
Testing and isolation to prevent overloaded health care facilities
and to reduce death rates in the SARS-CoV-2 pandemic in Italy
Arnab Bandyopadhyay1,Y,*, Marta Schips1,Y,*, Tanmay Mitra1, Sahamoddin Khailaie1,
Sebastian C. Binder1, Michael Meyer-Hermann1,2,3*

1 Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology
(BRICS), Helmholtz Centre for Infection Research, Braunschweig, Germany
2 Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität
Braunschweig, Braunschweig, Germany
3 Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany

YThese authors contributed equally to this work.

* Correspondence:
mmh@theoretical-biology.de
arnab.bandyopadhyay@theoretical-biology.de
marta.schips@theoretical-biology.de

Abstract

Background
During the first wave of COVID-19, hospital and intensive care unit beds got overwhelmed in

Italy leading to an increased death burden. Based on data from Italian regions, we disentangled
the impact of various factors contributing to the bottleneck situation of health care facilities,
not well addressed in classical SEIR-like models. A particular emphasis was set on the dark
figure, on the dynamically changing hospital capacity, and on different testing, contact tracing,
quarantine strategies.

Methods
We first estimated the dark figure for different Italian regions. Using parameter estimates

from literature and, alternatively, with parameters derived from a fit to the initial phase of
COVID-19 spread, the model was optimized to fit data (infected, hospitalized, ICU, dead)
published by the Italian Civil Protection.

Results
We showed that testing influenced the infection dynamics by isolation of newly detected cases

and subsequent interruption of infection chains. The time-varying reproduction number (Rt) in
high testing regions decreased to < 1 earlier compared to the low testing regions. While an early
test and isolate (TI) scenario resulted in up to ∼ 32% peak reduction of hospital occupancy, the
late TI scenario resulted in an overwhelmed health care system.

Conclusions
An early TI strategy would have decreased the overall hospital accessibility drastically and,

hence, death toll (∼ 45% reduction in Lombardia) and could have mitigated the lack of health
care facilities in the course of the pandemic, but it would not have kept the hospitalization
amount within the pre-pandemic hospital limit. We showed that contact tracing and quarantine
without testing would have a similar effect and might be an efficient strategy when sufficient
test capacities are not available.
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Introduction 1

The COVID-19 outbreak created a worldwide pandemic causing more than 4,000,000 deaths 2

and over 190 million total cases worldwide as of July 2021 [1]. Many countries implemented 3

non-pharmaceutical interventions (NPIs), which were effective in reducing virus spreading. 4

This was further supported by social distancing, mask duty, and hygiene measures. Though 5

different models of NPIs and their implementation methods have been proposed, their impact and 6

effectiveness on disease dynamics are under scrutiny and remain a matter of global discussion [2–6]. 7

Singapore and Hong Kong were able to contain the virus by aggressive testing [7], while South 8

Korea adopted a trace, test, treatment strategy [8]. In a different but similarly effective approach, 9

Japan averted the risk of contagion by isolating the whole contact clusters and by heavily relying 10

on the self-awareness and discipline of the population [9]. 11

The COVID-19 outbreak originated in Wuhan, People’s Republic of China, in early December 12

2019. Within two months, it had erupted and unfolded with tremendous speed in Italy, which 13

became the European epicenter of disease spreading, forcing the government to impose a 14

lockdown on March 9th, 2020. On March 19th, 3405 people had already died in Italy, thereby 15

surpassing China, while 41035 people were diagnosed as COVID-19 positive. This induced Italy 16

to shut down all non-essential businesses on March 21st. Despite the strict measures applied, in 17

Lombardia alone a total of 28545 symptomatic people were infected by April 8th, accounting for 18

12976 hospital admissions, followed by Emilia Romagna (4130), Piemonte (3196), and Veneto 19

(1839) [10]. These large numbers led to the complete collapse of the health care system within 20

a few weeks of the first detection of COVID-19 cases, most notably in Lombardia where even 21

funeral homes had been overwhelmed and were incapable of responding in a reasonable time [11]. 22

Even though the state expanded the hospital and intensive care unit (ICU) capacities, it could 23

not prevent the bottleneck situation of the health care system and presumably caused a large 24

number of deaths for a prolonged period. 25

Many factors aggravated the COVID-19 situation in Italy, among which the distinct demo- 26

graphic structure of Italy with nearly 23% of the population of age 65 years or older [12], larger 27

household size, and the prevalence of three-generation households compared to Germany [13] as 28

well as limited hospital and ICU capacities. At the beginning of the pandemic, Italy focused on 29

testing symptomatic patients only, which resulted in a large proportion of positive tests and high 30

case fatality rates (CFR) compared to other countries [14]. A large proportion of cases remained 31

undetected, which became a major driver of new infections. A different study estimates that in 32

Italy the actual number of total infections was around 30 fold higher than reported, while for 33

Germany it was less than ten-fold [15] (data up to March 17th 2020). 34

Compartmental models have been widely used to describe the dynamics of epidemics, for 35

example, SIR model [16] that consider three compartments, namely susceptible, infected and 36

recovered, or more complex SEIR models [17, 18] that take susceptible, exposed, infectious, and 37

recovered compartments into account. Typically, these models either exclude the undetected 38

index cases [4, 17, 18] or ignore their dynamic nature [19], and structurally these models are 39

not developed to address the load on the health care system. Besides these epidemic models, 40

simple algorithms exist in the literature for estimating the time-varying reproduction number 41

and have been widely used in the context of many infectious diseases (e.g., measles, H1N1 42

swine flu, polio, etc.) [20]. Several studies [21, 22] estimated the undetected case number in 43

Italy, but its dynamics in the context of different testing strategies and implications upon the 44

health care system was not considered. Even though the general compartmental SIR and SEIR 45

type models are useful in inferring epidemic spread and public health interventions, we needed 46

to introduce additional compartments to investigate how the pandemic is shaped by several 47

influential factors (e.g. dark numbers, regional testing strategies, hospital beds); for instance, we 48

included a specific compartment for infected undetected cases (IX) to analyse the impact of the 49

region-wise undetected cases upon the evolution of the Rt. Similarly, hospital (HU and HR) and 50

ICU (UD and UR) compartments were introduced to monitor the load on the health care system. 51
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Moreover, the absence of reliable symptom onset data and heterogeneity in the actual 52

infectious period among the asymptomatic, pre-symptomatic, and symptomatic individuals 53

require a more complex model that not only can accurately portray the dynamics of COVID-19 54

spread but also can disentangle the impact of intertwined factors like the variation of undetected 55

components, limited and changing hospital and ICU availability. 56

Existing modeling studies that analyze the COVID-19 situation in Italy [19, 23] or other 57

regions [4, 24–26] in general did not address some fundamental aspects of the ongoing pandemic 58

like temporal dynamics of undetected infections, the benefits of a high testing and isolation 59

strategy or the impact of a limited and dynamically changing health care capacity on the lives 60

lost. In this study, we address the bottleneck situation of the health care facility, benefits 61

of extending hospital infrastructure and the impact of an early testing and isolation strategy 62

onto the health care system with a COVID-19 specific mathematical model. To evaluate the 63

COVID-19 situation in Italy in a realistic framework, we first estimated the undetected fraction 64

(dark figure) of infections across different regions of Italy. We used this information to determine 65

the parameters of the model and showed that our model is structurally identifiable. We studied 66

the influence of the dark figure and implemented NPIs on the time-dependent reproduction 67

number, Rt. With data about regional hospital and ICU bed capacities, we estimated that 68

an extra 25% of people died in Lombardia due to the overwhelmed health care system. We 69

investigated the impact of early testing strategy and, alternatively, of contact tracing combined 70

with quarantine (∼ 10 fold more isolation of infected) policy in the setting of elevated hospital 71

capacity as it currently stands. This strategy would have significantly reduced the death toll by 72

