1			
2	High neutralizing activity against Omicron BA.2 can be induced by COVID-19 mRNA		
3	booster vaccination		
4			
5	Lidya Handayani Tjan, MD, PhD; Koichi Furukawa, MD; Yukiya Kurahashi, MD;		
6	Silvia Sutandhio, MD; Mitsuhiro Nishimura, PhD; Jun Arii, DVM, PhD; Yasuko Mori, MD		
7	PhD		
8			
9	Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate		
10	School of Medicine, Kobe, Hyogo 650-0017, Japan		
11			
12	Corresponding author:		
13	Prof. Yasuko Mori		
14	Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate		
15	School of Medicine.		
16	7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo Japan, 650-0017		
17	Tel: +81-78-382-6272; Fax: +81-78-382-6879		
18	E-mail: <u>ymori@med.kobe-u.ac.jp</u>		

20	Abstract
20	Abstract

21	The VOC of SARS-CoV-2, Omicron (BA.1, BA.1.1, BA.2, or BA.3), is associated with an			
22	increased risk of reinfection. BA.2 has become the next dominant variant worldwide.			
23	Although BA.2 infection has been shown to be mild illness, its high transmissibility will			
24	result in high numbers of cases. In response to the surge of Omicron BA.1 cases, booster			
25	vaccination was initiated in many countries. But there is limited evidence regarding the			
26	effectiveness of a booster vaccination against BA.2. We collected blood samples from 84			
27	physicians at Kobe University Hospital, Japan, in January 2022 ~7 months after they had			
28	received two BNT162b2 vaccinations and ~2 weeks after their booster vaccination. We			
29	performed a serum neutralizing assay against BA.2 using authentic virus.			
30	Although most of the participants had no or a very low titer of neutralizing antibody against			
31	BA.2 at 7 months after two BNT162b2 vaccinations, the titer increased significantly at 2			
32	weeks after the booster vaccination.			
33				
34				

36 Introduction

37	The most recently designated VOC of SARS-CoV-2, Omicron, is associated with an				
38	increased risk of reinfection ¹ . Among four sub-lineages of Omicron (BA.1, BA.1.1, BA.2,				
39	and BA.3), BA.1 has spread to >151 countries and is responsible for the greatly increased				
40	number of COVID-19 cases worldwide. However, Omicron BA.2 has also been detected in				
41	\geq 85 countries and became the dominant lineage in 18 countries by mid-February 2022 ² . BA.2				
42	has become the next dominant variant worldwide.				
43	A recent epidemiological study in South Africa suggested that the clinical profile of illness				
44	caused by BA.1 infection is similar to that caused by BA.2 ³ . Although BA.2 infection has				
45	been shown to be mild illness, its high transmissibility will result in high numbers of cases				
46	with considerable societal impacts, e.g., greater work absences, including healthcare and				
47	public employees.				
48	In response to the surge of Omicron BA.1 cases, booster vaccination was initiated in many				
49	countries. We and others have previously reported that BA.1 escapes two doses of				
50	BNT162b2 mRNA vaccine-induced neutralization and that a booster (3rd) vaccination is				
51	required to induce the neutralizing antibody against BA.1 ^{4,5} . But there is limited evidence				
52	regarding the effectiveness of a booster vaccination against BA.2 ⁶ .				
53					
54	Methods				
55	We collected blood samples from 84 physicians at Kobe University Hospital, Japan, in				
56	January 2022 (median age 44 years, IQR 33-58) ~7 months after they had received two				
57	BNT162b2 vaccinations and ~2 weeks after their booster vaccination. We performed a serum				
58	neutralizing assay against BA.2 using authentic virus as described ⁴ . No participants had a				
59	history of SARS-CoV-2 infection. The study was approved by the ethical committee of the				

60 Kobe University Graduate School of Medicine (approval code: B200200). All part	cipants
---	---------

- 61 were recruited with their written consent.
- 62

63 **Results**

- 64 The results demonstrated that similar to $BA.1^4$, most of the participants had no or a very low
- titer of neutralizing antibody against BA.2 at 7 months after two BNT162b2 vaccinations
- (GMT 1.18, 95%CI: 1.09-1.27). However, the titer increased significantly at 2 weeks after
- 67 the booster vaccination (GMT 36.44, 95%CI: 30.53–43.50), p<0.001 (Fig. 1).
- 68

