% of the adult Kenyan population targeting older age groups had the highest marginal impact. These 
differences could be explained by differences in the demographic profiles of the different populations 
of study. Higher population coverage with the COVID-19 vaccines have greater health impacts in 
countries that have higher proportions of the elderly and/or low previous exposure to COVID-19.  

Using a societal perspective (that incorporates health system costs and productivity losses), we find 
that COVID-19 vaccination in Kenya is most cost-effective when targeted at older age groups in the 
population. This is because all our scenarios have the elderly covered first, and the incremental impact 
of increasing vaccination coverage among younger populations was less value for money. Given that 
the proportion of the elderly population in Kenya is low (11% of total population are aged 50 years and 
above),[13] targeting the COVID-19 vaccine to this vulnerable population achieves high cost-
effectiveness at relatively low population-level vaccine coverage; 30% coverage of the population 
ensures that the maximal 80% of the older age group is vaccinated and a very low coverage of the 
younger age group (19%). Accounting for productivity losses improves the cost-effectiveness profile 
of COVID-19 vaccines, compared to when only direct health system costs are considered. For instance, 
for the 30% coverage scenarios with both a non-rapid and rapid deployment pace, the ICERs decreased 
on average by 342% and 652%, when the societal perspective was considered as opposed to the health 
system perspective, and as a result improving the cost-effectiveness profile. This underlines the 
limitations of using a narrow health system perspective that ignores broader societal costs of health 
system interventions. This is even more so for a vaccine deployed in a pandemic that has substantial 
socio-economic impacts, in addition to health impacts. These findings mirror cost-effectiveness studies 
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of COVID-19 vaccination done in Turkey and Pakistan that found that although COVID-19 vaccination 
strategies were cost-effective from a health system’s perspective, they were cost-saving from a 
societal perspective.[39,41] This is in line with arguments from studies that estimate the public health 
value and impact of vaccination, which argue  the need to broaden the perspectives for cost-
effectiveness analysis of vaccines, as their impact is far-reaching, especially in the context of a 
pandemic.[42–44]  

These findings have implications for COVID-19 vaccination policy in Kenya and other low-and middle-
income countries (LMIC) settings with comparable demographic and COVID-19 epidemiological 
profiles. First, not unexpectedly, where an outbreak is imminent efforts to rapidly deploy the vaccine 
not only avert more cases, hospitalization, and deaths, but are also more cost-effective. By extension, 
had Kenya been able to deploy vaccines more rapidly, benefits would have been greater. Second, 
COVID-19 vaccination is likely to offer the best value for money when targeted to older age groups and 
possibly other vulnerable groups (such as those with risk increasing comorbidities) with high risk of 
severe disease and death, rather than to the whole population, in settings with overall low risk of 
severe disease and deaths, and high natural immunity due to previous exposure. This has several 
further implications. Kenya and other similar settings will achieve better health impacts and value for 
money with relatively small numbers of vaccines targeting the high-risk sections of the population. 
Against a context of constrained fiscal space for health, it is likely more prudent for Kenya and other 
African countries to target the vulnerable rather than whole populations. This consideration is likely 
to be even more relevant as African countries consider two shifts; the eligibility of children (below the 
age of 18 years) to COVID-19 vaccination and the transition to endemicity. If an endemic scenario will 
require annual vaccinations, Kenya and other African countries are unlikely to afford yearly 
vaccinations of their entire population. It is also apparent that such a strategy (vaccinating the entire 
population) is unlikely to be cost-effective, necessitating the need for Kenya and other African 
countries with comparable demographic and epidemic profiles to be both pragmatic and evidence-
based in setting COVID-19 vaccine coverage policies and targets that are both feasible, effective, and 
cost-effective in their contexts (rather than replicating high income country strategies.  

These results should be interpreted within the context of several limitations. First, our results are 
dependent on model assumptions and input parameters, as is the case with all modeling studies. We 
selected transmission model parameters based on published literature and available observation data. 
However, some data was limited, lacking, or uncertain and therefore we assumed our “best” estimate 
for Kenya. For example, we used estimates of vaccine effectiveness based on UK data and assume a 
duration of 14 days between vaccination and peak efficacy within our model structure. We noted from 
literature,[31–34] vaccine effectiveness varies with age, duration between vaccination and testing of 
efficacy, variant of infection, and the type of vaccine amongst other factors. The model does not 
consider the different professions of the population such as essential workers (health care workers, 
teachers, among others) as it focusses on age as the key risk group. However, frontline workers may 
be important to target since preventing infection among them lessens the potential impact on health 
and learning capacity. The latter might become more influential in the future with new vaccines if they 
are more effective in preventing re-infection and mild symptoms than current generation of vaccines. 
Second, sub-Saharan African countries like Kenya have notably reported lower cases and deaths 
compared to other countries across the globe, this could be attributed to their lower testing capacity. 
Hence, we assumed an under-reporting factor of 1:5 in hospitalised cases and deaths. Third, we 
instituted vaccination roll out near in time to the introduction of a new variant which enhances the 
benefit of rapid over slow roll-out. Distance between vaccine introduction and the emergence of an 
immune escape variant is likely to favour slower vaccine roll out. Fourth, assumptions about wanning 
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immunity (natural and vaccine) and varying protection depending on variants affect the results. Fifth, 
in relation to the economic evaluation, although the cost-effectiveness analysis was conducted from 
a societal perspective, some costs have not been fully captured due to unavailability of data. These 
costs include household indirect costs incurred due to COVID-19 illness (e.g transport costs), costs as 
a result of long-COVID, and reduced productivity for those in the formal sector with 
asymptomatic/mild disease. In the latter, although we assume that they can resume work from 
home/places of quarantine they may have reduced productivity which is not captured in this analysis. 
These costs not captured in the analysis are however expected to be minimal. Fifth, the analysis 
assumed similar vaccine delivery costs for both rapid and non-rapid vaccination across similar coverage 
levels. However, it is likely that the rapid vaccination scenario may need more resources, especially 
cold chain equipment to hold larger batches of vaccines at a time. Sixth, the reported uncertainty of 
the ICER likely does not capture the full extent of the uncertainty, given the uncertainty of the costs 
of a yet to be established adult vaccination programme in Kenya. Lastly, the economic evaluation 
considers a 1.5-year time frame, potentially excluding costs and benefits of COVID-19 that may accrue 
over a longer period of time.  

CONCLUSION  

This study contributes to the growing body of literature on the health impact and cost-effectiveness 
of COVID-19 vaccines. Kenya will achieve both greater marginal health impacts and better value for 
money if it prioritizes a targeted vaccination strategy among those at increased risk of severe disease 
and at a rapid rollout speed. The cost-effectiveness of the COVID-19 vaccine should be considered 
alongside other priority setting considerations in the Kenyan context. 
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SUPPLEMENTARY INFORMATION 

 

Transmission model 

Transmission model overview 

The dynamics of SARS-CoV-2 transmission in each of the 47 Kenyan counties were assumed to follow 
a dynamic model adapted from a previous model;[4] here we extend the (modified SEIRS type) 
transmission model structure to include age stratification and vaccination. The epidemiological 
dynamics in each county are described by the following system of differential equations:  
 

𝑑𝑆𝑎,𝑣
𝑑𝑡

= −𝜎𝑎𝑆𝑎,𝑣(1 − 𝜋𝑣
𝑠𝑢𝑠)𝜆𝑎 + 𝜌𝑎,𝑣−1𝑆𝑎,𝑣−1 − 𝜌𝑎,𝑣𝑆𝑎,𝑣   

𝑑𝐸𝑎,𝑣
𝑑𝑡

= 𝜎𝑎(𝑆𝑎,𝑣 + 𝜎𝜔1𝑊1𝑎,𝑣 + 𝜎𝜔2𝑊2𝑎,𝑣)(1 − 𝜋𝑣
𝑠𝑢𝑠)𝜆𝑎 − 𝛼𝐸𝑎,𝑣 + 𝜌𝑎,𝑣−1𝐸𝑎,𝑣−1 − 𝜌𝑎,𝑣𝐸𝑎,𝑣 

𝑑𝐴𝑎,𝑣
𝑑𝑡

= 𝛼𝐸𝑎,𝑣(1 − 𝛿𝑎) − 𝛾𝐴𝐴𝑎,𝑣 + 𝜌𝑎,𝑣−1𝐴𝑎,𝑣−1 − 𝜌𝑎,𝑣𝐴𝑎,𝑣 

𝑑𝑃𝑎,𝑣
𝑑𝑡

= 𝛼𝐸𝑎,𝑣𝛿𝑎 − 𝛼𝑃𝑃𝑎,𝑣 + 𝜌𝑎,𝑣−1𝑃𝑎,𝑣−1 − 𝜌𝑎,𝑣𝑃𝑎,𝑣 

𝑑𝐷𝑎,𝑣
𝑑𝑡

= 𝛼𝑃𝑃𝑎,𝑣 − 𝛾𝐷𝐷𝑎,𝑣 + 𝜌𝑎,𝑣−1𝐷𝑎,𝑣−1 − 𝜌𝑎,𝑣𝐷𝑎,𝑣 

𝑑𝑅𝑎,𝑣
𝑑𝑡

= 𝛾𝐴𝐴𝑎,𝑣 + 𝛾𝑀𝑀𝑎,𝑣 + 𝛾𝑉𝑉𝑎,𝑣 −𝜔𝑅𝑎,𝑣 + 𝜌𝑎,𝑣−1𝑅𝑎,𝑣−1 − 𝜌𝑎,𝑣𝑅𝑎,𝑣 

𝑑𝑊1𝑎,𝑣
𝑑𝑡

= 𝜔1𝑅𝑎,𝑣 − 𝜎𝜔𝜎𝑎𝑊1𝑎,𝑣(1 − 𝜋𝑣
𝑠𝑢𝑠)𝜆𝑎 −𝜔2𝑊1𝑎,𝑣 + 𝜌𝑎,𝑣−1𝑊1𝑎,𝑣−1 − 𝜌𝑎,𝑣𝑊1𝑎,𝑣 

𝑑𝑊2𝑎,𝑣
𝑑𝑡

= 𝜔2𝑊1𝑎,𝑣 − 𝜎𝑎𝑊2𝑎,𝑣(1 − 𝜋𝑣
𝑠𝑢𝑠)𝜆𝑎 + 𝜌𝑎,𝑣−1𝑊2𝑎,𝑣−1 − 𝜌𝑎,𝑣𝑊2𝑎,𝑣 

(1) 