20% to 50%. 73

Methods 74

SECIRD-model 75

To understand the impact of potential aggravating factors, namely infections from undetected 76

index cases, early vs late testing strategy, and limited heath care facilities on disease progression, 77

we developed a COVID-19-specific SECIRD-model parametrized for Italy. The SECIRD-model 78

distinguishes healthy individuals without immune memory of COVID-19 (susceptible, S), infected 79

individuals without symptoms but not yet infectious (exposed, E) and infected individuals 80

without symptoms who are infectious (carrier, CI, CR). The carriers are distinguished into a 81

fraction α of asymptomatic (CR) and (1− α) of pre-symptomatic infected (CI). The latter are 82

categorized into a fraction µ of detected symptomatic (IH and IR) and (1− µ) of undetected 83

mild-symptomatic (IX). Out of the CI, a fraction ρ gets hospitalized (IH) and (1− ρ) become 84

symptomatic but recover without hospitalization (IR). Further, compartments for hospitalization 85

(H) and intensive care units (U) were introduced to monitor the load on the health care system. 86

A fraction ϑ of H requires treatment in ICU (HU) while a fraction (1−ϑ) recovers from hospital 87

without ICU treatment (HR). δ and (1 − δ) represent the fraction of patients in ICU who 88

subsequently die (UD) or recover (UR). The compartment (R) consists of patients recovered 89

from different infection states. The Reference Model (Fig. 1; equations are in the Supplementary 90

Material) was solved with parameters in Table 1. 91

Initial condition 92

Italian regions started documenting epidemiological data at different dates, at the earliest 93

February 24th, 2020. As we considered a fixed incubation period of 5.2 days in our model, we 94

assumed that at minimum, the first entry in the dataset (number of total cases) was the exposed 95

number 5.2 days earlier. In addition to the documented infection, we calculated undocumented 96

cases based on the estimated region-wise dark number by a Bayesian MCMC framework (see 97

Supplementary Material). The sum of documented and undocumented cases was the initial 98
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exposed population. We used regional population as the initial susceptible population. For all 99

other compartments, we started the simulation with zero. The simulation began from -5.2 days 100

with the aforementioned initial conditions, and undetected cases were split between asymptomatic 101

and symptomatic undetected cases according to the parameters used for those compartments. 102

Parameterization 103

We distinguished physiological and behavioral model parameters. Physiological parameters 104

depend on the nature of the virus (Rx, x = 2, ..., 9) and remain unchanged throughout the analysis 105

of the pandemic. We first determined the range of physiological values for each parameter 106

from the literature [27, 28] (Table 1) and then estimated parameters’ values from a fit to the 107

exponential growth of case numbers (infection, hospitalized, ICUs and death cases) during the 108

first two weeks of the pandemic. In total, 56 data points (14 daily data for those four observables) 109

were used to estimate the physiological parameters. This initial phase was not yet affected by 110

NPIs, public awareness, or an overwhelmed health care system and, thus, reflects viral properties. 111

Some of the physiological parameters may be internally linked. For instance, hospitalization 112

and ICU cases increase with infection cases and disentangling those internal relations is difficult 113

with limited data availability. It is likely that the best combination of parameters contains those 114

internal relations. We assumed that the virus variant remained the same during the investigation 115

period, therefore we kept physiological parameters constant throughout. However, environmental 116

factors, testing policy, interventions, public behavior, self isolation, hospital accessibility, etc. 117

might have distorted such relations (e.g., the rate of increase in hospital and ICU cases as 118

infection increases differ in different phases of the pandemic) and substantially altered the disease 119

dynamics by impacting the transmission probability, dark number, hospitalizations and death 120

rate. These contingent factors affect the behavioral parameters (ρ, ϑ, δ, R1, R10). We estimated 121

the behavioral model parameters by minimizing the sum of squared differences between the 122

observed data (active infections, hospitalized, ICU patients and death numbers (Italy Data on 123

Coronavirus 2020 [29])) and model simulations using Matlab’s nonlinear least-squares optimizer. 124

This procedure was repeated separately for each region in Italy in moving time windows of 7 days 125

to account for local specifics and temporal changes in disease transmission. This moving-window 126

technique with the size of a calendar week reduces periodic fluctuations that are an artifact of 127

the unequal distribution of tests among the weekdays. 128

Perturbation and parameter identifiability 129

To generate the standard deviation for Rt, we perturbed the behavioral parameters (ρ, ϑ, δ, R1, 130

R10) 10% of their optimized value and sampled uniformly within this range such that the total 131

parameter variation, κ, defined as log(κ) =
∑L

n=1 |logkn

k0
n
| [48], remains within 10% of its reference 132

value. kn, k0n and L represent the parameters of the altered system, the reference system and the 133

total number of parameters, respectively. We generated dynamics for 100 perturbed parameter 134

sets for the statistical analysis. 135

We addressed parameter identifiability in two ways: Structural identifiability based on 136

synthetic outbreak data and practical identifiability based on real data. In the first method, 137

we randomly sampled parameters within a range specified in Table 1 and by using random 138

initial conditions of model state variables. Then we used the resulting dynamics of the state 139

variables as model observables and checked for a unique solution in the parameter space. We 140

repeated this procedure 100 times (see Fig S5 for a typical result). In the second method, we 141

considered nationwide Italy data for the period February 24th to May 22nd, 2020 and fixed the 142

physiological parameters as described in the Parameterization section. As we are estimating 143

behavioral parameters (ρ, ϑ, δ, R1, R10) by considering a moving time windows of 7 days, we 144

checked practical identifiability of these parameters in each time window. We found that the 145
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Table 1: Parameter ranges used in the Reference Model : determination of the boundaries
for literature-based parameter set was based on the interpretation of the values given in the
references [27,28,30].

Parameter Comments/
References

Description Parameter ranges
from literature

Min Max

R1 Time-
dependent

transmission probability of COVID-19 per each contact made with an infec-
tious person (CI, CR, IX, IR and IH in the model)

R2 [31–34] the inverse of R2 represents latent, non-infectious period following the trans-
mission of COVID-19. 1/R2 = 5.2− 1/R3 ; median incubation period is 5.2
days

R3 [31–34] the inverse of R3 represents the pre-symptomatic infec-
tious period

1

4.2

2

5.2

R4 [35–37] the inverse of R4 represents the infectious period for
the mild symptomatic cases without requiring hospital-
ization (including the undetected symptomatic people
(IX))

1

14

1

7

R5 [27, 28, 38] the inverse of R5 represents the duration for which the
hospitalized cases stay in general hospital care before
discharge without requiring further intensive care

1

16

1

5

R6 [28, 39] the inverse of R6 represents the duration a patient stays
at home before hospitalization

1

7
0.9

R7 [28, 38, 39] the inverse of R7 represents the time spent in general
hospital care before admission to ICU

1

3.5
1

R8 [27, 40] the inverse of R8 represents the time spent in ICU
before recovery

1

16

1

3

R9 the inverse of R9 represents the duration for which the
asymptomatic cases remained infectious following their
latent non-infectious period

1

R9
=

1

R3
+

(
0.5 ×

1

R4

)

R10 Time-
dependent
[28,39,41]

the inverse of R10 represents the time spent in ICU
before dying

1

10
0.9

α fixed, [42–
44]

undocumented asymptomatic fraction 0.4 0.4

β Assumed the risk of infection from the registered and quarantined
(IH + IR) patients

