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Abstract13

Non-pharmaceutical interventions, such as school closures and stay-at-home orders, have been14

implemented around the world to control the spread of SARS-CoV-2. Their effects on health-related15

outcomes have been the subject of numerous empirical studies. However, these studies show fairly16

large variation among methodologies in use, reflecting the absence of an established methodological17

framework. On the one hand, variation in methodologies may be desirable to assess the robustness of18

results; on the other hand, a lack of common standards can impede comparability among studies. To19

establish a comprehensive overview over the methodologies in use, we conducted a systematic review of20

studies assessing the effects of non-pharmaceutical interventions on health-related outcomes between21

January 1, 2020 and January 12, 2021 (n=248). We identified substantial variation in methodologies22

with respect to study setting, outcome, intervention, methodological approach, and effect assessment.23

On this basis, we point to shortcomings of existing studies and make recommendations for the design24

of future studies.25
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1 Introduction28

In response to the COVID-19 pandemic, countries around the world have implemented non-29

pharmaceutical interventions. These include a variety of public health measures implemented30

by governments with the intention of controlling, preventing, and mitigating transmission, e. g.31

school closures, stay-at-home orders, and mandates for compulsory wearing of masks in public32

places1–4. The widespread use of these interventions has raised interest in empirically studying their33

effects on health-related outcomes reflecting disease dynamics, e. g. the number of new cases or34

infection rates5–10. Such studies can play an important role in informing the discussion about the35

effectiveness of interventions. In particular, insights from the COVID-19 pandemic may contribute36

to an evidence-based public-health response in subsequent COVID-19 waves or future pandemics.37

Accordingly, a plethora of studies assessing the effects of non-pharmaceutical interventions during38

the COVID-19 pandemic have been published. Their findings have been summarized by several39

meta-analyses11–15; nonetheless, each meta-analysis considered a different subset of studies. We40

argue that the latter is due to substantial variation in the methodologies used to conduct empirical41

studies on the effects of non-pharmaceutical interventions. The resulting lack of similarity constrains42

meta-analyses to a comparably small and specific subset of the overall evidence.43

There are different reasons to expect variation in methodologies in the studies on the effectiveness44

of non-pharmaceutical interventions for controlling a pandemic. One possibility is the lack of empirical45

data before the COVID-19 pandemic, so that early studies have been largely theoretical16. Empirically46

assessing the effects of non-pharmaceutical interventions is therefore a relatively new subject, and47

corresponding studies do not build on an established scientific framework. Another possibility is48

that empirical assessments have been approached with different methods and domain knowledge by49

researchers from various fields, e. g. computational biology, infectious disease epidemiology, public50

health, economics, and statistical modeling.51

Variation in methodologies can be manifold. Different study settings, outcomes, interventions,52

methodological approaches, and ways to assess effects may be used. On the one hand, such variation53

may be desired as it allows to assess the robustness of results against individual assumptions and54

methodologies. On the other hand, variation in methodologies can impede comparability among55

studies, which is necessary to arrive at conclusive evidence regarding the effects of non-pharmaceutical56
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interventions.57

Here, we systematically review the methodologies for studying the effects of non-pharmaceutical58

interventions on health-related outcomes published between January 1, 2020 and January 12, 202159

(n=248). Thereby, we aim to inform about different methodologies that were used by previous studies60

and promote common standards so that future studies can align with existing ones. In particular, we61

explore shortcomings of current studies and provide seven recommendations for subsequent studies62

on the effects of non-pharmaceutical interventions.63

2 Results64

Our review follows general guidelines for systematic literature reviews17 and is reported according65

the PRISMA 2020 statement18. The methodology was preregistered in a review protocol at PROS-66

PERO19. Figure 1 shows the PRISMA flow diagram of our identification process. We conducted67

a systematic database search for peer-reviewed research articles from January 1, 2020 up to Jan-68

uary 12, 2021 (see Materials and methods, Section 5), yielding 2,929 unique records of studies for69

screening. Through title and abstract screening, we identified 411 studies as potentially relevant70

and evaluated their full texts. Of these, we excluded 163 studies that did not meet the eligibility71

criteria. The most frequent reasons for exclusion were that (i) studies primarily simulated the effects72

of interventions in hypothetical scenarios rather than making inferences from observational data;73

(ii) studies had a different objective than assessing intervention effects, and (iii) studies only assessed74

the effects of population behavior (most often mobility) on health-related outcomes, but not the75

effects of interventions. The remaining n=248 studies met our eligibility criteria and were included76

for subsequent data extraction. Importantly, 35 studies in our review sample contained multiple77

