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Abstract
Naming a newly discovered disease is always challenging; in the context of the COVID-19 pandemic and the
existence of post-acute sequelae of SARS-CoV-2 infection (PASC), which includes Long COVID, it has proven
especially challenging. Disease definitions and assignment of a diagnosis code are often asynchronous and
iterative. The clinical definition and our understanding of the underlying mechanisms of Long COVID are still in
flux. The deployment of an ICD-10-CM code for Long COVID in the US took nearly two years after patients had
begun to describe their condition. Here we leverage the largest publicly available HIPAA-limited dataset about
patients with COVID-19 in the US to examine the heterogeneity of adoption and use of U09.9, the ICD-10-CM
code for “Post COVID-19 condition, unspecified.”

Our results include a characterization of common diagnostics, treatment-oriented procedures, and medications
associated with U09.9-coded patients, which give us insight into current practice patterns around Long COVID.
We also established the diagnoses most commonly co-occurring with U09.9, and algorithmically clustered
them into three major categories: cardiopulmonary, neurological, and metabolic. We aim to apply the patterns
gleaned from this analysis to flag probable Long COVID cases occurring prior to the existence of U09.9, thus
establishing a mechanism to ensure patients with earlier cases of Long-COVID are no less ascertainable for
current and future research and treatment opportunities.

Introduction
Naming diseases is an ever present challenge, and there is no shortage of efforts that aim to better
standardize, disambiguate, and keep track of disease nomenclature and definitions[1–4]. Disease naming has
always been controversial–for example, there are more than 400 names for syphilis dating back to the 15th
century[5]. Naming a disease requires defining it, and assigning a standard code to the disease facilitates
research, care, and patient engagement due to ease of patient classification and knowledge exchange.
However, naming and coding a disease does not mean the disease did not exist prior to its naming or coding.
For instance, although “SARS-CoV-2” and “COVID-19” were both coined February 11, 2020, by the
International Committee on the Taxonomy of Viruses and the WHO, respectively[6,7], we know that cases of
COVID-19 began to surface in Wuhan, China in late December 2019[8]. In the US, most diagnostic coding
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uses the ICD-10-CM terminology; however the ICD-10-CM code for COVID-19, U07.1, was not made available
for use until April 1, 2020. The implications of this naming delay are wide-ranging. To this day, US COVID-19
cases prior to April 1, 2020 are difficult to retrospectively ascertain. Even after that date, use of U07.1 for
COVID-19 phenotyping came with caveats–use of the new code was inconsistent and of variable sensitivity
and specificity, and studies have shown both underuse and overuse of U07.1 in different contexts and health
systems[9–11].

Long COVID, which is included in the more general term of post-acute sequelae of SARS CoV-2 infection
(PASC), is now also subject to the effects of delayed naming. By Spring of 2020, patients suffering from Long
COVID had coined various terms to describe the condition, including the COVID-19 long tail, long-haul COVID,
and Long COVID[12–14]. Long COVID is defined by ongoing, relapsing, or new symptoms or other health
effects occurring after the acute phase of SARS-CoV-2 infection (i.e., present four or more weeks after the
acute infection). Heterogeneous symptoms may include, but are not limited to, fatigue, difficulty breathing,
brain fog, insomnia, joint pain, and cardiac issues[15–17]. As the impact of Long COVID on health and quality
of life became increasingly clear at a population level, patients worldwide came together to urge healthcare
systems and policymakers to acknowledge this condition[18,19].

Despite the relatively early recognition of this condition, an ICD-10-CM code (U09.9, “Post COVID-19
condition, unspecified”) was not made available for use in the clinical setting until October of 2021. Moreover,
this single code may prove insufficient: considering the phenotypic and severity variation seen in Long COVID
patients, it is likely that subtypes of Long COVID exist, and such subtypes may correlate with specific
underlying mechanisms that should be targeted by different interventions. There is thus more naming to be
done, and a particular need to define and refine computable phenotypes for Long COVID and its subtypes. In
doing so, we can appropriately define cohorts for clinical studies and provide more precise treatment and
clinical decision support. This is a key priority for the parent program for this work, the NIH Researching
COVID to Enhance Recovery (RECOVER) Initiative,[20] which seeks to understand, treat, and prevent PASC
through a wide variety of research modalities, including electronic health record (EHR) and real-world data.