0.05 0.25

ρ Time-
dependent

the fraction of documented infections that require hos-
pitalization

0.01 0.9

ϑ Time-
dependent
[45–47]

the fraction of hospitalized patients that require further
intensive treatment

0.01 0.7

δ Time-
dependent
[45–47]

the fraction of ICU patients that have fatal outcome 0.3 0.9

µ̄ this fraction represent the total undocumented infection including the asymptomatic
cases, estimated through MLE method of the Bayesian framework

µ documented symptomatic fraction µ = 1−µ̄
1−α
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IH
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IX

CI
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S

E

fHlim = (exp(HR + HU − Hlim))10

(1 + (exp(HR + HU − Hlim))10)10 ; fUlim = (exp(UR + UD − Ulim))10

(1 + (exp(UR + UD − Ulim))10)10

R1
N0

[CI + CR + IX + β(IXD + IH + IR)] (1
−

μ)
R 3

Capacity Model

R10

R7

(1
−

ϑ)
R 6

(1
−

f H
lim

)

ϑR6(1 − fHlim)

δR7(1 − fUlim)

(1 − δ )R7(1 − fUlim)

R6 fHlim R7 fUlim

HR

HU

UD

UR

D

ID

IH

Fig 1: Model schemes. The Reference Model distinguishes healthy individuals with no immune
memory of COVID-19 (susceptible, S), infected individuals without symptoms but not yet
infectious (exposed, E), infected individuals without symptoms who are infectious (carrier,
CR,I, asymptomatic and pre-symptomatic respectively), infected (IX,H,R), hospitalized (HU,R)
and ICU (UD,R) patients, dead (D) and recovered (RX,Z), who are assumed immune against
reinfection. This scheme also applies to the Asymptomatic Model. The Testing Model is a
modified branch of the Reference Model used to evaluate the impact of increasing case detection
and isolation onto infection dynamics; IXD and IX describe newly detected and undetected cases,
respectively. The Capacity Model is a modified branch of the Reference Model to investigate
the impact of limited hospital and ICU access onto the death toll. fHlim and fUlim are steep
exponential functions diverting the flux from IH and HU to D, respectively, when hospital
and ICU occupancy reached their respective current capacities Hlim(t) and Ulim(t). Rx with
x ∈ [2, . . . , 9] are per day transition rates between different states. behavioral parameters (ρ,
ϑ, δ, R1 and R10) are subject to contingent factors, like NPIs, self-awareness, availability of
hospital beds, etc., and, hence, are functions of time.

parameters are identifiable in more than 75% of the cases (see Fig. S6 for a typical results when 146

all parameters are identifiable; and the Supplementary Material for more details). 147

Basic reproduction number 148

The basic reproduction number R0 is defined as the expected number of secondary infections 149

produced by a single infection in a population where everyone (assuming no immune memory) is 150

susceptible [49] and reflects the transmission potential of a disease. For COVID-19, the dynamics 151

of the pandemic was influenced by several factors, like, the self-awareness in the community, 152
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interventions and policies implemented by the authorities and immunisation of the population. 153

Therefore, the time-dependent reproduction number R(t) that describes the expected number of 154

secondary cases per infected person at a given time of the epidemic, is a more practically useful 155

quantity to understand the impact of interventions, behavioral changes, seasonal effects, etc. on 156

the disease dynamics [20,30]. 157

In multi-compartmental epidemic models, R0 can be derived with the next generation matrix 158

method [50–52], where the Jacobian matrix consists of two factors, rate of appearance of new 159

infections into the infection compartment (F) and transfer of infected into other compartments 160

(V). The elements Gij of G = FV−1 represent the expected number of secondary infections 161

in compartment i caused by a single infected individual of compartment j. The reproduction 162

number R0 is given by the dominant eigenvalue of G (the derivation of R0 is provided in the 163

Supplementary Material): 164

R0 = R1
S0

N0

[
1− α
R3

+ βµρ
1− α
R6

+
α

R9
+ βµ(1− ρ)

1− α
R4

+ (1− µ)
1− α
R4

]
, (1)

where N0 is the total population and S0 is the susceptible population, both at the start of 165

the pandemic (parameters are listed in Table 1). R0 was calculated using the parameter set 166

estimated by the initial fit that considers only the first two weeks of data points as described in 167

the Parameterization section. An ensemble of parameter sets (as described in the Perturbation 168

and parameter identifiability section) was used to calculate the standard deviation in the R0. 169

In order to understand the impact of awareness in the population, NPIs and policies im- 170

plemented by the authority upon the development of the time-varying reproduction number 171

(R(t)) [20], we fitted the model parameters to data in shifting time windows of one week. 172

This approach has two advantages: first, the reproduction number R(t) is determined as a 173

time-dependent variable and thus reflects the impact of NPIs on the infection dynamics; second, 174

the moving-window dampens sudden jumps in the data because of reporting delays. In each 175

time window, a best fit of the model parameters was found based on the cost function value 176

(squared difference between data and simulation). In the next window, the fitting was repeated 177

with initial conditions given by the model state in the previous time window. As described in 178

the Perturbation and parameter identifiability section, an ensemble of perturbed parameter sets 179

was used to calculate the standard deviation in the Rt. 180

R(t) in time window k reads [30]: 181

R(tk) = R1(tk)
S(tk)

N(tk)

[
1− α
R3

+βµρ(tk)
1− α
R6

+
α

R9
+βµ(1− ρ(tk))

1− α
R4

+ (1−µ)
1− α
R4

]
, (2)

where ρ(tk) denotes the hospitalized fraction of identified symptomatic cases in the k-th time 182

window. Data analysis of the clinical state of all infected cases (up to June 22nd) by the Istituto 183

Superiore di Sanità (ISS) showed ∼ 30% asymptomatic cases, with increasing tendency [42–44]. 184

In a study performed in Vo’ Euganeo, Veneto, the percentage of asymptomatic cases was found 185

to be in the range of 40% [53]. We set the asymptomatic fraction to α = 0.4. The fraction of 186

undetected cases µ̄ (see Supplementary text and Table 2) is by definition: 187

µ̄ := α+ (1− µ)(1− α) =⇒ µ =
1− µ̄
1− α

Asymptomatic Model 188

In the Asymptomatic Model, all symptomatic cases are detected, i.e. µ = 1. We compared the 189

results from this model with those from the Reference Model to understand, in an ideal situation, 190

the implication of detecting all symptomatic cases for the pandemic development. 191

192
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Testing Model 193

In order to understand the influence of extra testing on infection dynamics, we adopted a model 194

where a fraction of the undetected infected cases (IX) is detected (IXD) via testing and hence, 195

contained. The newly detected infected (IXD) contribute to new infections with a frequency 196

reduced by a factor β (β < 1) but the infectious period remains unaltered (1/R4) (Testing Model 197

in Fig. 1 and Fig. 3). Li et al. [54] have demonstrated, in the context of COVID-19 transmission 198

in China, that strict control measures (travel restrictions, enhanced testing, self-quarantine, 199

contact precautions, etc.) helped in improving the fraction of all documented infections from 200

14% to 65%, ∼ 4−5 fold. For Italy, we estimated that 90% of the infections remained undetected 201

(Table 2). We assumed that enhanced testing reduced this dark figure by daily 2% until reaching 202

60% (assuming similar efficiency as in China, i.e. documented infections increasing 10% to 40%). 203

We introduced a time-dependent fraction µ′ of undetected infections, which, starting from µ̄, 204

was decreased daily by steps of 2% down to 60%. The asymptomatic fraction was fixed as in the 205

Reference Model (α = 0.4). The undetected portion of symptomatic is instead modified so that 206

the fraction of undetected cases, µ1(t), and the fraction of newly detected cases, µ2(t), satisfies: 207

µ1(t) + µ2(t) = 1− µ ,

with 208

µ1(t) =
µ′(t)− α

1− α
, µ2(t) =

µ̄− µ′(t)
1− α

.