(i. e. up to three) analyses, e. g. with different methodological approaches, leading to 285 different78

analyses included. If not indicated otherwise, our results are presented at the level of individual79

analyses (and not at the level of studies).80

We characterized the analyses along five dimensions (SI Appendix D): study setting (D.1),81

outcome (D.2), intervention (D.3), methodological approach (D.4), and effect assessment (D.5).82

In the Results section, if not stated otherwise, we use the term interventions to refer to non-83

pharmaceutical interventions. Where appropriate, we also point to exemplary studies of specific84

characteristics. Due to the large size of our review sample, however, we refrain from referencing85
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all studies in the main manuscript and instead refer to our complete data extraction report in SI86

Appendix E.87

Literature search and selection process
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Records identified from databases
§ Embase (n=1,417)
§ PubMed (n=1,091)
§ Scopus (n=1,849)
§ Web of Science (n=3,189)

Records removed before screening
§ Duplicate records (n = 3,455)
§ Records marked as ineligible by

automation tools (n = 1,162)
§ Records removed for other reasons (n = 0)

Records excluded
(n = 2,518)

Records screened
(n = 2,929)

Studies sought for retrieval
(n = 411)

Studies assessed for eligibility
(n = 411)

Studies included in review
(n = 248)

Studies not retrieved
(n = 0)

Studies excluded
§ Only simulation of NPI effects in 

hypothetical scenarios (n = 105)
§ Different research objective than 

assessment of NPI effects (n = 30)
§ Only assessment of effects of mobility or 

behavior, not of NPIs (n = 17)
§ Use of results from other study (n = 6)
§ Extraction not feasible due to quality issues 

(n = 4)
§ Not available in English language (n = 1)

Fig 1. PRISMA flow diagram. Overall, n=248 studies were included. Some studies contain multiple
analyses, such that the number of analyses included in the review is 285.

2.1 Study setting88

The analyses vary in their scope across populations, geographic areas, and study period. A systematic89

classification of the study setting is shown in Table 1.90

Population91

More than half of the analyses studied multiple populations (n=167; 59%), i. e. multiple countries92

or subnational regions (e. g. states or cities). The remainder focused on a single population (n=118;93

41%), i. e. a single country or subnational region. The analyses were performed at the national level94

(n=117; 41%), the subnational level (n=97; 34%), or both (n=71; 25%). If both levels were studied,95
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Table 1. Systematic classification and frequency of the study setting (D.1).

D.1.1: Number of populations included Frequency

Single (country, state, city, etc.) 118 (41%)
Multiple (countries, states, cities, etc.) 167 (59%)

D.1.2: Level of populations included

National (country-level) 117 (41%)
Subnational (e. g. state-level) 71 (25%)
Both national and subnational (country- and e. g. state-level) 97 (34%)

D.1.3: Geographic areas covered‡

Asia 144 (51%)
Europe 109 (38%)
North America 91 (32%)
Middle East and Africa 49 (17%)
Central and South America 46 (16%)
Oceania 42 (15%)

D.1.4: Number of countries covered

Multiple countries 66 (23%)
Single country (including multiple populations from a single country)‡ 219 (77%)
ë China ë 54 (25%)
ë United States ë 43 (20%)
ë India ë 11 ( 5%)
ë Italy ë 11 ( 5%)
ë Other ë 100 (46%)

D.1.5: Study period

Start and end date span first epidemic wave 161 (56%)
One or more exceptions‡ 124 (44%)
ë End date in growth phase of wave ë 44 (35%)
ë Same end date for several populations with diverse epidemic trajectories ë 38 (31%)
ë End date at peak of wave ë 16 (13%)
ë End date could not be evaluated ë 14 (11%)
ë Other ë 14 (11%)

‡ Multiple categories per analysis are possible. Frequencies refer to number of analyses to which category applies,
proportions thus do not sum to 100%.

the country and all its subnational regions were oftentimes considered, e. g. all states of the United96

States. Geographically, Asia (n=144; 51%), Europe (n=109; 38%), and North America (n=91;97

32%) were much more frequently analyzed than the rest of the world. Regional disparities may be98

explained by the fact that analyses frequently focused on some specific countries. For instance, in99

analyses of a single country, the most frequent country was China (n=54; 25%), from where the100

pandemic originated. Other frequently studied countries, such as the United States (n=43; 20%),101