In response to the COVID-19 pandemic, the informatics and clinical community harmonized an enormous
amount of EHR data to reveal candidate risk factors and therapies associated with COVID-19. The NIH’s
National COVID Cohort Collaborative (N3C) is now the largest publicly available HIPAA limited dataset in U.S.
history, with over 13 million patients, and is a testament to the partnership of over 290 organizations. Due to
the scale and demographic and geographic diversity of data within the N3C, it is uniquely well-suited to
characterize the early use of the new Long COVID ICD-10-CM code.

In prior work, we proposed a machine learning-based computable phenotype definition for Long COVID using
the N3C data[21]. Now that U09.9 is available, the presence of the code will be a valuable addition to that
existing Long COVID model, especially since ascertainment of presumptive cases based on EHR data in the
absence of a U09.9 diagnosis code is limited by the non-specificity of the clinical manifestations of the disease,
the frequency with which these symptoms are seen in the general population, and the observation that the
diagnosis of Long COVID is one of exclusion. However, due to the caveats noted above regarding newly
introduced codes, we first sought to characterize the early clinical use patterns of U09.9 before accepting it into
our model and cohort definition at face value. This characterization revealed interesting patterns that may
enable us to glean a better understanding of both rough subtypes of Long COVID and current clinical practices
for diagnosis and treatment of Long COVID. Ultimately, identifying patients with Long COVID based upon
multiple means of inquiry (including U09.9) is critically important to recruit participants for research studies,
assess the public health burden, and support nimble analytics across our heterogenous health care systems.

Methods
To characterize the use of the U09.9 code, we used EHR data integrated and harmonized inside the
NIH-hosted N3C Secure Data Enclave to identify clinical features co-occurring around the time of patients’
U09.9 index date. The methods for patient identification, data acquisition, ingestion, and harmonization into the
N3C Enclave have been described previously[22–24]. Briefly, N3C contains EHR data for patients who (1)
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tested positive for SARS-CoV-2 infection, (2) whose symptoms are consistent with a COVID-19 diagnosis, or
(3) are demographically matched controls who have tested negative for SARS-CoV-2 infection (and have never
tested positive) to support comparative studies. Lookback data are available from January 2018 forward for
each patient.

In this analysis, we defined our initial population (n = 9,571, sourced from 28 different health care systems) as
any non-deceased patient with one or more U09.9 diagnosis codes recorded on or after October 1, 2021.
U09.9 codes appearing prior to this date were likely retroactively applied to these patients’ records (e.g., as
“onset dates” in an EHR Problem List), therefore making it difficult to determine an index date that reflects the
actual date of diagnosis. We excluded patients (n = 1,497) whose U09.9 index occured during an inpatient
hospitalization, due to the difficulty of distinguishing co-occurring clinical features related to Long COVID
versus the primary reason for their hospitalization. After these exclusions, a base population of 8,074 remained
(see Supplemental Figure 1). Note that we did not require patients in our cohort to have a COVID-19
diagnosis code (U07.1) or positive SARS-CoV-2 test on record, as many patients with Long COVID do not
have this documentation[19].

Data from 28 of the 71 N3C sites were used for this analysis. The remaining sites either (1) did not use the
U09.9 code in their N3C data or had not refreshed data since November 1, 2021, meaning the U09.9 code
would not be present even if used at the site (n = 30 sites), or (2) did not meet the minimum criteria we set for
site data for all RECOVER-related analyses (n = 13 sites): (a) >=25% of inpatients with at least one white
blood cell count and at least one serum creatinine (to ensure lab measurement completeness); (b) 75% of
inpatient visits have valid end dates; and (c) dates must not be shifted by the site more than 30 days.
Additional N3C data quality criteria have been described previously, and also apply to this work.[23] The 28
sites used here are diverse in geographic location and institution size, but cannot be specifically named due to
N3C governance policies.

We calculated person-level demographics and a number of social determinants of health variables at the area
level. These variables are sourced from the Sharecare-Boston University School of Public Health Social
Determinants of Health Index[23], and were linked to patients based on the preferred county (majority
residence) associated with the patient’s 5-digit ZIP code. We then characterized this cohort by examining
diagnoses, procedures, and medications that occurred between each patient’s U09.9 index date and 60 days
after index (hereafter referred to as our “analysis window”).