The parameters obtained by fitting the data with the Reference Model were transferred into 209

the Testing Model. This maintains the compartmental flow of the Reference Model and thus 210

ensures that the result reflects the sole effect of isolating a fraction of undetected infections. 211

Correspondingly, R(tk) becomes: 212

R(tk) = R1(tk)
S(tk)

N(tk)

[
1− α
R3

+ βµρ(tk)
1− α
R6

+
α

R9
+

+ βµ(1− ρ(tk))
1− α
R4

+ βµ2(tk)
1− α
R4

+ µ1(tk)
1− α
R4

]
.

Capacity Model 213

To estimate the impact of capacity limitations of the health care system, we implemented time- 214

varying capacity constraints on the hospital (Hlim(t)) and ICU (Ulim(t)) accessibility (Capacity 215

Model in Fig. 1 and Fig. 3 ), using available data for the number of hospital and ICU beds in 216

the different regions. Table 3 reports the pre-pandemic capacity and the increased capacity, 217

specifically allocated to COVID-19 patients, together with the date of accomplished installation. 218

Some regions doubled their capacity and, presumably, this extension of infrastructure has been 219

implemented in a step-wise manner. We assumed a linear increase of the hospital (Hlim(t)) 220

and ICU (Ulim(t)) capacity from three days before exhaustion until reaching the maximum 221

capacity on the date of accomplished installation. This new capacity was available thereafter. 222

The exhaustion date was determined from the data and refers to the day at which the number of 223

hospitalized and ICU patients became larger than the initial capacity. Before the pandemic, 85% 224

of the hospital beds and 50% of the ICU beds were occupied [55]. In the Capacity Model, 15% 225

and 50% of the pre-pandemic total capacity (Table 3) was considered as the baseline capacity of 226

hospital and ICU beds, i.e. the starting values of Hlim(t) and Ulim(t), respectively. 227

Upon reaching the capacity limit, the influx should be stopped until a vacant bed is available. 228

This could be achieved by introducing a Heaviside step function or any other piecewise method, 229

but this type of function introduces discontinuities and makes solving the ODEs computationally 230
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demanding and error-prone. Here, we introduced two functions (fHlim and fUlim) that behave 231

like a step function but are continuous in nature. fHlim and fUlim return 1 as long as there 232

are free hospital or ICU beds and 0 otherwise. In the Capacity Model, we introduced the 233

compartment ID, to which the flux from IH is directed when the hospital capacity is reached. 234

Then, in a sharp transition, patient access to the hospital or ICU is reduced by the fractions 235

fHlim(t) and fUlim(t), respectively: 236

fHlim =
(exp(HR +HU −Hlim))10

(1 + (exp(HR +HU −Hlim))10)10

fUlim =
(exp(UR + UD − Ulim))10

(1 + (exp(UR + UD − Ulim))10)10
.

Both factors increase fatal outcomes of infections when hospital and ICU capacities are 237

reached. We assumed that inaccessibility of hospital or ICU leads to faster and more frequent 238

death. In particular, when the ICU capacity is reached, people in the hospital compartment 239

(HU) die after 1/R7 days which is faster than via the hospital-ICU-dead route ((1/R7 + 1/R10)). 240

Similarly, when the hospital capacity is reached, people in the infected compartment (IH) die 241

after 1/R6 + 1/R7 days, satisfying 1/R6 < 1/R6 + 1/R7 < 1/R6 + 1/R7 + 1/R10 (see Reference 242

Model in the Supplementary Material). 243

The MaxCap Model is defined by the same equations as the Capacity Model, but the 244

parameters, Hlim and Ulim were set to the maximum hospital and ICU capacity, respectively, 245

from the beginning of the simulations. 246

Data and code availability 247

Italy COVID-19 data of infected cases, hospitalized and ICU patients and death numbers 248

were provided by the Protezione Civile Italiana [29]. Demographic and mortality data used 249

to estimate IFR, are available from the Italian Institute of Statistics (ISTAT) website [56,57]. 250

ISTAT collects mortality data from the Italian National register office for the resident population 251

(ANPR). An automated method was implemented, and parameter estimation was carried 252

out in Matlab 2019b [58] with a combination of the Data2Dynamics framework [59]. The 253

code is available at https://github.com/arnabbandyopadhyay/COVID-19-in-Italy. For the 254

Bayesian estimation of COVID-19 IFR of Italian regions, see Supplementary Material. 255

Results 256

Region-wise infection fatality rate (IFR) 257

To estimate undetected infections amid the COVID-19 pandemic, we analyzed the mortality rate 258

of previous years and the deaths in 2020. Demographic and death data of the Italian regions 259

have been collected from the Italian Institute of Statistics (ISTAT). The observed mortality of 260

2020 was substantially higher than in previous years in those Italian regions where the pandemic 261

started – e.g. Lombardia, Veneto, Piemonte (Fig. S1). We estimated the total number of 262

infections, including undetected cases, and the associated IFR (defined as the percentage of 263

deaths among all infections, including the undiagnosed infections) for each region with a Bayesian 264

framework by adapting a standard binomial model (see Supplementary Material). Though 265

literature is available on IFR estimates in Italy, the impact of the undetected infections onto the 266

health care facilities and infection dynamics, considering different testing strategies adopted by 267

the regions, were not sufficiently addressed [21,22]. 268

The regional IFR, the estimated total infections, Infection rate (IR) and the undetected 269

fractions were summarised in Table 2. In the northern regions where the outbreak occurred 270
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Table 2: Estimation of the total number of infections, the Infection Rate (IR), the Infection
fatality rate (IFR) through maximum likelihood in a Bayesian framework based on the data
provided by ISTAT up to April 15th [56,57] (Supplementary Material). Age specific IFRs are
reported in Fig. S2.

Areas
IFR in %
(95% CI)

Estimated total
Infections

(Undetected %)

IR in %
(95% CI)

CFR in %
Detected
Infections

Italy
1.58

(1.04 - 1.84)
2627807
(93.73%)

4.37
(3.8 - 6.64)

13.11 165155

Emilia
Romagna

1.84
(1.03 - 2.24)

252985
(91.69%)

5.79
(4.84 - 10.22)

13.26 21029

Liguria
2.08

(1.15 - 2.6)
85924

(93.09%)
5.63

(4.57 - 10.01)
13.6 5936

Lombardia
1.66

(1.03 - 1.9)
1390759
(95.53%)

13.83
(12.16 - 22.19)

18.3 62153

Marche
1.88

(0.88 - 2.47)
58555

(90.62%)
3.93

(3.05 - 8.11)
13.56 5503

Piemonte
1.73

(0.78 - 2.12)
258792

(92.94%)
6.1

(5.06 - 13.4)
11.05 18229

Toscana
1.63

(0.69 - 2.36)
62671

(87.77%)
1.43

(0.99 - 3)
7.25 7666

Valle
d’Aosta

1.54
(0.73 - 2.34)

9785
(90.19%)

9.74
(6.4 - 17.94)

12.63 958

Veneto
1.3

(0.57 - 1.71)
141466

(89.67%)
2.77

(2.19 - 6.09)
6.43 14624

first – e.g. Emilia Romagna, Piemonte and Veneto – the undetected infections were nearly 10 271

fold more than the reported cases, and in Lombardia, it was more than 21 fold. We observed 272

substantial heterogeneity of the IFR across different age groups (see Fig. S2). For ages below 273

60, it was as low as 0.05%. The IFR was significantly higher in the 81+ age group (9.5% to 274

20%, Fig. S2). Despite Italy having the highest COVID-19 deaths in Europe, the estimated 275

infection rates (IR) were relatively low (highest in Lombardia ∼ 13% [12.16− 22.19%, 95% CI]) 276

across all regions, and hence the population was far from reaching the herd immunity threshold 277