 
The state variables are: Susceptible (S), latently infected (E), asymptomatically infectious (A), pre-
symptomatic infectious (P), symptomatic/diseased infectious (D), recovered and temporarily immune 
(R), and previously recovered/immune whose immunity to reinfection has waned (W1) before 
disappearing (W2). The indexing variables are age (𝑎) and vaccination dose status (𝑣), see below for 
further details on index variable structure. The age-specific force of infection was denoted 𝜆𝑎 (see 
below for details). The rate of progressing through latent uninfected stage (𝛼), pre-symptomatic 
infectious state (𝛼𝑃), rate of loss of complete immunity in two stages (𝜔1, 𝜔2), and the decreased 
susceptibility due to prior infection in stage W1 (𝜎𝜔), were assumed to be identical for all age groups, 
vaccination statuses, prior infection events, and eventual severity of the infection episode. The 
recovery rates (𝛾𝐴, 𝛾𝐷) depended on the severity of the episode, but not other factors. The baseline 
susceptibility per infectious contact (𝜎𝑎) and probability of developing symptoms (𝛿𝑎), were assumed 
to depend on the age of the individuals. 𝜋𝑣

𝑠𝑢𝑠 gives the effectiveness of vaccine status 𝑣 at blocking 
transmission per infectious contact (see below). The per-capita rate at which a person in age group 𝑎 
and with vaccine status 𝑣 transitioned to their next vaccine status was denoted 𝜌𝑎,𝑣 (see below). 
Figure S1 gives a visual overview of the model dynamics. 
 
Age structure for transmission model 

In this paper we used a coarse-grained set of age indices, partly to reduce number of model 
compartments and thereby increase the efficiency of parameter estimation (see below), and also 
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partly because the data used in parameter estimation did not support a finer grained age index. The 
six age groups corresponding to the age indices 𝑎 = 1,… ,6 were 0-19, 20-49, 50-59, 60-69, 70-79 and 
80+ year olds. When using more fine-grained age-specific data we used population weighted average 
values over the finer age group categories within each of the coarser six age groups used in this model 
to generate data. The data we used in the transmission model which was translated from a larger 
number of age groups to the six used in this model was as following: 

• Age- and setting- specific contact rates for Kenya from Prem and Jit.[45] These are provided in 

16 5-year age groups and 75+ year olds. (Fig. S2) 

• Age-specific relative susceptibility to infection (𝜎𝑎). These were accessed from UK focused 

modelling and analysis.[8] (Fig. S3) 

• Age-specific chance of a symptomatic episode given infection (𝛿𝑎). These were accessed from 

UK focused modelling and analysis.[8] (Fig. S3) 

Vaccine status and vaccination effects on transmission model dynamics and waning vaccination 
dynamics 

We used five vaccination statuses to index individuals: unvaccinated (𝑣 = 1), vaccinated with one 
(𝑣 = 2) or two doses (𝑣 = 3) with sufficient time elapsed since dose inoculation that maximum 
vaccine efficacy had been achieve (assumed to be 14 days), and two stages of waned vaccination 
(𝑣 = 4,5). The vaccination waning dynamics follow those described by Keeling et al.[16] 
 
Vaccine status acted on the dynamics of the model in four distinct ways:  

1) Decreasing the chance of infection per infectious contact by a factor 1 − 𝜋𝑣
𝑠𝑢𝑠 where 𝜋𝑣

𝑠𝑢𝑠 was 

the effectiveness of vaccine dose status 𝑣 at reducing infection. 

2) Decreasing the probability of severe disease after infection by a factor 1 − 𝜋𝑣
𝑑𝑖𝑠 where 𝜋𝑣

𝑑𝑖𝑠 

was the effectiveness of vaccine dose status 𝑣 against severe disease. 

3) Decreasing the probability of death after infection by a factor 1 − 𝜋𝑣
𝑑𝑒𝑎𝑡ℎ where 𝜋𝑣

𝑑𝑒𝑎𝑡ℎ was 

the effectiveness of vaccine dose status 𝑣 against death. 

4) Decreasing the infectiousness of dosed infecteds by a factor 1 − 𝜋𝑣
𝑖𝑛𝑓

 where 𝜋𝑣
𝑖𝑛𝑓

 was the 

effectiveness of vaccine dose status 𝑣 against transmitting infection. 

 
We follow the “VE -> 0%” scenario from Keeling et al,[16] where the effectiveness of the vaccine 
against acquisition of COVID-19 and infectiousness during a COVID-19 episode eventually decreases to 

zero (𝜋5
𝑠𝑢𝑠 = 0, 𝜋5

𝑖𝑛𝑓
= 0), whilst the eventual effectiveness against severe disease and death 

decreases to 70% (𝜋5
𝑑𝑖𝑠 = 𝜋5

𝑑𝑒𝑎𝑡ℎ = 0.7). The pre-waned vaccination status (𝑣 = 4) has the same 
vaccine effectiveness as full second dose vaccination status (𝑣 = 3) but is used to give non-
exponential waning rates over an average of 430 days for both stages of waning vaccine effectiveness. 
Therefore, the per-capita transition rates 𝜌𝑎,𝑣 in equation (1) divide into: 

  

𝜌𝑎,𝑣 =

{
 
 

 
 

0, 𝑣 = 0
𝜐𝑎,𝑣 , 𝑣 = 1,2

𝜉1,          𝑣 = 3
𝜉2,         𝑣 = 4
0,           𝑣 = 5

. (2) 
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Where 𝜐𝑎,1 and 𝜐𝑎,2 are the per-capita daily rates at which individuals in age group 𝑎 receive their first 
and second doses of vaccine, and 𝜉1 = 𝜉2 = 2/430 per day are the waning immunity rates of vaccine 
effectiveness. 
 
Although, this model choice closely follows Keeling et al,[16] it should be noted that unlike Keeling et 
al we assume that protection from vaccines and natural infection combine favorably whereas in 
Keeling et al it was assumed that protection from natural infection dominated vaccine protection. 
Force of infection for transmission model 

We define the age-dependent force of infection (𝜆𝑎) in three steps. First, we define the effective 
number of infected in each age group 𝑏, 
 

𝐼𝑏 =∑(1 − 𝜋𝑣
𝑖𝑛𝑓
)(𝜖𝐴𝑏,𝑣 + 𝑃𝑏,𝑣 + 𝐷𝑏,𝑣)

𝑣

+ 𝐼𝑒𝑥𝑡,𝑏 . (3) 

 
The effective number of infecteds is the total number rescaled by decreased levels of infectiousness, 
such as the relatively lower infectiousness of asymptomatic infecteds compared to pre- and post-
symptomatic infecteds (𝜖). 𝐼𝑒𝑥𝑡,𝑏 represented an external coupling with infectious people external to 
internal transmission dynamics. We chose 𝐼𝑒𝑥𝑡,𝑏 such that ∑ 𝐼𝑒𝑥𝑡,𝑏𝑏 = 100. Second, the rate of 

infectious contacts from an effective infected in age group 𝑏 to anyone in age group 𝑎 was defined as, 
 

𝑇𝑎𝑏 =
𝛽0(𝑡)(𝛽ℎ𝑜𝑚𝑒𝑇𝑎𝑏

ℎ𝑜𝑚𝑒 + 𝛽𝑠𝑐ℎ𝑜𝑜𝑙(𝑡) 𝑇𝑎𝑏
𝑠𝑐ℎ𝑜𝑜𝑙 + 𝛽𝑤𝑜𝑟𝑘𝑇𝑎𝑏

𝑤𝑜𝑟𝑘 + 𝛽𝑜𝑡ℎ𝑒𝑟𝑇𝑎𝑏
𝑜𝑡ℎ𝑒𝑟)

𝑁𝑎
. (4) 

 
Contacts occur in any of four main settings: at home, at school, at work or in some other social setting, 

each of which has an age-specific contact rate matrix for Kenya (𝑇𝑎𝑏
ℎ𝑜𝑚𝑒 , 𝑇𝑎𝑏

𝑠𝑐ℎ𝑜𝑜𝑙 , 𝑇𝑎𝑏
𝑤𝑜𝑟𝑘 , 𝑇𝑎𝑏

𝑜𝑡ℎ𝑒𝑟) 
estimated by Prem and Jit.[45] Google mobility data[46] and previous epidemic modelling in Kenya 
[4] suggest that contact rates in Kenya had returned to approximately pre-pandemic baseline by 
January 2021, therefore, we treated the setting specific transmission rates per contact for at home, at 
work and other social setting (𝛽ℎ𝑜𝑚𝑒 , 𝛽𝑤𝑜𝑟𝑘 , 𝛽𝑜𝑡ℎ𝑒𝑟) as constant. Transmission rate per contact at 
schools (𝛽𝑠𝑐ℎ𝑜𝑜𝑙(𝑡)) was constant during term time, but dropped to zero during Kenyan school 
holidays (19th March – 10th May, 16th July – 26th July, 1st October – 11th October, 23rd December – 4th 
January). The baseline transmission rate per contact (𝛽0(𝑡)) varied according to the SARS-CoV-2 
variant frequency in the county (see below). Third, the force of infection was defined as, 
 

𝜆𝑎 =∑𝑇𝑎𝑏𝐼𝑏
𝑏

. (5) 