Diagnosis Analysis
Our objective in characterizing diagnoses around the U09.9 index date was not only to catalog conditions and
symptoms that tend to co-occur with the U09.9 diagnosis, but also to determine which of those conditions and
symptoms tend to co-occur with each other. In doing so, we begin to see clusters of conditions that are more
likely to occur together within a single patient’s record. First, we extracted all conditions in each patient’s record
within the analysis window, and identified the most frequently occurring conditions in the study population. We
then constructed an adjacency matrix for the top 30 conditions, with values indicating the frequency of
co-occurrence between two conditions in the study population. From this matrix, we constructed a weighted
network with nodes representing individual diagnoses, edges between nodes representing co-occurrence, and
edge weights corresponding to the count of patients with both conditions. In order to detect conditions that are
more likely to co-occur in our study population than at random, we tested the Louvain [25], Walktrap,[26] and
Girvan-Newman[27] algorithms for community detection. We selected the Louvain algorithm in our final model,
as it maximized modularity while retaining a reasonable resolution of detection. For further subgroup analyses,
we present clusters detected within age-stratified condition co-occurrence networks. Additional details on
community detection, network stability and subgroup analyses are available in Supplemental Methods.

Procedure Analysis
Characterizing common procedures around the time of U09.9 allowed us to assess current practice patterns
(i.e., diagnostics and treatments) for patients receiving the code. We defined a “procedure” as any medical
diagnostics or treatments rendered by a healthcare provider. We excluded non-informative records that simply
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reflect that an encounter took place (e.g., CPT 99212, “Office or other outpatient visit”), despite their technical
classification as “procedure codes.” We then aggregated remaining procedures into high-level categories (e.g.,
“radiography,” “physical therapy”) in order to discern the diagnostics and treatments that occured within each
patient’s analysis window.

Medication Analysis
As with diagnoses and procedures, we extracted all medication records occurring within each patient’s analysis
window, in order to characterize newly prescribed medications that may be used to treat symptoms of Long
COVID. In order to focus on newly prescribed medications and not long-standing prescriptions, we excluded
medications for each patient for which there were records prior to the patient’s U09.9 index. Medications were
categorized using the third level of the Anatomical Therapeutic Chemical (ATC) classification system[28].

Results
Each of the patients in our base population came from one of 28 N3C data-submitting health care
organizations. Table 1 shows the breakdown of the study cohort by person-level demographics and area-level
social determinants of health. It should be noted that greater severity of acute SARS-CoV-2 infection does not
appear to have outsize influence in determining which patients end up with a U09.9 code; 1,722 of the U09.9
patients (21.3%) were hospitalized during their acute SARS-CoV-2 infection.

Age <21 21-45 46-65 66+ All ages

n = 454 n = 2,816 n = 3,422 n = 1,382 n = 8,074

Person-level variables

Sex (%)

female 276 (60.8) 2001 (71.1) 2163 +/-5 (63.0) 803 (58.1) 5243 (64.9)

male 178 (39.2) 815 (28.9) 1257 +/-5 (36.7) 579 (41.9) 2829 (35)

unknown 0 (0.0) 0 (0.0) <20 0 (0.0) <20

Race (%)

Black 55 (12.1) 402 (14.3) 448 (13.1) 133 (9.6) 1038 (12.9)

White 327 (72.0) 1987 (70.6) 2646 (77.3) 1140 (82.5) 6100 (75.6)

Other 20 (4.4) 101 (3.6) 75 (2.2) 31 (2.2) 227 (2.8)

Unknown 52 (11.5) 326 (11.6) 253 (7.4) 78 (5.6) 709 (8.8)

Ethnicity (%)

Hispanic/Latino 40 (8.8) 324 (11.5) 258 (7.5) 75 (5.4) 697 (8.6)

Not Hispanic/Latino 370 (81.5) 2370 (84.2) 3001 (87.7) 1254 (90.7) 6995 (86.6)

Unknown 44 (9.7) 122 (4.3) 163 (4.8) 53 (3.8) 382 (4.7)

Area-level social determinants of health (county level)

Households with Income below poverty (%)

High (>15%) 148 (32.6) 931 (33.1) 1216 (35.5) 467 (33.8) 2762 (34.2)

Medium (11-15%) 109 (24.0) 684 (24.3) 786 (23.0) 364 (26.3) 1943 (24.1)

Low (<11%) 122 (26.9) 786 (27.9) 895 (26.2) 344 (24.9) 2147 (26.6)