(∼ 70% with formula 1− 1
R0

, assuming no previous immune memory and considering the lowest 278

mean of reported R0 for Covid-19 is ∼ 3) [60–62]. Our estimated total infections (detected + 279

undetected), IR and IFR are close to the Imperial College London report 20 on Italy [22]. 280

During the early outbreak, different northern regions in Italy adopted different testing 281

strategies, which heavily influenced the infection dynamics. Lombardia and Piemonte followed 282

the World Health Organization (WHO) and central health authority recommendations by mainly 283

testing symptomatic cases, while Veneto implemented a more extensive population testing. 284

Lombardia with ∼ 10 million inhabitants has suffered around 14,000 deaths by the end of 285

April, which is more than half of all COVID-19 deaths in Italy. In comparison, Veneto, with a 286

population of 5 million, has suffered around 1,400 deaths. This difference is also reflected in 287

the CFR and IR, 6.43% and 2.77% in Veneto, while in Lombardia it was 18.30% and 13.83% 288

(Table 2) despite their geographical proximity. 289

To understand whether implementing different testing strategies succeeded in keeping the 290

undetected and the overall infection amount under control, we investigated the association 291

between the tests performed by regions with the total number of infections (detected and 292

undetected, Table 2) in the early phase of the pandemic. According to the null hypothesis, the 293

total number of infections would be uncorrelated with the testing volume, as testing only discovers 294
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Fig 2: Impact of tests on the total infections. Kendall and distance correlation between
the number of tests performed per infection and total infections per capita. Significant negative
correlation confirms that the infection dynamics can be controlled by aggressive testing, which
is further supported by the infection epidemic curve in Fig. 4A. Data are considered up to
April 15th. Light blue line: linear regression fit; gray shaded area: standard error; black dots:
region-specific values; red dot: nationwide value; R: correlation coefficient; p: significance.

undetected infections and therefore should not impact the total infection. This hypothesis holds 295

when testing does not influence the infection dynamics. We measured the Kendall and distance 296

correlation between total infection per capita and total tests performed (up to April 15th, 2020) 297

per reported infection. This yielded a significant correlation in both tests (Fig. 2). The negative 298

correlation indicates that testing influenced the infection dynamics by isolation of newly detected 299

cases and subsequent interruption of infection chains. The impact of testing is further supported 300

by the observed infection dynamics. Regions with intense testing, like Veneto and Toscana, 301

flattened the infection curve by the middle of April, while for Lombardia, Liguria and Piemonte 302

with inadequate testing, this was delayed by three weeks (first week of May 2020, Fig. 4A). 303

Influence of undetected cases on Rt 304

To understand the influence of undetected cases and installed NPIs on infection dynamics 305

across different regions in Italy, we used the COVID-19-specific Reference Model to explain the 306

dynamics of infected, hospitalized, ICUs and death numbers provided by the Protezione Civile 307

Italiana [29] (Fig. 4A). As described in the Parametrization section, based on the ensemble of 308

parameters estimated by using the first two weeks of data, we calculated the basic reproduction 309

number R0 according to equation 1. Estimated behavioral parameters in every window (keeping 310

the physiological parameters constant) were used to calculate the reproduction number Rt 311

(Fig. 4B) according to equation 2. The sudden increase in reported cases resulted in an overshoot 312

in the Rt curve at the beginning. Due to the nationwide NPIs, increased public awareness 313

inducing self-isolation and social distancing, the reproduction number continuously decreased, 314

approaching unity at the end of April. In the regions with many undetected infections, like 315

Emilia Romagna, Lombardia and Piemonte, the reproduction number reached unity in the first 316
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week of May, while in Veneto and Toscana it reached unity in the middle of April and was 317

substantially lower by the first week of May. As Rt functionally depends on many factors (see 318

Rt formula in the Methods section), we opted for a sensitivity analysis to find the important 319

factors that regulate Rt. It revealed that Rt is highly sensitive to the transmission probability 320

R1 and the dark figure µ̄ (Fig. S9). The influence of installed NPIs, social distancing, awareness 321

etc. are embedded within R1 and therefore, their impact is reflected in the decreasing trend of 322

Rt in all regions. The benefits of testing and the impact of undetected cases on the Rt evolution 323

can as well be inferred by comparison of Rt in the Reference and the Asymptomatic Model with 324

less undetected cases (µ̄ = α, µ = 1). 325

In the Asymptomatic Model, all symptomatic infections are detected and, hence, this reduces 326

secondary infections (β << 1). Removal of the highly infectious compartment (IX), causes a 327

lower turnover from susceptible to exposed. This effect is apparent in the initial phase of the 328

pandemic when Rt in the Asymptomatic Model is much lower than in the Reference Model 329

(iris-blue and red line, respectively, in Fig. 4B). In the long term, the Rt curves from the 330

two models converge, despite the fraction of undetected cases being constant throughout the 331

simulations: µ̄ in the Reference Model and α in the Asymptomatic Model. This is consistent 332

with the effect of the restriction measures, limiting the spreading through undetected cases. The 333

difference in the Rt curves of these two models is larger in the pre-lockdown period. As soon as 334

people’s behavior has started changing either by self-awareness or by imposed restrictions, the 335

turnover from susceptible to exposed is reduced. This caused the according adjustment of R1 336

and the merging of Rt in both models. Thus, the influence of undetected infections on Rt wanes 337

(Fig. 4B) because of two reasons, first, restricted contacts due to the nationwide lockdown, and 338

second, enhanced testing strategy adopted by the regions. 339

Increased Test and Isolate (TI) strategy to reduce hospitalizations 340

As the impact of undetected cases on Rt faded with time, we wanted to quantify the benefit of 341

an increased test and isolate (TI) strategy by implementing an early (from March 2nd, 2020, 342

i.e. one week before lockdown) and late (from March 15th, 2020) testing strategy. Many countries 343

have implemented a Test, Trace and Isolate (TTI) strategy that has a high detection rate, and 344

several modeling studies indicate that a high proportion of cases would need to isolate to control 345

the pandemic [63, 64]. In our case, an increased test and isolate strategy with a high success 346

rate of detection and isolation (as mentioned in the Methods section) is a phenomenological 347

implementation of a TTI strategy. 348

In the Testing Model we assumed that a fraction (µ2(t)) of the symptomatic undetected cases, 349

IX, was detected by tests (IXD), and hence became less infectious (β << 1 Methods, Fig. 1). We 350

maintained the compartmental flow from the Reference Model by using the same parameter set 351

in order to determine the impact of isolating undetected infections by targeted testing and home 352

quarantine of contact clusters around identified infections. This in silico experiment resulted in 353

a substantial increase in the number of detected infections but reduced the number of required 354

hospitalizations. The early TI scenario resulted in up to ∼ 32% peak reduction of hospital 355

bed occupancy, which reduced death numbers by up to ∼ 44% (Fig. 5A-B) depending on the 356

region. The late TI scenario resulted in a situation similar to reality, namely, an overwhelmed 357

health care system with little decrease in the peak hospital occupancy. However, late TI still 358

reduced death numbers by up to ∼ 24%. Although enhanced testing increased the total number 359

of detected infections in comparison to the real number of detected cases, Rt fell and reached 360

unity three weeks earlier (Fig. S10). In line with previous results [63], this result suggests that 361

TTI-strategies are efficient in decreasing disease propagation. South Korea successfully mounted 362

a targeted testing strategy to contain disease spreading without imposing strict measures, like 363

lockdowns or immigration control [8]. 364

Having established that increased detection and isolation lowers hospitalization rates, we 365

investigated whether the same relation can be inferred from the data directly. We calculated the 366
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Step 0 — Parameters set up
a. Bayesian estimation of regional IFR 
b. Literature search

Impact of a TTI strategy on the 
hospitalization and dead number

Step 1 — Simulations
a. Sim. of Reference Model

Step 1 — Simulations
a. Sim. of Asymptomatic Model

                  : Results
                  : Input

- Physiological parameters estimation
- Behavioural parameters estimation

Step 4 — MaxCap Model Simulation
- Parameters fixed from the Capacity Model
- Capacity for Hospital and ICU set to their maximum

Excess deaths as obtained by the 
difference between number of dead in 
the Capacity Model and MaxCap Model.