 
Alpha, Beta and Delta variant frequency effect on transmission model dynamics 

The Alpha, Beta and Delta variants of SARS-CoV-2 have circulated in Kenya,[47] displaying a pattern of 
sequential dominance. From December 2020, Alpha and Beta variants increased in frequency ([48] Fig. 
S2), with a complex spatial pattern of relative frequency of Alpha vs Beta within Kenya.[48] Then, from 
May 2021, the frequency of Delta variant increased very rapidly to complete domination across Kenya 
(Fig. S2). 
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We modelled the effect of variant frequency on the baseline transmission rate per infectious contact 
𝛽0(𝑡) as a sequence of strain dominations each occurring over a timescale set by a logistic growth 
curve, 
 

𝛽0(𝑡) = 𝛽𝑤𝑡[1 + 𝑅𝛼𝛽𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐(𝑡; 𝑟𝛼𝛽 , 𝑇𝛼𝛽)][1 + 𝑅𝛿𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐(𝑡; 𝑟𝛿 , 𝑇𝛿)]. (6) 

 

Where 𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐(𝑡; 𝑟, 𝑇) =
exp(𝑟(𝑡−𝑇))

1+exp(𝑟(𝑟−𝑇))
 . In this model, 𝛽𝑤𝑡 is the baseline transmission rate per 

infectious contact of the origin strain(s), called wild-type strains, circulating in Kenya before Alpha and 
Beta variants, (1 + 𝑅𝛼𝛽) is the proportional change in the reproductive number for SARS-CoV-2 after 

domination by Alpha or Beta variant relative to wild-type strains, and (1 + 𝑅𝛿) is the proportional 
change in the reproductive number for SARS-CoV-2 after domination by Delta variant relative to Alpha 
or Beta variant. 𝑟𝛼𝛽, 𝑟𝛿 , 𝑇𝛼𝛽, 𝑇𝛿  set the exponential rates and timing of the logistic growth curves. The 

implied relative frequencies of wild-type, Alpha/Beta and Delta variants over time are, 
 

𝑓𝑤𝑡(𝑡) = [1 − 𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐(𝑡; 𝑟𝛼𝛽 , 𝑇𝛼𝛽)][1 − 𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐(𝑡; 𝑟𝛿 , 𝑇𝛿)], 

𝑓𝛼𝛽(𝑡) = 𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐(𝑡; 𝑟𝛼𝛽 , 𝑇𝛼𝛽)[1 − 𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐(𝑡; 𝑟𝛿 , 𝑇𝛿)], 

𝑓𝛿(𝑡) = 𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐(𝑡; 𝑟𝛿 , 𝑇𝛿). 
 

(7) 

Transmission model observables: Proportions PCR test and serology test positive 

The underlying transmission of SARS-CoV-2 is not observed, rather we have access to swab tests and 
serological tests (positive and negative) aggregated by date, age, and county. The chance infected 
individuals test positive for either type of test depends on the number of days post-infection. 
Therefore, we coupled the dynamics cumulative infections to transmission model, 
 

𝑑𝐹𝑎,𝑣
𝑑𝑡

= 𝜎𝑎𝑆𝑎,𝑣(1 − 𝜋𝑣
𝑠𝑢𝑠)𝜆𝑎, 

𝑑𝐶𝑎,𝑣
𝑑𝑡

= 𝜎𝑎(𝑆𝑎,𝑣 + 𝜎𝜔𝑊1𝑎,𝑣 +𝑊2𝑎,𝑣)(1 − 𝜋𝑣
𝑠𝑢𝑠)𝜆𝑎, 

𝑑𝐶̅𝑎,𝑣
𝑑𝑡

= 𝜎𝑎(𝑆𝑎,𝑣 + 0.5𝜎𝜔(1 − 𝜋5
𝑑𝑖𝑠)𝑊1𝑎,𝑣 + (1 − 𝜋5

𝑑𝑖𝑠)𝑊2𝑎,𝑣)(1 − 𝜋𝑣
𝑠𝑢𝑠)𝜆𝑎. 

(8) 

 
Where 𝐹𝑎,𝑣(𝑡) and 𝐶𝑎,𝑣(𝑡) were the cumulative number of people in the county in age group 𝑎 and 

vaccine status 𝑣 infected by time 𝑡, respectively split by it being their first infection episode or any 
infection episode. 𝐶𝑎̅,𝑣(𝑡) was the reinfection disease risk-weighted cumulative infection rate; that is 
the total infections discounted by the decreased risk of severe disease among reinfections (see below 
for use of this observable). In the absence of other evidence, we follow Keeling et al[16] in assuming 
that protection against disease due to prior infection is similar to that of vaccination. For the fully 
waned immunity post-natural infection state (W2) we assume that the protection from disease is 
equivalent to fully waned vaccine protection, and, for the partially waned immunity post-natural 
infection state (W1) that this protection is halved relative to W2. 
 
The daily new infections, on each day 𝑛 starting at 𝑡 = 𝑛 are then, 
 

𝜄𝐹,𝑎,𝑣(𝑛) = 𝐹𝑎,𝑣(𝑛 + 1) − 𝐹𝑎,𝑣(𝑛),   𝑛 = 1,2,… 
𝜄𝐶,𝑎,𝑣(𝑛) = 𝐶𝑎,𝑣(𝑛 + 1) − 𝐶𝑎,𝑣(𝑛),   𝑛 = 1,2,… 

(9) 
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The probability that an infected individual would be determined as having been infected 𝜏 days after 
infection if tested by either a PCR swab test or a serology test were denoted, respectively, 𝑄𝑃𝐶𝑅(𝜏) 
and 𝑄𝑠𝑒𝑟𝑜(𝜏). We used the same 𝑄𝑃𝐶𝑅 and 𝑄𝑠𝑒𝑟𝑜 probabilities as in Brand et al 2021.[4] 
 
By combining the underlying infection processes and the delay between infection and observability in 
our available data sets we find that the number of people who would test positive on each day 𝑛 in 
each county with either a PCR test (𝑃𝑎

+(𝑛)), or a serology test (𝑆𝑎
+(𝑛)), was, 

𝑃𝑎
+(𝑛) = ∑∑𝜄𝐶,𝑎,𝑣(𝑠)𝑄𝑃𝐶𝑅(𝑛 − 𝑠)

𝑣

𝑛−1

𝑠=1

, 

𝑆𝑎
+(𝑛) = ∑ 𝜄𝐹,𝑎,1(𝑠)𝑄𝑠𝑒𝑟𝑜(𝑛 − 𝑠)

𝑛−1

𝑠=1

+ 𝑝𝐹𝑃∑𝑆𝑎,𝑣(𝑡)

𝑣

. 

where 𝑡 was the midpoint of day n. 

(10) 

𝑝𝐹𝑃 was the false positive rate for the serology assay (see table S1). Underlying assumptions for 
equation (10) are: 1) that the PCR test is 100% specific to SARS-CoV-2, 2) that only the first infection 
contributes to the serological status of individuals, but that reinfections contribute to PCR status 
equally to first infections, and 3) that during the period of transmission parameter inference there 
were effectively zero vaccinated individuals, and therefore, all seropositivity was evidence of prior 
nature infection. We do not use any serological data from Kenya after May 2021 when the vaccination 
rate was very low in Kenya, and, therefore, vaccinations have negligible effect on prevalence of SARS-
CoV-2 specific antibodies. 
 
The number of people PCR positive is not observed directly, but rather test positive and negative swab 
test samples. We consider the proportion of these daily samples that are positive to be a potentially 
biased sample of the true underlying proportion that would be PCR-positive if everyone was tested 
( ∑ 𝑃𝑎

+
𝑎 /∑ 𝑁𝑎𝑎 ). Therefore, we model the expected proportion PCR test positive (over all age groups) 

on day 𝑛 as, 

𝑃̅+(𝑛) =
𝜒∑ 𝑃𝑎

+(𝑛)𝑎

(𝜒 − 1)∑ 𝑃𝑎
+(𝑛) +𝑎 𝑁

. (11) 

Where 𝜒 is an observed swab sample bias parameter, where 𝜒 = 1 indicates unbiased sampling, 𝜒 < 1 
indicates bias in favour finding PCR negative individuals (i.e., 𝑃̅+(𝑛) <  ∑ 𝑃𝑎

+
𝑎 /∑ 𝑁𝑎𝑎 ), and 𝜒 > 1 

indicates bias in favour of finding PCR positive individuals (i.e., 𝑃̅+(𝑛) >  ∑ 𝑃𝑎
+

𝑎 /∑ 𝑁𝑎𝑎 ). 
 

Clinical outcome model 

 
Clinical outcomes of SARS-CoV-2 infections 

Severe infections eventually lead to a clinical outcome. We consider three possibilities in this model:  
1) Deadly outcome. Deadly infected individuals die after a delay period defined by the probability 

distribution 𝑓𝜇. Death, conditional on infection, occurs with probability 𝜇𝑎
𝐷. 

2) Critical outcome. Critically infected individuals require a stay in ICU for a duration defined by 

the probability distribution 𝑓𝐼𝐶𝑈, then move to a general ward in a hospital or health facility, 

where they stay for a duration defined by the probability duration 𝑓ℎ𝑜𝑠𝑝. Critical disease, 

conditional on infection, occurs with probability 𝜇𝑎
𝐶 . 
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3) Severe outcome. Severely infected individuals require a stay in a general ward in a hospital or 

health facility, where they stay for a duration defined by the probability duration 𝑓ℎ𝑜𝑠𝑝. Severe 

disease, conditional on infection, occurs with probability 𝜇𝑎
𝑆. 

Clinical outcome model observables: Reported incidence of deaths, occupancy of general wards 
and Intensive care units 

Incidence rate of clinical outcomes. The lag between infection and needing treatment, for those 
infected individuals who die, was defined as the convolution of two time-duration distributions: 

1. The duration of time between infection and symptoms (days), which we assumed was 

distributed 𝐿𝑜𝑔𝑁𝑜𝑟𝑚𝑎𝑙(𝑙𝑜𝑔𝜇̂ = 1.64, 𝑙𝑜𝑔𝑠𝑡𝑑̂  = 0.36).[49] 
2. The duration of time between initial symptoms and severe symptoms (days), sufficient to seek 

hospitalisation, which we assumed was distributed 𝑈(1,5).[50] 
 
We discretized the two distributions to give probability functions 𝑓𝐼𝑆 for the number of days between 
infection and symptoms, and 𝑓𝑆𝐻for the number of days between symptom onset and severe 
symptom onset. The probability function for the (discrete) number of days between infection and 
severe or critical disease, for those who died, 𝑓𝑑𝑖𝑠, was given as a discrete convolution over these 
probability mass functions: 

𝑓𝑑𝑖𝑠(𝜏) = [𝑓𝐼𝑆 ∗ 𝑓𝑆𝐻](𝜏) for the probability that severe or critical disease leads to 
seeking medical assistance 𝜏 days after infection, conditional on that as outcome. 