Missing 75 (16.5) 415 (14.7) 525 (15.3) 207 (15.0) 1222 (15.1)

Residents with college degree (%)

High (>25%) 89 (19.6) 580 (20.6) 622 (18.2) 265 (19.2) 1556 (19.3)

Medium (19-25%) 136 (30.0) 1044 (37.1) 1173 (34.3) 453 (32.8) 2806 (34.8)

Low (<19%) 154 (33.9) 777 (27.6) 1102 (32.2) 457 (33.1) 2490 (30.8)

Missing 75 (16.5) 415 (14.7) 525 (15.3) 207 (15.0) 1222 (15.1)

Residents 19-64 with public health insurance (%)
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High (>18%) 96 (21.1) 421 (15.0) 623 (18.2) 256 (18.5) 1396 (17.3)

Medium (13-18%) 142 (31.3) 1095 (38.9) 1240 (36.2) 528 (38.2) 3005 (37.2)

Low (<13%) 141 (31.1) 885 (31.4) 1034 (30.2) 391 (28.3) 2451 (30.4)

Missing 75 (16.5) 415 (14.7) 525 (15.3) 207 (15.0) 1222 (15.1)

MDs per 1000 residents (%)

High (>3.61) 133 (29.3) 1031 (36.6) 1064 (31.1) 377 (27.3) 2605 (32.3)

Medium (1.91-3.61) 98 (21.6) 598 (21.2) 742 (21.7) 324 (23.4) 1762 (21.8)

Low (<1.91) 148 (32.6) 772 (27.4) 1091 (31.9) 474 (34.3) 2485 (30.8)

Table 1. Demographic breakdown of patients in N3C with a U09.9 diagnosis code. In addition to person-level
demographics, we have included a number of social determinants of health variables at the area level (see Methods). In
accordance with the N3C download policy, for demographics where small cell sizes (<20 patients) could be derived from
context, we have shifted the counts +/- by a random number between 1 and 5. The accompanying percentages reflect the
shifted number. All shifted counts are labeled as such, e.g. +/- 5.

In addition to demographics, the N3C data also enables us to examine medication use and procedures that
occur in each patient’s analysis window, as shown in Figures 1 and 2, respectively.

Figure 1. Common medications for 4,004 patients with a U09.9 code. Medications shown occur within 60 days after a
patient’s U09.9 diagnosis, and do not occur prior to the U09.9 (i.e., new medications). Medications are coded using the
ATC terminology. Because a single drug can have multiple ATC codes, some medications are counted in more than one
category. Category totals represent unique patient - drug pairs, not necessarily unique individuals. Medication classes
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associated with fewer than 20 patients are not shown, per N3C download policy. An additional 4,070 patients had no new
recorded medications in the analysis window; percentages are shown relative to all patients in the final study population
(8,074).

Figure 2. Common procedures for 5,111 patients with a U09.9 code. Procedures shown occur within 60 days after a
patient’s U09.9 diagnosis. Procedure records that simply reflect that an encounter took place (e.g., CPT 99212, “Office or
other outpatient visit”) are excluded. Category totals represent unique patient - procedure pairs, not necessarily unique
individuals. Procedure classes associated with fewer than 20 patients are not shown, per N3C download policy. An
additional 2,963 patients with a U09.9 code had no recorded procedures in the analysis window; percentages are shown
relative to all patients in the final study population (8,074).

We also analyzed uptake of the code itself, among sites using the code. There is a rapid increase in use of
U09.9 by sites following the code’s release (Figure 3). Usage of U09.9 post-release is compared with usage of
B94.8 (“Sequelae of other specified infectious and parasitic diseases”) among COVID positive patients; some
sites may have used B94.8 at the CDC’s initial recommendation[29] as a placeholder code prior to U09.9’s
release. Once U09.9 became available, use of B94.8 at the same sites levels off but does not decrease. This
suggests that both codes are still being used; indeed, we see both codes used in the records of 1,614 (20%) of
N3C patients in our included U09.9 population.
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Figure 3. Clinical use of B94.8 levels off as U09.9 becomes available. Prior to U09.9’s release, the CDC
recommended use of B94.8 (“Sequelae of other specified infectious and parasitic diseases”) as a placeholder code to
signify Long COVID. Among the 28 sites using U09.9, we plotted the use of B94.8 (orange line) as a percentage of
patients who had an acute COVID index (to exclude instances of B94.8, a general purpose code, used for
non-COVID-related purposes). Compare this trajectory with U09.9’s (blue line), which quickly ramps up in use after
October 1, 2021. (U09.9 codes shown prior to that date have been retroactively applied to patients’ records.)