Impact of a TTI strategy combined 
with an increased hospital capacity on 
the hospitalization and dead number

- Physiological parameters estimation
- Behavioural parameters estimation

a.  μ̄
  ̄μ = α

b.   α = 0.4; Rx, x = 2,...,9

- Physiological parameters from two weeks of data
- Behavioural parameters (                        ) by time-

window technique
R1, R10, ρ, ϑ, δ

- Physiological parameters from two weeks of data
- Behavioural parameters (                        ) by time-

window technique
R1, R10, ρ, ϑ, δ

      calculation and comparisonℛt

Step 2 — Testing Model Simulation
- Parameters fixed from the Reference Model
- Step-wise decrease of μ

Step 5 — TestCap Model Simulation
- Parameters fixed from the Capacity Model 

or from the MaxCap Model
- Step-wise decrease of μ

Step 3 — Capacity Model Simulation
- Step-wise functions limiting the access to Hospital and ICU 

—         and         , respectivelyfHlim fUlim

Fig 3: Flowchart of the study design including features and purposes of the SECIRD
models.

correlation between the median hospital occupancy and the total number of tests performed per 367

infected up to May 22nd, 2020 (Fig. 5C). Regions with low testing were associated with the health 368

care system hitting its capacity limits, while regions with intense testing kept a functional health 369

care system. The northern regions of Italy faced bottleneck situations in hospitals, which is well 370

reflected by the analysis (Fig. 5C, red color). Especially in Lombardia, where only symptomatic 371

patients were tested, the health care system was overwhelmed. In contrast, Veneto performed 372

∼ 4 times more tests per infected than Lombardia, which reduced the number of infections and 373
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Fig 4: Reference Model and time-dependent reproduction number Rt in different
regions of Italy. (A) Active infections, hospitalized, ICU and death data (nationwide and
region-wise) were fitted in a sliding one week time window. Parameter ranges listed in Table 1
were used and the behavioral parameters (R1, R10, ρ, ϑ, δ) were estimated in each time window
(see Methods); dots: data; continuous lines and shaded area: respectively, mean and standard
deviation of all dynamics generated by using 100 perturbed parameter sets (see Methods).
(B) Dynamics of the time-dependent reproduction-number, Rt, resulting from the fit with the
Reference (red) and the Asymptomatic Model (blue). Statistics of Rt were obtained by fitting
the data with 100 perturbed parameter sets; continuous lines and shaded area are, respectively,
mean and standard deviation. Vertical lines correspond to the Lockdown implementation (dark
red) and release (dark green). Black horizontal line represents Rt = 1.

hospitalizations. 374

In summary, the hospitalization and testing data resolved per region suggest a benefit of 375

intense testing strategies to mitigate the load on the health care system. The in silico experiments 376

add evidence that this relationship is induced by the interruption of infection chains, in particular, 377
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by the detection of undetected cases. Thus, testing not only improves knowledge on the infection 378

state but also directly impacts the dynamics of the pandemic. 379

Capacity Model and excess dead due to the shortage of hospital beds 380

Table 3: Hospital bed and ICU capacity before and in the course of the pandemic [55, 65]. ICU
and normal Beds represent the pre-pandemic total beds. In the simulation we used 50% of ICU
and 15% of normal beds as baseline capacity. Added ICU and Added beds represent increased
allocation specifically for COVID-19 patients. Date ICU and Date beds is the date when the
additional beds and ICUs were in place. AP: autonomous province.

Regions ICU Beds Added ICU Date ICU Added beds Date beds

Abruzzo 109 4410 67 31/03/2020 537 23/04/2020

Basilicata 49 1861 24 17/03/2020 139 17/03/2020

Calabria 153 5739 60 11/04/2020 126 11/04/2020

Campania 506 17977 104 11/04/2020 773 14/04/2020

Emilia
Romagna

449 17295 259 24/03/2020 2189 24/03/2020

Friuli Venezia
Giulia

127 4333 102 02/04/2020 358 08/05/2020

Lazio 557 20817 323 24/04/2020 1527 21/04/2020

Liguria 186 5690 127 07/04/2020 1241 01/04/2020

Lombardia 859 37767 939 03/04/2020 11673 12/04/2020

Marche 115 5183 132 31/03/2020 638 06/04/2020

Molise 31 1225 12 28/03/2020 31 07/04/2020

Piemonte 317 16313 500 08/03/2020 4451 16/04/2020

Puglia 302 12531 297 11/04/2020 1027 26/04/2020

Sardegna 123 5739 40 14/04/2020 92 07/04/2020

Sicilia 392 15821 312 23/04/2020 1632 04/05/2020

Toscana 377 12021 247 06/04/2020 1350 05/04/2020

Umbria 70 3259 35 25/03/2020 131 11/04/2020

Valle d’Aosta 12 481 25 03/04/2020 262 03/04/2020

Veneto 487 17512 331 17/03/2020 1910 17/03/2020

Bolzano (AP) 40 2047 66 16/04/2020 442 03/04/2020

Trento (AP) 32 2113 70 02/04/2020 382 07/04/2020

Besides NPIs and promoting social distancing, self-isolation etc., strengthening the health 381

care system is also an inevitable part of the government response. According to the data 382

published by the Italian Ministry of Health, Italy had 3.18 beds per 1000 people with an average 383

occupancy of 75-90% before the pandemic [55]. Between March 1st and March 11th, 2020, 9-11% 384

of the infected people were admitted to ICU. Out of total ∼ 5200 ICU beds (pre-pandemic) 385

in Italy, 2500 were already occupied by March 20th. To cope with this critical situation, each 386

region increased the hospital and ICU facilities (Table 3). Despite the considerable increase 387

in hospital and ICU capacity, the unexpected huge wave of patients and the necessary time to 388

adapt the facilities added to the difficulties of crisis management. 389

To investigate the impact of the limited health care capacities, we developed the Capacity 390

and the MaxCap Model (Fig. 1 and Fig. 3). As of May 22nd, all regions had increased the 391

number of available beds, and the epidemic curves were in a downward phase. Therefore, we 392

investigated a possible impact on the pandemic of hospital overload in the previous months, 393

considering data from February 24th to May 22nd. 394

In the Capacity Model, the pre-pandemic occupancy of hospital beds and ICUs was considered 395

85% and 50% [55], and the baseline number of available hospital and ICU beds was set to 396