(12) 

We use this delay distribution to give a rate of people in age group 𝑎 requiring medical treatment on 
day 𝑛 up to some unknown age-dependent and variant-dependent risk-factor, which will fit against 
available data on reported severe, critical and deadly outcomes, 

𝜄𝑑𝑖𝑠,𝑎,𝑣,𝑟(𝑛) ∝∑ 𝑓
𝑟
(𝑠)[𝐶̅𝑎,𝑣(𝑠 + 1) − 𝐶̅𝑎,𝑣(𝑠)]𝑓𝑑𝑖𝑠(𝑛 − 𝑠).

𝑠<𝑛

 (13) 

Where 𝑓𝑟(𝑠) is the relative frequency of variant 𝑟 on day 𝑠 (see equation (7)). Note that in equation 
(13) the reduction in risk due to reinfection is already accounted for (see equation (8)). 

 

Observation of incidence of deadly outcome of infection. There is likely to be under-reporting of 
deaths due to COVID-19 in Kenya.[35,51] In this paper, we don’t have sufficient data to estimate the 
true level of under-reporting of deaths in Kenya. However, by assuming that the age-dependent risk 
of death after infection with SARS-CoV-2 is the same in every county, we can estimate county-specific 
under-reporting/change in risk relative to the capital Nairobi. Concretely, we model the expected 
number of observed deaths on each day 𝑛, in each age group 𝑎, and each county 𝑐, as, 

𝐷𝑒𝑎𝑡ℎ𝑠𝑎,𝑐(𝑛) = 𝜓𝑐𝜇𝑎
𝐷∑∑∑𝜓𝑟

𝐷(1 − 𝜋𝑣
𝑑𝑒𝑎𝑡ℎ)𝜄

𝑑𝑖𝑠,𝑎,𝑣,𝑟
(𝑠)𝑓

𝜇
(𝑛 − 𝑠)

𝑟𝑣𝑠<𝑛

. (14) 

Where 𝜓𝑐 is the county-specific under-reporting rate with 𝜓𝑛𝑎𝑖𝑟𝑜𝑏𝑖 = 1, 𝜓𝑟
𝐷 is the relative risk of death 

by variant with 𝜓𝑤𝑡
𝐷 = 1, and the duration of time between needing treatment and death had 

probability distribution 𝑓𝜇. 

 
Observation of hospital and ICU occupancy due to severe or critical infections. We don’t have access 
to reports on the incidence of severe and critical cases arriving at hospitals/health facilities and ICUs; 
the relevant observables from the clinical outcome model are occupancies of patients overall in Kenya 
by setting rather than arrival of patients at those settings. 
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The probability distributions for length of stay in either hospital/health facility or ICU are denoted as 
𝑓ℎ𝑜𝑠𝑝 and 𝑓𝐼𝐶𝑈, implying upper distribution functions 𝑄ℎ𝑜𝑠𝑝(𝑛) = ∑ 𝑓ℎ𝑜𝑠𝑝(𝑠)𝑠>𝑛  and 𝑄𝐼𝐶𝑈(𝑛) =

∑ 𝑓𝐼𝐶𝑈(𝑠)𝑠>𝑛  for the probability that a stay in hospital or ICU is longer than 𝑛 days. The expected total 
number of people in intensive care units on day 𝑛 is, 

𝐼𝐶𝑈(𝑛) =∑𝜓𝑐𝜇𝑎
𝐶

𝑎,𝑐

∑∑∑𝜓
𝑟
𝐶(1 − 𝜋𝑣

𝑑𝑖𝑠)𝜄
𝑑𝑖𝑠,𝑎,𝑣,𝑟

(𝑠)𝑄𝐼𝐶𝑈(𝑛 − 𝑠)

𝑟𝑣𝑠<𝑛

. (15) 

Where 𝜓𝑟
𝐶  is the relative risk of critical disease by variant with 𝜓𝑤𝑡

𝐶 = 1. After a critical case has 
completed a stay in an ICU, we model them as having a stay in a general ward with the same 
distribution of length as per a severe case admitted to a general ward (without a stay in ICU). The 
upper distribution function for the whole stay in ICU and general ward is then 𝑄𝐼𝐶𝑈𝐻(𝑛) =
∑ [𝑓𝐼𝐶𝑈 ∗ 𝑓ℎ𝑜𝑠𝑝](𝑠)𝑠>𝑛  , giving the expected number of critical cases in either ICU or general ward as, 

𝐼𝐶𝑈𝐻(𝑛) =∑𝜓𝑐𝜇𝑎
𝐶

𝑎,𝑐

∑∑∑𝜓
𝑟
𝐶(1 − 𝜋𝑣

𝑑𝑖𝑠)𝜄
𝑑𝑖𝑠,𝑎,𝑣,𝑟

(𝑠)𝑄𝐼𝐶𝑈𝐻(𝑛 − 𝑠)

𝑟𝑣𝑠<𝑛

. (16) 

The expected number of patients occupying general wards is the addition of severe cases who have 
been admitted directly to general wards, and critical cases who have completed their stay in ICU and 
are now in general wards, 

𝐻𝑂𝑆𝑃(𝑛) = [𝐼𝐶𝑈𝐻(𝑛) −  𝐼𝐶𝑈(𝑛)]

+∑𝜓𝑐𝜇𝑎
𝑆

𝑎,𝑐

∑∑𝜓𝑟
𝑆(1 − 𝜋𝑣

𝑑𝑖𝑠)𝜄𝑑𝑖𝑠,𝑎,𝑣,𝑟(𝑠)𝑄ℎ𝑜𝑠𝑝(𝑛 − 𝑠)

𝑣𝑠<𝑛

. (17) 

Where 𝜓𝑟
𝑆 is the relative risk of severe disease by variant with 𝜓𝑤𝑡

𝑆 = 1. 
 

Parameter Inference 

 
In this work, we make inferences on two groups of parameters:  

1. The parameters of the transmission model in [equations (1-5)], and the bias parameter (𝜒) for 

the observed versus actual proportion PCR positive in daily swab test [equation (11)]. 

2. The parameters of the clinical outcome model [equations (12-15)]: the relative under-

reporting rate by Kenyan county 𝜓𝑐, the age-dependent clinical outcome probabilities 𝜇𝑎
𝑆, 𝜇𝑎

𝐶 , 

𝜇𝑎
𝐷, and the variant specific clinical outcome probabilities 𝜓𝑟

𝐷 , 𝜓𝑟
𝐶 , 𝜓𝑟

𝑆. 

 
For the transmission model parameters, we used Bayesian inference to infer a joint posterior 
distribution for the parameters for each county. For the clinical outcome model, we inferred 
parameters by minimizing the divergence between model prediction of the observables [equations 
(14-15) and (17)] and actual reporting, under the assumption that the rate of people arriving for medical 
treatment, up to the unknown risk factors [equation (13)], was that implied by the posterior mean 
prediction implied by the Bayesian inference of the transmission model parameters. 
 
A challenge with using the linelist data in Kenya for inference of transmission was that the metadata 
concerning the reason for receiving a swab test, the levels of symptoms of people who tested positive, 
and their healthcare outcomes were often missing. Overall, more than 90% of the people who tested 
positive in Kenya, and for whom we have a description of their symptoms, reported no symptoms 
(asymptomatic). Therefore, unlike model-based inference for COVID-19 transmission in high-income 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 22, 2022. ; https://doi.org/10.1101/2022.04.21.22274150doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.21.22274150
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

12 | P a g e  
 

countries we didn’t use severe outcomes such as hospitalization or death as data sources for 
inference, e.g.,[9,52,53] because this data was unreliable. Instead, we concentrated on fitting to the 
proportion positive of daily swabs test and serological tests jointly with detection rate of cases (see 
Transmission model observables: Proportions PCR test and serology test positive above). It should 
be noted that this meant that we didn’t use age-specific PCR test data, but rather fitted to the 
aggregate proportion positive over all age groups. However, we did use age-specific seroprevalence 
data.  
 
We describe the three main ingredients for our Bayesian approach below: 1) the log-likelihood 
function for the data given a set of parameters, 2) the county-specific hierarchy of prior distributions 
for the parameters, and, 3) the Markov-chain Monte Carlo method used to draw parameter sets from 
the posterior distribution. 
Bayesian inference of transmission model parameters 

Data and log-likelihood function for transmission model. Given the daily PCR and serology data for a 
county, 

𝓓𝒄 = {𝑂𝑏𝑠𝑆𝑎
+(𝑛), 𝑂𝑏𝑠𝑆𝑎

−(𝑛), 𝑂𝑏𝑠𝑃+(𝑛), 𝑂𝑏𝑠𝑃−(𝑛)}𝑎=1,…,6; 𝑛=1,2,3,… (18) 

The log-likelihood function for the unknown transmission parameters (𝜃𝑇𝑀) in that county was, 

𝑙(𝜃𝑇𝑀) = 𝑃(𝓓𝒄|𝜃𝑇𝑀) =∑𝑙𝑛 𝑓𝐵𝐵(𝑂𝑏𝑠𝑃
+(𝑛) |𝑁𝑠̂ = 𝑁𝑃𝐶𝑅(𝑛), 𝑝̂ = 𝑃̅

+(𝑛), 𝑀̂ = 𝑀𝑃𝐶𝑅)

𝑛

 

                +∑𝑙𝑛 𝑓𝐵𝐵( 𝑂𝑏𝑠𝑆𝑎
+(𝑛)|𝑁𝑠̂ = 𝑁𝑠𝑒𝑟𝑜,𝑎(𝑛), 𝑝̂ =  

S𝑎
+(𝑛)

𝑁𝑎
, 𝑀̂ = 𝑀𝑠𝑒𝑟𝑜)

𝑛,𝑎

. 