The definition of Long COVID[30] includes a wide-ranging list of symptoms and clinical features. Many of those
features appear below in Figure 4, a visualization of diagnoses that commonly co-occur with U09.9, and each
other. The mix of co-occurring diagnoses as well as the clusters produced by the Louvain algorithm change
when the cohort is subset into age groups. These age-based clusters are included as Supplemental Figures
2a-d. A full accounting of diagnoses co-occurring with U09.9 (i.e., within the analysis window) in at least 20
patients from our cohort is included as Supplemental Table 1.
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Figure 4. Clusters of co-occurring diagnoses among patients with a U09.9 code. When the Louvain algorithm is
applied to the top 30 most frequent pairs of co-occurring diagnoses for U09.9 patients (i.e., diagnoses co-occurring in the
same patient 0 through 60 days from U09.9 diagnosis date), three distinct clusters emerge (cardiopulmonary,
neurological, metabolic). These clusters may represent rough subtypes of Long COVID presentations. The size of each
box within a cluster reflects the frequency of that diagnosis relative to others in the diagram. Condition names are derived
from the SNOMED CT terminology, mapped from their ICD-10-CM equivalents.

Our findings suggest that Long COVID symptoms and associated functional disability may present differently
depending on the patient, but commonly fall into one of these three identified clusters (cardiopulmonary,
neurological, metabolic). When stratified by age, the diagnoses within each cluster change somewhat, though
the themes remain constant (Supplemental Figure 2). For the youngest group (<21 years of age;
Supplemental Figure 2a), note the appearance of multisystem inflammatory syndrome[31] within the
respiratory cluster. Patients aged 65+ (Supplemental Figure 2d) were the most distinct, presenting with more
chronic diseases associated with aging (e.g. congestive heart failure, atherosclerosis, atrial fibrillation).

Discussion
Diagnosis codes are frequently used as criteria to define patient populations. While diagnosis codes alone may
not define a cohort with perfect accuracy, they are a useful mechanism to narrow a population from “everyone
in the EHR” to a cohort highly enriched with the condition of interest. Our analysis of U09.9 shows that this
code may serve in a similar capacity to identify Long COVID patients. However, temporality and rate of uptake
by providers are critical issues that must be considered. U09.9 was released for use nearly two years into the
COVID-19 pandemic, resulting in potentially millions of patients with Long COVID who “missed out” on being
assigned the code. Moreover, nearly six months after the code was introduced, only about half of N3C sites
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have utilized U09.9. Our findings must thus be interpreted through this lens of partial and incremental adoption.
More work is needed to understand clinical variability and barriers to uptake by providers.

We investigated whether the use of non-specific coding such as B94.8 (“Sequelae of other specified infectious
and parasitic diseases”) could be used as a proxy for early case identification. Our findings show B94.8 use
increasing among COVID patients from April 2021 to October 2021, indicating a potential shift in clinical
practice patterns to code for Long COVID presentation as guided by the Centers for Disease Control[29].
However, B94.8 is used to code for any sequelae of any infectious disease, and is thus not likely specific
enough to rely on for Long COVID case ascertainment in the EHR.

The common procedures and medications around the time of U09.9 index provide insight into diagnostics and
treatments currently used by providers for patients presenting with Long COVID, for which treatment guidelines
remain under development[32–35]. For new diseases where consensus is lacking, care is often ad hoc and
informed by both the symptoms that patients present with and the available diagnostics and treatments that
providers can offer. The identification and characterization of care patterns is an important step in designing
future research to assess the efficacy and outcomes of these interventions. In our analysis of procedure and
medication codes, the frequent use of respiratory medications and tests is unsurprising given that pulmonary
manifestations of Long COVID are a predominant subtype of symptoms[19]. Interestingly, antibacterials were
also used frequently; it is unclear whether patients with Long COVID are more susceptible to bacterial
infections, or if there may be overuse of antibiotics in the setting of fluctuating respiratory Long COVID
symptoms or viral infections [36,37]. Both systemic and topical corticosteroids were also commonly used,
presumably to treat persistent inflammation as a possible mechanism mediating Long COVID symptoms. Other
frequently prescribed medication categories, such as cardiac, neuropsychiatric, gastrointestinal, and
dermatologic medications, reflect the potential multi-system organ involvement and symptom clusters in Long
COVID that we see in the analysis of conditions. Also of interest is the fact that some patients are receiving a
number of rehabilitation services in the 60 days after diagnosis, such as physical and occupational therapy,
which lends insight into the burden of functional disability for patients with Long COVID.