15% and 50% of the total capacity (Table 3), respectively. The capacity that was increased 397
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Fig 5: Impact of testing and isolation on hospitalization and death. (A & B) Simula-
tion results of the Testing Model in two scenarios: undetected cases are decreased from µ̄ = 90%
to 60% starting one week before the lockdown (green) and one week post lockdown (blue).
(A) Sum of hospitalized including ICU patients. (B) Total deaths. The percentages provided
in panels A and B quantify the reduction in peak with respect to the fitted Reference Model
(red line). Statistics were performed by fitting the data with 100 perturbed parameter sets
(see Methods). Continuous line and shaded region represent the mean and standard deviation,
respectively. (C) Kendall and Distance correlations have been performed between the number of
tests per infected and the median hospital occupancy, defined as the median of daily hospitalized
over the pre-pandemic hospital plus ICU beds. Light blue line: linear regression fit; gray shaded
area: standard error; red dots: northern regions; blue dots: southern regions; green dots: central
regions. R: correlation coefficient; p: significance.
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Fig 6: Life costs of the limited health care system. (A) Sample Capacity Model fit of
hospitalized (red), ICU (iris-blue) data (active infection and death data fitted, but not shown)
for the most affected regions. Parameters were fitted as in the Reference Model by considering
the first 3 months (February 24th-May 22nd, 2020) data. Continuous lines: simulation results;
round dots: data; Baseline capacity and linear increase in hospital (red) and ICU (iris-blue)
capacity (Table 3) are represented as line with respective color. (B) Box plot of the difference in
death numbers between the results of the Capacity and the MaxCap Model. Statistics performed
over 100 perturbed parameter sets (see Methods) and the box plot shows the median, 25- and
75-percentiles as well as the minimum and the maximum values. We analysed the variation
on the excess dead numbers depending on different values of α for the most affected region,
Lombardia (Fig. S13).

during the crises was described by a region-specific linear function with a daily increment so 398

that the capacity reached its target value at the date indicated in Table 3. We assumed that the 399

unavailability of hospital or ICU beds leads to faster and more frequent death (see Methods). 400

Parameters were determined using the same protocol as for the Reference Model. Capacity Model 401
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fit is shown in Fig. 6A and Fig. S11. 402

In the MaxCap Model, the hospital and ICU capacities were fixed to their maximum from 403

the very beginning. The compartmental flow in both models was kept identical by using the 404

same parameter set as for the Capacity Model. We quantified the impact of the limited capacity 405

on COVID-19-associated deaths by subtracting the death numbers in the MaxCap Model from 406

those in the Capacity Model. This difference represents the number of people that would have 407

benefited from a system with a substantially higher capacity at the beginning of the epidemic. 408

The effect of limited health care facilities was dramatic in Lombardia with a ∼ 26% difference in 409

the number of deaths, corresponding to ∼ 4500 people (Fig. 6B). 410

A combined strategy 411

In reality, many regions ramped up facilities to test the immediate contacts of an identified 412

infection, e.g., Veneto [66]) and also strengthen health care facilities to accommodate more 413

patients. Previously we observed the benefits of an early TI strategy that reduces the load upon 414

the health care system, thereby reducing death numbers (Testing Model, Fig. 5A,B). We also 415

observed a reduction in fatal outcomes in the case of a functional health care system that is not 416

overwhelmed (Capacity Model, Fig. 6A,B). Given these observations, we sought to investigate 417

the combined effects of an improved health care facility with intense testing by considering the 418

following four scenarios: 419

1. linear increase of hospital capacity combined with early TI; 420

2. linear increase of hospital capacity combined with late TI; 421

3. maximum hospital capacity from the beginning combined with early TI; 422

4. maximum hospital capacity from the beginning combined with late TI. 423

Thereby, early/late was assumed one week before/after the lockdown. 424

To simulate scenarios 1 and 2, we transferred the Capacity Model parameters into the 425

TestCap Model (Fig. 3) to keep the compartmental flow intact. To simulate scenarios 3 and 4, 426

we evaluated the TestCap Model assuming the hospital and ICU capacity at their maximum 427

levels from the beginning. In all scenarios, improved TI was simulated as step-wise reduction 428

of undetected cases by 2% per day (µ′(t), Testing Model in Methods), which is equivalent to 429

∼ 10-fold increased detection. 430

Fig. 7 reveals several interesting facets. The importance of testing in a realistic situation 431

where the step-wise extension of the health care facility has been installed is depicted in Fig. 7A. 432

It reveals that an early TI strategy brings down hospitalizations close to the pre-pandemic 433

hospital capacity (horizontal black line). An exception is Lombardia, where adopting an early 434

TI strategy led to ∼ 10% reduction of the hospitalization peak, while the late TI strategy did 435

not decrease the peak size and led to a situation similar to what happened in reality. Though 436

the peak size remained unchanged in Lombardia in the late TI scenario, simulations showed a 437

reduction in the number of deaths of ∼ 17% (Fig. 7A), reaching ∼ 40% (Fig. 7B) when combined 438

with an increased hospital capacity. However, adopting an early TI strategy is effective in 439

reducing the death toll across all regions, ranging from ∼ 34% to ∼ 52%. 440

Fig. 7B represents the importance of a TI strategy in the settings of a functional health 441

care system. Previously, we estimated a 26% reduction in death numbers in Lombardia by 442

strengthening the hospital infrastructure (Fig. 6B). Improved hospital capacity with early TI 443

further reduced death numbers by a significant amount, which ranged from ∼ 35% to 52% across 444

different regions, ∼ 52% in Lombardia (Fig. 7B). Early TI with ∼ 5 fold more testing would 445

have reduced the death toll up to ∼ 37% in Lombardia (Fig. S12). In the late TI scenario, it 446

would have decreased ∼ 40% in Lombardia (Fig. 7B), and considering only ∼ 5 times more 447

testing it would have decreased deaths by ∼ 31% (Fig. S12). 448
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In summary, this in silico experiment emphasizes the importance of an early TI strategy that 449

could partially compensate for limited health care facilities at the early period (March to May, 450

2020) of the pandemic. However, such an early TI strategy would not be sufficient to contain the 451

hospitalizations within the pre-pandemic hospital limit (horizontal black line, Fig. 7). Therefore 452

extending the hospital infrastructure was mandatory to prevent the overwhelmed health care 453

system. 454
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Fig 7: A strategy of early TI and extending hospital capacity combined. Simulation
results of the TestCap Model. (A) Linear increase of hospital and ICU capacities (scenarios 1
and 2) and (B) maximum capacities from the beginning (scenarios 3 and 4) with early (green)
or late testing. Statistics were performed by fitting the data with 100 perturbed parameter
sets (see Methods). Line and the shaded region represent the mean and standard deviation,
respectively. Hospitalized population is the sum of hospital and ICU patients. The percentage
indicates the mean reduction in hospitalized peak and death number with respect to the mean
of the Capacity Model. Black dots: data; black horizontal line: capacity (hospital + ICU) before
the pandemic.
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Discussion 455

Testing interrupt transmission chains and directly influence infection dynamics 456

Our retrospective study revealed many lessons that can be learned from the COVID-19 situation 457

in Italy. Though containment measures are necessary to reduce the exponential growth of 458

the pandemic and flatten the infection curve as early as possible, prolonged lockdown (mass 459

quarantine) is not a sustainable solution to the pandemic given its socio-economic burden [67]. 460

The power of lockdown lies in restricting the contacts, and reducing the spread mainly from the 461

asymptomatic and pre-symptomatic carriers. This particularly applies to COVID-19 because 462

a substantial part of secondary infections occurs prior to disease onset [31]. Several studies 463

indicate that the silent transmission from pre- and asymptomatic patients was responsible for 464

the majority of new infections [54, 68, 69]. Although a recent study has found that there is a 465

lower risk of transmission from asymptomatic people [70, 71], asymptomatic cases still present a 466

significant public-health risk, as they are usually unaware of their infection and do not take any 467

increased self-isolation measures. In Fig. 2 we showed that testing not only reduces the dark 468

figure but also interrupts subsequent transmission chains from undetected cases and thereby 469

directly influences the infection dynamics. This emphasizes the importance of a massive testing 470

strategy to control the pandemic. 471

Regional health care facilities were less overwhelmed with more testing 472

With the help of a mathematical analysis of the different regions of Italy, we have provided 473

evidence for a general relation between intense testing and reduced burden on the health care 474

system. To interrupt virus transmission chains, the Veneto Region developed a comprehensive 475

public health strategy focusing on case finding, contact tracing and quarantining close and occa- 476

sional case contacts [72]. Also, testing was extended to all, symptomatic and non-symptomatic 477

case contacts. Toscana followed a very similar strategy as Veneto, whereas Lombardia was 478

testing only the symptomatic cases. Lombardia has twice the population of Veneto (10M vs 5M). 479