(19) 

Where 𝑓𝐵𝐵(𝑥|𝑁̂𝑠, 𝑝̂, 𝑀̂) is the probability function for a Beta-binomial with sample size 𝑁̂𝑠, expected 

proportion of successes  𝑝̂, and effective sample size  𝑀̂. This was a convenient reparameterization 

of the Beta-binomial model under the transformation  𝑁̂𝑠 = 𝑛, 𝑝̂ =
𝛼

𝛼+𝛽
, 𝑀̂ = 𝛼 + 𝛽 from the typical 

(𝑛, 𝛼, 𝛽) parameterization. 𝑁𝑃𝐶𝑅(𝑛) and 𝑁𝑠𝑒𝑟𝑜,𝑎(𝑛) were the total number of samples (positive and 

negative) of, respectively, PCR test and serological tests on day 𝑛, in age group 𝑎. 𝑃̅+(𝑛) was derived 
from the transmission model for each day 𝑛 as per above [equations (10-11)]. 𝑀𝑃𝐶𝑅 and 𝑀𝑠𝑒𝑟𝑜 were 
fixed from a previous modelling study.[4] The first day where samples were included in the log-
likelihood calculation was 1st January 2021.  
 
Initial conditions and model simulation. We fit to data from 1st January 2021, however, because PCR 
cases and serological detection are lagged indicators of infections weeks previously, we start the 
model simulation in each county on 1st December 2020 and use the first month of simulation to allow 
the simulation to converge onto the epidemic dynamics. Simulation of the model was done by solving 
the ODE system [equation (1)] forwards from the county-specific initial conditions, with county-
specific parameter configuration, using an explicit/implicit switching solver provided by the 
DifferentialEquations.jl Julia programming language package.[54] 
 
We reduced the number of unknown parameters for the initial state of the epidemic model by 
considering only the overall latent infected numbers (𝐸0) and a scale factor on the proportion exposed 
to COVID (i.e. in 𝑅/𝑊1/𝑊2 epidemiological compartments) relative to a cross-sectional survey done in 
Nairobi in mid-November 2020[55] which we denote 𝜏. We fix the initial removed and waned immunity 
numbers as   
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𝑅𝑎,1(0) = 𝑁𝑎(0) ∗ 𝑃𝑠𝑒𝑟𝑜,𝑎 ∗ 𝜏 ∗ 0.95, 
𝑊1𝑎,1(0) = 𝑁𝑎(0) ∗ 𝑃𝑠𝑒𝑟𝑜,𝑎 ∗ 𝜏 ∗ 0.05, 

𝑊2𝑎,1(0) = 0. 
(20) 

Where 𝑃𝑠𝑒𝑟𝑜,𝑎 was the raw (non-test sensitivity adjusted) seroprevalence estimate for Nairobi in the 
cross-sectional survey,[55] and 𝜏 was an adjustment factor which was added to the set of parameters 
to be inferred in the set 𝜃𝑇𝑀. Note that we are assuming that 5% of the previously exposed population 
have lost complete immunity to reinfection by 1st December 2020, and that no previously exposed 
people had completely lost immunity to reinfection. The adjustment factor 𝜏 allowed the model 
flexibility to represent counties with lower seroprevalence data in 2021 as having had a smaller initially 
exposed fraction compared to Nairobi, whilst also allowing upwards adjustment to account for the 
fact that the second wave of cases in Kenya occurred during the Nairobi cross-sectional study. 
 
The age-specific numbers of initially latent infected people were derived from the next-generation 

matrix 𝐾(𝑃𝑠𝑒𝑟𝑜,1, … , 𝑃𝑠𝑒𝑟𝑜,6, 𝜏, 𝛽0, 𝛽𝑠𝑐ℎ𝑜𝑜𝑙 , 𝛽ℎ𝑜𝑚𝑒 , 𝛽𝑜𝑡ℎ𝑒𝑟, 𝛽𝑤𝑜𝑟𝑘), where we have made explicit the 

parameters being inferred that the next-generation matrix depends upon and its explicit dependence 
on the baseline seroprevalence estimates. The eigenvector 𝒗, normalized such that |𝒗|1 = 1, 
associated with the leading eigenvalue of 𝐾, represented the expected distribution of new infections 
across age groups. Therefore, we specified  

𝑬(0) =  𝐸0𝒗. (21) 

Where 𝑬(0) = [𝐸1,0(0),… , 𝐸6,0(0)]
𝑇

. The rest of the initial variables were specified as being 

dependent of the flow out of the latent infected state, 

𝐴𝑎,0(0) = 𝛼 ∗ 𝐸𝑎,0(0) ∗ (1 − 𝛿𝑎)/(1 + 𝛾𝐴), 

𝑃𝑎,0(0) = 𝛼 ∗ 𝐴𝑎,0(0) ∗ 𝛿𝑎/(1 + 𝛼𝑝), 

𝐷𝑎,0(0) = 𝛼𝑝 ∗ 𝑃𝑎,0(0) ∗ (1 − ℎ𝑎)/(1 + 𝛾𝐷). 

 

(22) 

In every county, every individual in the model was initially unvaccinated. 
 
Priors. In every county we used the following priors for parameter inference: 
 

• ϵ ∼ 𝐵𝑒𝑡𝑎(𝛼̂ = 50, 𝛽̂ = 50).   

• β0 ∼ 𝛤(𝑘̂ = 10, 𝜃 = 1.5/10). 

• βother ∼ 𝛤(𝑘̂ = 10, 𝜃 = 1.5/10). 

• βhome ∼ 𝛤(𝑘̂ = 10, 𝜃 = 1.5/10). 

• βwork ∼ 𝛤(𝑘̂ = 10, 𝜃 = 1.5/10). 

• βschool ∼ 𝛤(𝑘̂ = 10, 𝜃 = 1.5/10). 

• 𝑅𝛼𝛽 ∼ Γ(𝑘̂ = 15, 𝜃 =
0.4

15
). 

• 𝑟𝛼𝛽 ∼ Γ(𝑘̂ = 15, 𝜃 =
0.15

15
).  

• 𝑅𝛿 ∼ Γ (𝑘̂ = 15, 𝜃 =
0.6

15
). 

• 𝑟𝛿 ∼ Γ(𝑘̂ = 15, 𝜃 =
0.2

15
).  
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• 𝐸0 ∼ Γ(𝑘̂ = 3, 𝜃 =
1000

3
). 

• 𝜏 ∼ Γ(𝑘̂ = 5, 𝜃 =
1.5

5
). 

 
The prior for the PCR observation bias parameter 𝜒, differed between counties (see below). For 
Nairobi and Mombasa we used a prior: 

• 𝜒 ∼ Γ (𝑘̂ = 3, 𝜃 =
4.5

3
). 

 
MCMC draws. We used Hamiltonian MCMC with NUTS[56,57] to perform Bayesian inference by 
drawing 2,000 samples from the posterior distribution, 

𝜃𝑇𝑀
(𝑘,𝑐)

∼ 𝑃(𝜃𝑇𝑀|𝓓𝒄) ∝ exp(𝑙(𝜃𝑇𝑀))𝜋(𝜃𝑇𝑀), for 𝑘 =  1,2,3,… (23) 

for each county using the NUTS-HMC sampler implemented by the Julia language package 
dynamicHMC.jl. The HMC method required a log-likelihood gradient, 𝛻𝜃(𝑙 + 𝜋), which, for our use-case 
of an ODE system with a comparative low number of parameters (<100 parameters), was most 
efficiently supplied by forward-mode automatic differentiation implemented by the package 
ForwardDiff.jl. The MCMC chain converged for each county (all MCMC chains and MCMC diagnostics 
can be accessed through the linked open code repository: 
https://github.com/SamuelBrand1/KenyaCoVaccines. The posterior mean (and 95% CIs) for each 
parameter can also be found in the open code repository. 
 
Approximate county-specific hierarchical model for PCR observation bias. The serological data is 
important for our inference because it gives information about the proportion of each age group 
infected at different time points, and, therefore, allows the PCR observation bias parameter (𝜒) to be 
identifiable. However, the amount of serological data differs from county to county. To allow cross-
inference between counties for the bias parameter we assumed that 1) Nairobi and Mombasa were 
sufficiently distinct from other counties that the inferred bias parameter for these city/counties was 
not relevant to other counties, and 2) the other 45 counties had a bias parameter drawn from a 
common distribution, 𝜒𝑐 ∼ Γ(𝑘𝜒, 𝜃𝜒), where 𝑘𝜒 and 𝜃𝜒 are the hyperparameters of this hierarchical 

model. This reflected our underlying belief that despite regional variations in transmission, the 
observation of data would be similar in all counties outside of the main two urban hubs.  
 
A fully Bayesian approach to inference would involve including {𝜒𝑐}𝑐 and the hyperparameters 𝑘𝜒, 𝜃𝜒 

within a joint log-likelihood over all Kenyan counties (except Nairobi and Mombasa). However, to 
accelerate inference we used an approximation to this hierarchical model. The 9 counties with the 
most amount of serological data available, apart from Nairobi and Mombasa, were Embu, Kilifi, Kisii, 
Kisumu, Kwale, Nakuru, Nyeri, Siaya, and Uasin Gishu. We performed MCMC draws for each of these 

counties using a prior 𝜒 ∼ Γ (𝑘̂ = 3, 𝜃 =
4.5

3
), which gathered a set of MCMC draws for 𝜒 from the 

posterior distribution for each county 𝑐, {𝜒(𝑘,𝑐)}𝑘=1,…,2000 ∼ 𝑃(𝜒|𝓓𝒄). We then approximated 

maximum a-posteriori (MAP) estimates for the hyperparameters 𝑘𝜒, 𝜃𝜒 using, 

ln 𝑃(𝑘𝜒, 𝜃𝜒|𝓓𝟏, …𝓓𝟗)  = ln𝜋( 𝑘𝜒, 𝜃𝜒) +∑ln∑𝑓Γ
𝑘

(𝜒(𝑘,𝑐) |𝑘̂ = 𝑘𝜒, 𝜃 = 𝜃𝜒)

𝑐

+ 𝑐𝑜𝑛𝑠𝑡. (24) 

Where 𝑓Γ is the density function of a Gamma distribution, and ln 𝜋(𝑘𝜒, 𝜃𝜒) was the log-prior for the 

hyper-parameters. The hyper-priors used were: 

• 𝑘𝜒 ∼ exp(𝜇̂ = 10). 
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• 𝜃𝜒 ∼ exp(𝜇̂ = 0.45). 