69 **Discussion**

- 70 These results indicate that the booster vaccination could induce neutralizing immunity against
- 71 Omicron BA.2 (as it has against BA.1), and that a booster dose of BNT162b2 mRNA vaccine
- 72 induces a high cross-neutralizing response against SARS-CoV-2 variants⁴, indicating the
- 73 booster vaccination is meaningful and hopeful for the suppression of BA.2 pandemic and can
- 74 activate memory B cells that could produce neutralizing antibodies recognizing epitopes
- 75 conserved among SARS-CoV-2 variants.

76

77 Conflict of interest

- All authors declare no conflicts of interest with respect to this letter. Authors have submitted
- 79 the ICMJE Form for Disclosure of Conflicts of Interest.

80

81 Acknowledgments

- 82 We gratefully acknowledge Kazuro Sugimura MD, PhD (Superintendent, Hyogo Prefectural
- 83 Hospital Agency and Professor, Kobe University) for giving his full support to this study. We

- 84 also thank the National Institute of Infectious Disease Japan for providing the SARS-CoV-2
- 85 Omicron variants BA.2.

87 Figure Legend

Figure. 1. Neutralizing antibody titers against Omicron BA.2 in BNT162b2 mRNA-

vaccinated adult males (n=84) at 7 months after they had received two vaccine doses and at 2

90 weeks after a booster vaccination. The limit of detection is displayed with a dotted horizontal

- 91 line and the horizontal line shows the geometric mean titer. The titers were compared by the
- 92 two-sample Wilcoxon rank-sum (Mann-Whitney) test; two-tailed p-values were calculated.
- 93

94 **References**

95 Altarawneh HN, Chemaitelly H, Hasan MR, et al. Protection against the Omicron 1. 96 Variant from Previous SARS-CoV-2 Infection. Ν Engl Med. Feb 9 J 97 2022;doi:10.1056/NEJMc2200133

98 World Health Organization (WHO). COVID-19 Weekly Epidemiological Update Edition 2. 99 80. 2022. Accessed 2022. Updated 22 February Mar 15, 100 https://apps.who.int/iris/bitstream/handle/10665/352199/CoV-weekly-sitrep22Feb22-101 eng.pdf

1023.Wolter N, Jassat W, Walaza S, et al. Early assessment of the clinical severity of the103SARS-CoV-2 omicron variant in South Africa: a data linkage study. Lancet. Jan 291042022;399(10323):437-446. doi:10.1016/S0140-6736(22)00017-4

105 Furukawa K, Tjan LH, Kurahashi Y, et al. Acquired neutralizing breadth against SARS-4. 106 CoV-2 variants including Omicron after three doses of mRNA COVID-19 vaccination and the 107 vaccine efficacy. medRxiv [preprint]. 108 2022;doi:10.1101/2022.01.25.22269735doi:https://doi.org/10.1101/2022.01.25.22269735 109 Nemet I, Kliker L, Lustig Y, et al. Third BNT162b2 Vaccination Neutralization of SARS-5. 110 CoV-2 Omicron Infection. Ν Enal Med. Feb 3 2022;386(5):492-494. J 111 doi:10.1056/NEJMc2119358

1126.Chen LL, Chu AW, Zhang RR, Hung IF, To KK. Serum neutralisation of the SARS-CoV-2113omicron sublineage BA.2.The Lancet Microbe.Mar 28 2022;doi:10.1016/S2666-1145247(22)00060-X

	512	P <.001
÷	512-	
ains	256-	•
. age	128-	-
titer 2	64-	
ody 1 BA	64- 32- 16-	
Neutralizing antibody titer against Omicron BA.2	16-	-
ing a Om	8-	• •
caliz	4-	-
leuti	2- <2-	
	<2 -	
		2° . 0
	c c	dos poost
	, the	odoses pooster
3	iter	N 31.
71110		odoses pooster