Tests performed per capita in Veneto were almost twice as high than in Lombardia [73]. The 480

epidemiological outcomes of the testing strategy adopted by Veneto and Lombardia are very 481

different in terms of incidence number, evolution of the pandemic and the bottleneck situation of 482

the health care system. Veneto and Toscana managed to flatten the infection curve one month 483

earlier than Lombardia and Piemonte. In Fig. 2, Lombardia, Emilia, and Piemonte are placed in 484

the low test, high infection regime whereas Veneto is in the high test and low infection regime. 485

Therefore the pandemic situation of different Italian regions must be addressed in the light of 486

their testing strategy. Different testing strategies and their implications for the reproduction 487

number have been studied [68,74]. Several other studies emphasize the combination of contact 488

tracing with testing and its implication on the incidence number [63,75]. Our results suggest, 489

that the bottleneck in the health care system of northern Italy regions was a consequence of 490

their TTI strategy. In particular, testing of symptomatic individuals alone appears inefficient. 491

Early TTI could mitigate but not avoid the overload of the health care in Italy 492

In the middle of the crisis, many health care workers were infected with COVID-19 while treating 493

COVID-19 patients, and the voluntary participation of interns and retired personnel was required. 494

Moreover, delays in the testing of health care personnel led to the spread of infection through 495

health care workers. The shortage of health care workers together with limited hospital beds led 496

to a bottleneck situation in the health care system. A study revealed that a weekly screening of 497

the health care workers and other high-risk groups irrespective of their symptoms would reduce 498

transmission by 23% [74]. We quantified the impact of the overwhelmed health care system 499

on the death toll and studied how such a bottleneck situation could be avoided. We showed 500

that a substantial portion of the death toll, ∼ 35% in Lombardia, could be prevented by testing 501

and this could have mitigated the shortage of health care facilities at the early stage of the 502

pandemic, though it would not have contained the hospitalization within its pre-pandemic limit 503

in all cases. Hence, given the capacities, the bottleneck of health care facilities could not be 504
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completely avoided by adopting massive testing alone. 505

An early TTI strategy can replace mass testing strategies 506

A ∼ 10 fold increased testing demands huge testing facilities and is not an economic strategy. 507

Moreover, successful detection depends on the subjects getting tested and their previous travel 508

and contact history. Alternatively, tracking and targeted testing with home quarantine of 509

possible cases significantly reduce infection transmission and could be adopted instead of rapid 510

mass testing due to the higher chance of successful detection. However, manual contact tracing 511

is infeasible at higher incidences and contact tracing apps require ethical clearance in accessing 512

the location data, transparency and protection of personal data [68]. In this context, it has to 513

be emphasized that, in the framework of our mathematical model, the impact of tests on the 514

spreading of infections is based on the isolation of positively tested individuals regardless of their 515

symptoms, which is in line with the previous observations [63, 69]. This implies that contact 516

tracing and quarantine without testing would have a similar effect and might be an efficient 517

strategy when sufficient test capacities are not available. Thus, an effective contact tracing and 518

quarantine mechanism monitored through modern technologies, together with improved health 519

care facilities could reduce mortality in the possible future waves or other pandemics. 520

Limitations 521

Our modelling study has several limitations. During the first wave in Italy, there was a high 522

degree of uncertainty regarding the fraction of pre-symptomatic and asymptomatic cases and 523

their associated transmission. These fractions were also subject to the regional testing strategy, 524

and their dynamic nature is observed in the weekly reports published by ISS. In our analysis, we 525

set the asymptomatic fraction, α, to the national average, 0.4. In our simulation, we considered 526

a fixed incubation period. We performed a sensitivity analysis of R3 upon the Rt within the 527

range provided in Table 1, and we found that Rt is less sensitive towards the variations of R3. 528

As mentioned in the Parameterization section, we determined the range of parameter values 529

that constrained the fit of the physiological parameters by the information available in the 530

literature on the virus characteristics. Some of the physiological parameters in the model may be 531

internally linked. For example, hospitalization and ICU cases increase with infection cases. Here, 532

we assumed that the nature of the virus did not change significantly during the investigation 533

period, and, therefore, we kept the physiological parameters, and hence the internal relations, 534

constant throughout the investigation period. The behavioral adjustments (through NPIs and 535

awareness) caused the breakdown of such relationships and shaped the pandemic. As the 536

behavioral parameters reflect the public behavior which evolved with time, they depend upon 537

several factors and are region-specific. Therefore, it is difficult to infer a proper distribution of 538

such parameters. Nevertheless, as more precise parameter distribution would become available, 539

sampling from a different distribution might improve the quality of the model. 540

For the present analysis, we did not use an age-stratified version of the Reference model due 541

to the lack of knowledge of age-stratified model parameters and incomplete age-stratified data 542

during the first wave. However, the age-dependence is phenomenologically included in the model 543

by using a time-dependent hospitalization rate, which reflects the demography of the infected 544

people and other contingent factors that might alter the outcome of the pandemic. We also 545

did not include co-morbidities or pre-existing medical conditions of a sub-population and did 546

not explicitly consider the potential changes in viral transmissibility due to the environmental 547

factors, such as temperature and humidity. Further, cross-regional movements and the potential 548

for imported or exported infections, which might hamper the testing strategy based on contact 549

tracing, were not considered. Lastly, a delay in testing results might hamper outcomes in a 550

contact tracing-based testing strategy [76]. In our simulation, we did not explicitly consider 551

delays in isolation and its impact on the daily cases. Instead of addressing above limitations 552

explicitly, we perturbed our behavioral parameter sets up to 10% of its base value to ensure the 553

robustness of our results in a plausible range of parameter values. 554
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Conclusions 555

During the first wave of COVID-19 hospital and intensive care unit beds got overwhelmed in 556

Italy. There are potentially many factors, such as infections from undetected index cases, early 557

vs late testing strategies, limited health care facilities, etc., that might have aggravated the 558

COVID-19 situation in Italy. In this paper, we developed a COVID-19 specific infection epidemic 559

model to address the bottleneck situation of the health care system that most of the northern 560

regions of Italy, particularly Lombardia have faced during the first wave of the pandemic. As 561

the testing was limited at the beginning of the pandemic, a large portion of cases remained 562

undetected, which was a major driver of new infections. We first estimated the dark figure for 563

different regions of Italy through a Bayesian Markov Chain Monte Carlo (MCMC) framework. 564

With an adaptive methodology, we estimated the model parameters by fitting the active cases, 565

hospitalized, ICU, and death data published by the Civil Protection Department, Italy. We 566

showed that testing directly influences the infection dynamics by interrupting transmission from 567

undetected cases. We showed that intense testing is associated with the reduced burden of the 568

health care facility and in reality, regional hospitals were less overwhelmed with more testing. 569

By considering regional pre- and post-pandemic hospital and ICU beds we quantify the impact 570

of the overwhelmed health care system upon the death amount. The impact was highest in 571

Lombardia, which affected ∼ 4000 people. Implementing an early TTI strategy in Lombardia 572

would have decreased overall hospital occupancy that would have reduced the death toll by 573

∼ 45%. However, such a strategy would not have kept the hospitalization amount within the 574

pre-pandemic hospital limit. In this context, it is important to keep in mind that the effectiveness 575

of such strategy lies in the isolation of positively tested individuals regardless of their symptoms. 576

Therefore contact tracing and quarantine without testing would have a similar effect and might 577

be an efficient strategy when sufficient test capacities are not available. 578
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