 
The MAP estimation is done under the distributional assumption that the observed outcome data was 
distributed negative binomially with the same mean as the posterior predictive mean value (that is 
averaged over the posterior predictive distribution for the infection process), and a negative binomial 
clustering factor inferred jointly with the risk factors. 
 

We then could use the 9 non-city counties with the most serological data to create MAP estimates 𝑘̂𝜒, 

𝜃𝜒 by maximizing equation (24). Equation (24) represented an approximation where we treated the 

MCMC draws of the 𝜒 parameter as “data” for making inference on the hyper-parameters despite 
using a different prior to generate the MCMC samples. 
 
The second approximation is that for the 36 other counties that were not Nairobi, Mombasa, or one 
of the 9 listed above, we used a prior for 𝜒 generated from these MAP estimates 

• 𝜒 ∼ Γ(𝑘̂ = 𝑘𝜒/2, 𝜃 = 2𝜃𝜒). 

The reason for the scaling of 2 was to increase the prior variance for 𝜒 to reflect that we are 
approximating a hierarchical model. 
Minimum divergence estimates for the infection outcome model 

After performing MCMC we were able to estimate the posterior mean for the rate of diseased 
incidence, up to a proportionality with unknown risk factors  𝐸[𝜄𝑑𝑖𝑠,𝑎,𝑣,𝑟(𝑛)|𝓓], for each day 𝑛, age 
group 𝑎, variant 𝑣, and county 𝑐, by solving the ODE system [equation (1)] for each set of transmission 
model parameters drawn from the MCMC and using equation (13). We can then define the posterior 

expected number of deaths 𝐷𝑒𝑎𝑡ℎ𝑠̅̅ ̅̅ ̅̅ ̅̅ ̅̅
𝑎,𝑐(𝑛; 𝜓𝑐 , 𝜓𝑟

𝐷 , 𝜇𝑎
𝐷) by replacing the parameter-specific diseased 

incidence rate in equation (14) with its posterior mean. We define the divergence due to a choice of 
age dependent mortality rates (𝜇𝑎

𝐷), relative reporting rate (𝜓𝑐), relative variant-specific risk of death 
(𝜓𝑟

𝐷) and clustering factor 𝛼𝐷, 

𝐷𝑖𝑣𝐷(𝜓𝑐 , 𝜓𝑟
𝐷, 𝜇𝑎

𝐷 , 𝛼𝐷) =  −2 ∑ ln 𝑓𝑁𝐵(𝑂𝑏𝑠𝐷𝑒𝑎𝑡ℎ𝑠𝑎,𝑐(𝑛)|𝜇̂ = 𝐷𝑒𝑎𝑡ℎ𝑠̅̅ ̅̅ ̅̅ ̅̅ ̅̅
𝑎,𝑐(𝑛; 𝜓𝑐 , 𝜓𝑟

𝐷, 𝜇𝑎
𝐷) 

𝑎,𝑐,𝑛

, 𝛼̂ = 𝛼𝐷). (25) 

Where 𝑓𝑁𝐵(𝑥|𝜇̂, 𝛼̂) is the probability function for a negative binomial with mean 𝜇̂ and clustering factor 
𝛼̂, and 𝑂𝑏𝑠𝐷𝑒𝑎𝑡ℎ𝑠𝑎,𝑐(𝑛) are the daily reported deaths in each age group, each county and on each 

day. We found a minimum point for equation (25), which we used as estimators, 𝜓̂𝑐, 𝜓̂𝑣
𝐷, 𝜇̂𝑎

𝐷, 𝛼̂𝐷 (Figs. 
S2, S3). 
 
The ICU occupancy data was not available broken down by age or county, therefore, we assumed that 
the risk of reported critical disease was proportional to the risk of death for everyone and focused on 

fitting the relative risk of critical disease vs death 𝜇𝑟𝑒𝑙
𝐶𝐷 . We defined the divergence between model 

prediction of ICU occupancy and observed occupancies due to relative risk of critical disease vs death 

𝜇𝑟𝑒𝑙
𝐶𝐷 , variant specific risk of critical disease 𝜓𝑟

𝐶, and clustering factor 𝛼𝐶, 

𝐷𝑖𝑣𝐼𝐶𝑈(𝜇𝑟𝑒𝑙
𝐶𝐷 , 𝜓𝑣

𝐶 , 𝛼𝐶) =  −2 ∑ln 𝑓𝑁𝐵(𝑂𝑏𝑠𝐼𝐶𝑈(𝑛)|𝜇̂ =∑𝐼𝐶𝑈̅̅ ̅̅ 𝑎̅,𝑐(𝑛; 𝜓̂𝑐 , 𝜓𝑟
𝐶 , 𝜇𝑟𝑒𝑙

𝐶𝐷  𝜇̂𝑎
𝐷)

𝑎,𝑐

 

𝑛

, 𝛼̂ = 𝛼𝐶). (26) 

Where 𝑂𝑏𝑠𝐼𝐶𝑈(𝑛) was the reported Kenyan National ICU occupancy on day 𝑛, and 𝐼𝐶𝑈̅̅ ̅̅ ̅𝑎,𝑐  is the 
posterior mean value for the ICU occupancy with COVID. The minimum point for equation (26) gave 

estimators, 𝜓̂𝑣
𝐶, 𝜇̂𝑎

𝐶 = 𝜇̂𝑟𝑒𝑙
𝐶𝐷 𝜇̂𝑎

𝐷, 𝛼̂𝐶  (Fig. S2).  
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The general ward occupancy data was also not available broken down by age or county, therefore, we 
assumed that the risk of reported severe disease was proportional to the risk of death for everyone 

and focused on fitting the relative risk of severe disease vs death 𝜇𝑟𝑒𝑙
𝑆𝐷 . We defined the divergence 

between model prediction of general ward occupancy and observed occupancies due to relative risk 

of severe disease vs death 𝜇𝑟𝑒𝑙
𝑆𝐷  , variant specific risk of severe disease 𝜓𝑟

𝑆, and clustering factor 𝛼𝑆, 

𝐷𝑖𝑣𝐻𝑂𝑆𝑃(𝜇𝑟𝑒𝑙
𝑆𝐷 , 𝜓𝑣

𝑆, 𝛼𝑆) =  −2 ∑ln 𝑓𝑁𝐵(𝑂𝑏𝑠𝐻𝑂𝑆𝑃(𝑛)|𝜇̂ =∑𝐻𝑂𝑆𝑃̅̅ ̅̅ ̅̅ ̅̅
𝑎,𝑐(𝑛; 𝜓̂𝑐 , 𝜓𝑟

𝑆, 𝜇𝑟𝑒𝑙
𝑆𝐷  𝜇̂𝑎

𝐷)

𝑎,𝑐

 

𝑛

, 𝛼̂ = 𝛼𝑆). (27) 

Where 𝑂𝑏𝑠𝐻𝑂𝑆𝑃(𝑛) was the reported Kenyan National general ward occupancy with COVID on day 
𝑛, and 𝐻𝑂𝑆𝑃̅̅ ̅̅ ̅̅ ̅̅

𝑎,𝑐 is the posterior mean value for the ICU occupancy, with the contribution from patients 
arriving into general wards from ICU already calculated using the minimum divergence estimates from 

equation (26). The minimum point for equation (27) gave estimators, 𝜓̂𝑟
𝑆, 𝜇̂𝑎

𝑆 = 𝜇̂𝑟𝑒𝑙
𝑆𝐷 𝜇̂𝑎

𝐷, 𝛼̂𝑆 (Fig. S2).  
 

Vaccine scenario projections and immune-escape variant 

 
Vaccination rates. We considered 7 vaccine rollout scenarios starting from 1st September 2021: No 
vaccination (baseline), 30%, 50%, 70% target coverage of Kenyan over 18s with either an 18 month or 6-
month (rapid) time scale (Table 1). In each case we assumed that:  
 

1. The number of vaccines deployed in each county each day was constant over the rollout. 

2. Second dose followed first dose after a 56 day lag. 

3. Over 50 year olds were offered the vaccine first, but demand saturated at 80% coverage among 

over 50 year olds (age groups 3-6 in the model) and afterwards the vaccine was offered to 18-49 

year olds (age group 2). 

4. Vaccines were deployed pro-rata across all disease/infection states; that is there was no 

dependence on past infection history in seeking vaccines. 