Our diagnosis clusters suggest that Long COVID may not be a single phenotype, but rather a collection of
sub-phenotypes that may benefit from different diagnostics and treatments. This may explain the hesitancy
behind uptake of U09.9, as clinical presentation is not universal. Each of these clusters (cardiopulmonary,
neurological, and metabolic) contains conditions and symptoms reported in existing Long COVID literature[38],
and clearly suggests that the definition of Long COVID is more expansive than lingering respiratory
symptoms[39]. Of particular note is the appearance of myalgic encephalomyelitis –a disease which parallels
Long COVID in many ways[40–42]–in the neurological cluster, suggesting not only frequent co-occurrence with
a U09.9 diagnosis, but also co-occurrence with other neurological symptoms. The metabolic cluster is also
hypothesis-generating, and follows prior research on the complex relationship between type II diabetes and
COVID-19[43,44]. The cluster differences we see among age groups (Supplemental Figures 2a-d) make a
strong case for age stratification when studying U09.9, and Long COVID in general. Regardless, given Long
COVID’s heterogeneity in presentation, course, and outcome, the clustering of symptoms may prove
informative for future development of classification and diagnostic criteria.[45]

We also investigated how demographics and social determinants of health may contribute to variation in use of
U09.9. We found more women than men presenting with Long COVID across all age groups, consistent with
literature and anecdotes from Long COVID clinic providers.[46] When evaluating the U09.9 cohort across age
groups and socioeconomic status, Long COVID presentation was more heterogeneous. While our findings do
not present a clear socio-demographic trend (see Table 1), the role of access to providers and the economic
means to afford Long COVID care should continue to be studied for their role as confounders.

Limitations
All EHR data is limited in that patients with lower access or barriers to care are less likely to be represented.
EHR heterogeneity across sites may mean that a U09.9 code at one site does not quite equate to a U09.9
code at another. Moreover, we are not able to know what type of provider issued the U09.9 diagnosis (i.e.,
specialty), and different clinical organizations have different coding practices.
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As the U09.9 code is still quite new and our sample size is limited, we cannot yet confidently label these
clusters as clear “Long COVID subtypes.” Rather, these clusters are intended to be hypothesis generating, with
additional work underway by the RECOVER consortium to further develop and validate these clusters. It
should also be noted that many symptoms are not coded in the EHR (and may, for example, be more likely to
appear in free-text notes rather than diagnosis code lists). Future work will incorporate these non-structured
sources of symptoms for use in our clustering methodology.

Given the variable uptake of the U09.9 code, it is challenging to accurately identify comparator groups for this
population–i.e., the absence of a U09.9 code cannot, at this time, be interpreted as the absence of Long
COVID. This will continue to be an issue in future research, especially when evaluating the effect of PASC on
patient morbidity and utilization of diagnostic testing and treatments.

Conclusion
The recent release of ICD-10-CM code U09.9 to codify Long COVID will undoubtedly assist with future case
ascertainment and computable phenotyping. However, a large number of patients who developed Long COVID
prior to October 1, 2021 continue to be burdened with symptoms, and must also be included in data-driven
cohort identification efforts for trial recruitment and retrospective analyses. Considering the caveats around rate
of uptake among clinicians and late timing of the code’s release, we recommend that when characterizing Long
COVID using EHRs, U09.9 should not be used alone, but rather in combination with other strategies such as
more complex computable phenotypes[21]. Our findings from the characterization of patients with the U09.9
diagnosis may be of use in refining phenotypes to identify pre-U09.9 patients that might have Long COVID.
There is clear utility to the characterization of early use of U09.9, as it represents the first “hook” in EHR data
that can be used to identify and assess current diagnostic and treatment patterns at scale. Moreover, given the
heterogeneous presentation of Long COVID, clustering of co-existing conditions and potential symptoms may
be valuable in informing future development of more detailed criteria for diagnosis of Long COVID and its
subtypes.
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