 
Mathematically, this corresponds to this choice for the per-capita vaccination rate (equation (2)) for the 
first dose, that is pro-rata distribution among all unvaccinated groups in stages by age, 
 

𝜐𝑎,1(𝑡) =
𝑁𝑉𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜
𝑇𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜

𝟏(∑ ∑ 𝑁𝑎,𝑣 < 0.8∑ 𝑁𝑎𝑎=3,..,6 )𝑣=2,…,5𝑎=3,…,6

∑ 𝑁𝑎,1𝑎=3,…,6
,   𝑎 = 3,4,5,6  

𝜐2,1(𝑡) =
𝑁𝑉𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜
𝑇𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜

𝟏(∑ ∑ 𝑁𝑎,𝑣 ≥ 0.8∑ 𝑁𝑎𝑎=3,..,6 )𝑣=2,…,5𝑎=3,…,6

𝑁2,1
,    

 
For  1𝑠𝑡 𝑠𝑒𝑝𝑡 2021 ≤  𝑡 ≤ 1𝑠𝑡 𝑠𝑒𝑝𝑡 2021 + 𝑇𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 − 56 𝑑𝑎𝑦𝑠 

(28) 

 
Where 𝑁𝑎,𝑣 is the county population by age and vaccine status (summed over disease/infection status). 
𝟏(⋅) is an indicator function enforcing that the vaccination rate among over 50s (age groups 3-6) drops to 
zero at an 80% coverage. 𝑁𝑉𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 is the number of doses implied by the scenario target coverage, and 
𝑇𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 is the time in days over which this target coverage is to be achieved in the scenario. The second 
dose per capita rate is like the first dose but with doses distributed among people who have had their first 
dose, 

𝜐𝑎,2(𝑡) =
𝑁𝑉𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜
𝑇𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜

𝟏(∑ ∑ 𝑁𝑎,𝑣 < 0.8∑ 𝑁𝑎𝑎=3,..,6 )𝑣=3,…,5𝑎=3,…,6

∑ 𝑁𝑎,2𝑎=3,…,6
,   𝑎 = 3,4,5,6  (29) 
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𝜐2,1(𝑡) =
𝑁𝑉𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜
𝑇𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜

𝟏(∑ ∑ 𝑁𝑎,𝑣 ≥ 0.8∑ 𝑁𝑎𝑎=3,..,6 )𝑣=3,…,5𝑎=3,…,6

𝑁2,2
,    

 
For  1𝑠𝑡 𝑠𝑒𝑝𝑡 2021 + 56 𝑑𝑎𝑦𝑠 ≤  𝑡 ≤ 1𝑠𝑡 𝑠𝑒𝑝𝑡 2021 + 𝑇𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 

 
Uncertainty propagation in vaccination scenarios. In this study we use a mixture of full Bayesian 
inference, for transmission model parameters, that were specific to each Kenyan county, and 
minimum divergence estimators, for outcome model parameters, that were specific to Kenyan 
counties, e.g. the county-specific reporting/disease rate relative to Nairobi 𝜓𝑐, or were specific to 
particular age groups, e.g. the baseline risk of death per infection in each age group 𝜇𝑎

𝐷. 
 
When generating scenario projections for all Kenya, we solved the transmission model (equation (1)) 
for each of the 47 Kenyan counties and for each of the 2000 MCMC draws of county-specific 
transmission model parameters. To match the 2000 MCMC draws for transmission parameters per 
county we drew 2000 replicates of the vaccine effectiveness from reported ranges first and second 
dose AstraZeneca effectiveness against Delta variant. This generated 2000 expected daily reported 
death incidence, ICU occupancy and general ward occupancy for each county (equations (14-15), (17) 
for each county) and for each of the 7 vaccine rollout scenarios.  
 
To account for (1) uncertainty in transmission parameters, (2) unpredictability in reporting, and (3) 
uncertainty in vaccine effectiveness, the prediction intervals for Kenya as a total were calculated by 
 

1. Augmenting the 2000 projections of expected daily reported observables per day, per age 

group, and per county into a single group of 2000 projections of expected daily reported 

observables per day, and per age group by summing across counties.  

2. Converting from expected daily reported observables to random instances by sampling from 

the negative binomial distribution that minimized divergence between actual observed data 

and the model projections (equations (25-27)) for each day of the 2000 projections. 

3. Presenting the daily ensemble average (and 95% ensemble prediction intervals) across the 

2000 randomized projections. 

 
Modelling immune escape variant. In this paper we consider an immune escape variant which reduces 
protection against reinfection by 50% across natural immunity and vaccine protection, and spreads 
faster through the population with a 30% reduced generation time but is otherwise epidemiologically 
like the Delta variant. Concretely, we implemented this by assuming that the immune escape variant 
arrived in Kenya on 15th November 2021, during a period of low infections for other variants, and 
applying a set of instantaneous effects:  
 

• Relative immune escape variant frequency becomes 100% in all Kenyan counties, reflecting 

rapid dominance of invading variant. 

• All transmission rate parameters (e.g. 𝛽0, 𝛼, 𝛼𝑃 , 𝛾𝐷 , 𝛾𝐴) increase by a factor 1/0.7. 

• 50% of people in fully or partially immune (post-natural infection) categories (R, W1) transition 

instantly to completely waned immunity to reinfection (W2). 

• Vaccine effectiveness against reinfection and reduction of infectiousness 

(𝜋2
𝑠𝑢𝑠, 𝜋3

𝑠𝑢𝑠, 𝜋2
𝑖𝑛𝑓
, 𝜋3

𝑖𝑛𝑓
) decrease by 50%. 
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Figure S1: Schematic diagrams of the main modelling components. Top left: The transmission model for each 
Kenyan county follows an essentially SEIR type pattern with separate categories for symptomatic and 
asymptomatic infection, and two categories of waning natural immunity. Right: The infection outcome model 
for a fraction of infections that are either deadly, critical (lead to a period in ICU followed by a period in general 
wards), or severe (lead to a period in general wards). Bottom left: Vaccination state model. Transitions indicate 
per capita inoculation rates with first and second doses of vaccine followed by two categories of waning vaccine-
induced immunity. 
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Fig S2: Fixed age-dependent rates. Left: Relative susceptibility per infectious contact by age group. 
Right: Probability of a symptomatic episode per infection for each age group. 
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Fig S3. Inferred county specific reporting/disease rates relative to Nairobi (𝜓𝑐). 
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Fig S4. Inferred age-specific risks per infection in unvaccinated and naïve individuals.  
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Table S1: Transmission model parameters 

Transmission model parameters and variables Value 

State Variables 

Number of susceptible people at time t, S(t) Dynamic 

Number of latently infected people at time t, E(t) Dynamic 

Number of infectious people at time t, I(t) Dynamic 

Number of recovered and immune people at time t, 
R(t) 

Dynamic 

Number of people who have lost natural immunity at 
time t, W(t) 

Dynamic 

Cumulative number of primary infections at time t, 
(F(t) 

Dynamic 

Cumulative number of all infections at time t, C(t) Dynamic 

Transmission model parameters 

Number of latently infected people at time t=0, 1st 
January 2021, by age group, 𝐸𝑎(0),  𝑎 = 1,2,… ,6 

inferred from data.  
 

Background transmission, 𝛽0 Inferred from data 

Scaling from social to effective contacts at 
home, 𝛽ℎ𝑜𝑚𝑒, school, 𝛽𝑠𝑐ℎ𝑜𝑜𝑙 ,work, 𝛽𝑤𝑜𝑟𝑘and other 
places, 𝛽𝑜𝑡ℎ𝑒𝑟 

Inferred from data 

Maximum increase in transmission due to the 
introduction of the alpha and beta variants, 𝐿𝛼𝛽, or 

the delta variant, 𝐿𝛿  

Inferred from data 

Growth rate of the alpha and beta variants, 𝜅𝛼𝛽, or 

the delta variant, 𝜅𝛿  
Inferred from data 

Midpoint of the sigmoid growth curve for alpha and 
beta variants, 𝑡0𝛼𝛽, or the delta variant, 𝑡0𝛿  

Inferred from data 

A factor that translates the initial (1st Jan -10th Mar 
2021) seroprevalence by age group to initial attack 
rates, 𝜏 

Inferred from data 

Infectious period, 1/γ 
2.4 days. Chosen to recreate a serial 
interval of 5.5days [58] 

Latent period, 1/σ 

3.1 days. The mean incubation period 
[49] was reduced by two days of pre-
symptomatic transmission [59] to give 
a latency period.   

Mean period of complete protection after a natural 

infection, 1 𝜔⁄  

 180 days, point estimate based on 
reinfection studies [60–63] 

Relative susceptibility compared to naïve individuals 
after the loss of complete protection after the first 
infection, 𝜎𝜔 

𝜎𝜔=0.16. Point estimate based on 
reinfection studies [60–63]  

𝑐𝑡 – contact rate 
1 , Equivalent to assuming contacts are 
back to baseline and stable 
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𝑣𝑖  - Vaccine effectiveness against transmission 
(delta variant)  

(0%to 35.0%)--dose 1,(0% to  69.0%)-dose 
2 [15] 

𝑣𝑎 -  Vaccine effectiveness against acquisition  (delta 
variant)   

(55% to 65%)-dose 1,(65% to 80%)-dose 
2[14]   

𝑣𝑑 - Vaccine effectiveness against severe disease 
(delta variant)  

(80% to 90%) dose 1,(95% to 99%)-dose 2 
[14]  

𝑣𝜇 - Vaccine effectiveness against death (delta 

variant)  
(90%-95%) -dose 1, (95% to 99%) -dose 
2[14] 

1
𝑟𝑣𝑝𝑖
⁄ –  rate of vaccine progression to full efficacy 14 days after each dose (𝑖 = 1,2) [64]  

Observation model parameters and data 

Number of people, by age group, who would test 
PCR positive on day n, (𝑃+ )𝑛. 

Dynamic 

Number of people, by age group, who were 
observed to test PCR positive on day n, (𝑃𝑜𝑏𝑠

+  )𝑛. 
Data 

Number of people, by age group, who would test as 
sero-converted on day n, (𝑆+ )𝑛 . 

Dynamic 

Number of people, by age group, who actually test 
as sero-converted on day n, (𝑆𝑜𝑏𝑠

+  )𝑛. 
Data 

Probability that an infected individual would test 
PCR positive on day 𝑡 after infection, 𝑄𝑃𝐶𝑅(𝑡) 

 𝑄𝑃𝐶𝑅(𝑡) = 𝑓𝑜𝑛𝑠𝑒𝑡𝑄Γ(𝜏) where 𝑄Γ(𝜏)  
was the tail function of a gamma 
distribution fitted to data given in [65] 
and  is the probability function of onset 
of symptoms post-infection [49]. 

Probability that an infected individual would be 
detectably seropositive on day 𝑡 after 
infection, 𝑄𝑠𝑒𝑟𝑜(𝑡)  

 𝑄𝑠𝑒𝑟𝑜(𝑡) is linearly increasing over 26 
days to saturate at 92.7% sensitivity, 
based on report delay in 
seroconversion [65]and maximum 
sensitivity of serological assay [66]. 

Relative bias in favour of selecting a PCR positive 
individual for testing, 𝜒 

Inferred from data  

Clinical outcome parameters 

 The age-dependent probability of death given 
severe infection, 𝜇𝑎

𝐷  
Inferred from data 

The age-dependent probability of critical disease 
given severe infection,𝜇𝑎

𝐶  
Inferred from data 
 

The age-dependent probability of severe disease 
given severe infection,𝜇𝑎

𝑆 
Inferred from data 
 

Variant specific risk of death,𝜓𝑎
𝐷 Inferred from data 

Variant specific risk of critical disease,𝜓𝑎
𝐶  Inferred from data 

Variant specific risk of severe disease,𝜓𝑎
𝑆 Inferred from data 
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Economic Evaluation Equations  

Productivity losses 

Productivity losses was calculated using the following equation:  

𝑃𝐿 =  𝑃𝐿𝑚𝑜𝑟𝑏𝑖𝑑𝑖𝑡𝑦 + 𝑃𝐿𝑚𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦 

(a) 
Where: PL=productivity losses; PLmorbidity=productivity loss due to morbidity; PLmortality=productivity 
loss due to mortality 

𝑃𝐿𝑚𝑜𝑟𝑏𝑖𝑑𝑖𝑡𝑦 = 𝑃𝐿𝑎𝑠𝑦𝑚𝑝𝑡𝑜𝑚𝑎𝑡𝑖𝑐 + 𝑃𝐿𝑚𝑖𝑙𝑑 + 𝑃𝐿𝑠𝑒𝑣𝑒𝑟𝑒 + 𝑃𝐿𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 

𝑃𝐿𝑎𝑠𝑦𝑚𝑝𝑡𝑜𝑚𝑎𝑡𝑖𝑐 = 𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓 𝑎𝑠𝑦𝑚𝑝𝑡𝑜𝑚𝑎𝑡𝑖𝑐 𝑐𝑎𝑠𝑒𝑠 × 𝑡𝑒𝑠𝑡𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 × 𝐺𝐷𝑃 𝑝𝑒𝑟 𝑐𝑎𝑝𝑖𝑡𝑎 

× 𝑞𝑢𝑎𝑟𝑎𝑛𝑡𝑖𝑛𝑒 𝑝𝑒𝑟𝑖𝑜𝑑 × 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑙 𝑠𝑒𝑐𝑡𝑜𝑟 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 

𝑃𝐿𝑚𝑖𝑙𝑑 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑖𝑙𝑑 𝑐𝑎𝑠𝑒𝑠 × 𝑡𝑒𝑠𝑡𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 × 𝐺𝐷𝑃 𝑝𝑒𝑟 𝑐𝑎𝑝𝑖𝑡𝑎 × 𝑞𝑢𝑎𝑟𝑎𝑛𝑡𝑖𝑛𝑒 𝑝𝑒𝑟𝑖𝑜𝑑 
× 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑙 𝑠𝑒𝑐𝑡𝑜𝑟 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 

𝑃𝐿𝑠𝑒𝑣𝑒𝑟𝑒 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑣𝑒𝑟𝑒 𝑐𝑎𝑠𝑒𝑠 × 𝐺𝐷𝑃 𝑝𝑒𝑟 𝑐𝑎𝑝𝑖𝑡𝑎 × 𝑞𝑢𝑎𝑟𝑎𝑛𝑡𝑖𝑛𝑒 𝑝𝑒𝑟𝑖𝑜𝑑 

𝑃𝐿𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑐𝑎𝑠𝑒𝑠 × 𝐺𝐷𝑃 𝑝𝑒𝑟 𝑐𝑎𝑝𝑖𝑡𝑎 × 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑑𝑖𝑠𝑒𝑎𝑠𝑒 

 
The testing rate was used to apportion the number of asymptomatic and mild cases who are tested. 
Further the proportion of informal sector is used to apply lost productivity on asymptomatic/mild 
cases that are in the informal sector, given the assumption that only those in informal sector are likely 
not to be productive as they isolate. Lastly, the duration of disease is used where the duration of illness 
is more than the 14 day quarantine period. 

 
𝑃𝐿𝑚𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦 = 𝑌𝐿𝐿 × 𝐺𝐷𝑃 𝑝𝑒𝑟 𝑐𝑎𝑝𝑖𝑡𝑎 

Where: YLL=Years of life lost (described below) 

Disability adjusted life years (DALYs) 

Disability adjusted life years (DALYs) was calculated using the equation: 

DALYs =∑𝑌𝐿𝐿𝑎

𝑗

𝑎

+∑𝑌𝐿𝐷ℎ

𝑘

ℎ

 

(b)  
Where: 𝑎 is the age at death; 𝑗= number of age groups; ℎ are the health states; 𝑘 =number of health 
states. 

YLL is estimated as [22]: 

YLL =
𝐾𝐶𝑒𝑟𝑎

(𝑟 + 𝛽)2
{𝑒−(𝑟+𝛽)(𝐿+𝑎)[−(𝑟 + 𝛽)(𝐿 + 𝑎) − 1] − 𝑒−(𝑟+𝛽)𝑎[−(𝑟 + 𝛽)𝑎 − 1]} +

1 − 𝐾

𝑟
(1 − 𝑒−𝑟𝐿) 

(c)  
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Where: K=age weighting modulating factor; C=adjustment constant for age weights; r=discount rate; 
a=age of death; β=parameter from the age weighting function; L=standard life expectancy at age of 
death 

Years lost due to disability (YLD) is estimated as [22]: 

YLDs = D{
𝐾𝐶𝑒𝑟𝑎

(𝑟 + 𝛽)2
{𝑒−(𝑟+𝛽)(𝐿+𝑎)[−(𝑟 + 𝛽)(𝐿 + 𝑎) − 1] − 𝑒−(𝑟+𝛽)𝑎[−(𝑟 + 𝛽)𝑎 − 1]}

+
1 − 𝐾

𝑟
(1 − 𝑒−𝑟𝐿)} 

(d)  
Where: K=age weighting modulating factor; C=adjustment constant for age weights; r=discount rate; 
a=age of onset of disability; β=parameter from the age weighting function; L=duration of disability; 
D=disability weight  
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Table S2: Statistical distributions for the probabilistic sensitivity analysis 

 Statistical distribution* 

Costs  

Vaccine delivery cost per patient at 30% 
coverage 

Gamma (10055,6.1E-4) 

Vaccine delivery cost per patient at 50% 
coverage 

Gamma (13679,3E-4) 

Vaccine delivery cost per patient at 70% 
coverage 

Gamma (9221,4E-4) 

Unit treatment cost of an asymptomatic 
patient  

Gamma (103.1,9.6E-4) 

Unit treatment cost of a mild case Gamma (105.1,1.8E-1) 

Unit treatment cost of a severe case Gamma (105.1,1.2) 

Unit treatment cost of a critical case Gamma (105.1,5.7) 

Health outcomes  

Disability weight for a critical case  Beta (102.8,54.2) 

Disability weight for a severe case Beta (21.6,140.8) 

Disability weight for a mild case Beta (21.3,396.2) 

Length of hospitalization for severe episode Gamma (53.3,3.6E-4) 

Length of ICU stay for critical episode Gamma (53.3,3.6E-4) 
*The form of the distributions was chosen according to the nature of the parameter. (i.e. parameters describing the 
probability of health outcomes occurrence of an event are given by a beta distribution, while the values of the vaccine 
delivery costs and length of hospitalization/ICU stay of the various scenarios were described using a gamma distribution). 
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Figure S6: One-way sensitivity analysis of vaccine prices and discounting rate on ICERs  
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Table S3: Projected costs and the cost-effectiveness of different vaccination strategies in Kenya from a health system’s perspective 

 Economic Outcomes 

 Total vaccine costs 
($ million) 
Median (2.5th to 97.5th 
percentile) 

Total treatment costs 
($million) 
Median (2.5th to 97.5th 
percentile) 

Total health care costs 
($million) 
Median (2.5th to 97.5th 
percentile) 

Total DALYs 
(thousands) 
Median(95%CI) 

ICER, USD per 
DALY averted 
Mean (95%CI) 

Non-rapid vaccination pace (administered within 1.5years) 

No vaccination 
 

- 313 
(269 to 405) 

313 
(269 to 405) 

247  
(243 to 252) 

- 

30% coverage 236 
(233 to 238) 

157 
(135 to 199) 

393 
(371 to 436) 

114  
(110 to 118) 

555 
(553 to 557) 

50% coverage 323 
(321 to 324) 

140 
(120 to 177) 

463 
(444 to 501) 

101  
(97 to 104) 

5,195 
(5,190 to 5,199) 

70% coverage 443 
(441 to 445) 

133 
(115 to 169) 

576 
(560 to 612) 

96 
 (92 to 100) 

24,535 
(24,514 to 24,557) 

Rapid vaccination pace (administered within 6 months) 

No vaccination - 313 
(269 to 405) 

313 
(269 to 405) 

247  
(243 to 252) 

- 

30% coverage 236 
 (233to 238) 

129 
(111 to 163) 

366 
(347 to 399) 

93 
 (89 to 96) 

291 
(290 to 295) 

50% coverage 323 
 (321 to 324) 

124 
(107 to 157 ) 

447 
(430 to 481) 

88  
(85 to 92) 

20,157 
(20,126 to 20,128) 

70% coverage 443 
(441 to 445) 

121 
(104 to 152) 

564 
(549 to 596) 

86 
(82 to 89) 

46,150 
(46,025 to 46,27

4) 
Costs=rounded off to the nearest 1,000,000; Total DALY rounded off to the nearest 1,000; ICERs=rounded off to the nearest whole number
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