India (n=11; 5%), and Italy (n=11; 5%), may have received more attention due to particularly high102

incidence and mortality during the first epidemic wave.103
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Study period104

Typically, the study period covered both a rise and decline in new cases of the first epidemic wave105

in the analyzed population, and started before and ended after the analyzed interventions were106

implemented (n=161; 56%). However, many analyses also deviated from this pattern in one or107

several aspects. Most often, study periods had a comparatively early end date, i. e. the study period108

ended already at the peak (n=16; 13%) or still in the growth phase (n=44; 35%) of the wave. There109

was also a considerable number of analyses that used the same study period for populations which110

were in different epidemic phases (n=38; 31%). In such cases, the end date of the study period was111

still within the epidemic growth phase for some populations but already in the control phase for112

other populations.113

2.2 Outcome114

The studies in our review sample used different types of health-related outcomes or surrogates. For115

every analysis, we identified the “raw outcome”, i. e. the outcome data which were self-collected or116

obtained from external sources and used as input for the analysis. In around half of the analyses, the117

raw outcome was analyzed directly to assess the effects of interventions. The other half of analyses,118

however, involved an intermediate step, in which another outcome was computed from the raw119

outcome. This “computed outcome” was then analyzed instead of the raw outcome, or sometimes in120

addition to it. A systematic classification of the outcomes are shown in Table 2.121

Raw outcome122

We identified three main types of raw outcome data used, namely (i) epidemiological population-level123

data, (ii) epidemiological individual-level data, and (iii) behavioral data.124

(i) Epidemiological population-level data125

The majority of analyses used population-level data on epidemiological outcomes (n=223; 78%).126

The most frequent types were surveillance data, mainly the number of confirmed cases, but also127

deaths, hospitalizations, recovered cases, and, less frequently, intensive care unit (ICU) admissions.128

Importantly, some of these outcomes, such as recovered cases, were predominantly used to fit129

transmission models, in which case the effect of interventions was rather measured in terms of a130

different latent outcome (see D.5 Methodological approach, Section 2.4). Frequently, authors also131
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included several types of data (e. g. both cases and deaths), either to perform a separate analysis for132

each (e. g. as a robustness check) or to combine them in a joint model (e. g. a transmission model).133

Some analyses used surveillance data on other diseases than COVID-19, with influenza being the134

most popular choice. Such surrogate diseases have often been monitored over an extended period of135

time, which allows comparing their spread during the COVID-19 pandemic to earlier years. Notably,136

we found only three analyses that used external data on latent epidemiological population-level137

outcomes (e. g. the reproduction number). All other analyses using a latent outcome self-computed138

it from raw data in an intermediate step (see D.2.2 Computed outcome, Section 2.2).139

(ii) Epidemiological individual-level data140

Instead of population-level data, some analyses also used individual-level epidemiological data141

(n=23; 8%). These were in particular data about individual cases with case ID, demographics,142

and epidemiological characteristics (e. g. the date of symptom onset or travel history). In some143

instances, this included contact tracing data with links between index and secondary cases, allowing144

the reconstruction of transmission chains. Two analyses also used genome sequence data of clinical145

SARS-CoV-2 samples20,21.146

(iii) Behavioral data147

In addition to epidemiological data, a relevant share of analyses employed data on population148

behavior (n=55; 19%), mainly mobility data. These data were usually obtained through tracking of149

mobile phone movements and provided as aggregates at the population level, based on summary150

statistics such as the daily number of trips made, distance travelled, time spent at certain locations,151

or population flow between regions. Another, less frequently used source of information on human152

behavior were surveys regarding social distancing practices, such as adherence to interventions, face153

mask usage, daily face-to-face contacts, or recent traveling.154
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Table 2. Systematic classification and frequency of the outcome (D.2).

D.2.1: Raw outcome‡ Frequency

Epidemiological population-level outcome‡ 223 (78%)
ë Confirmed cases ë 186 (83%)
ë Deaths ë 64 (29%)
ë Recovered cases ë 20 ( 9%)
ë Hospitalizations ë 18 ( 8%)
ë Surrogate disease outcome ë 10 ( 4%)
ë Other ë 24 (11%)
Epidemiological individual-level outcome‡ 23 ( 8%)
ë Individual cases ë 11 (48%)
ë Individual cases and transmission chains ë 8 (35%)
ë Genome sequence data ë 4 (17%)
Behavioral outcome‡ 55 (19%)
ë Mobility ë 50 (91%)
ë Survey responses ë 6 (11%)

D.2.2: Time resolution of raw outcome

Daily 269 (94%)
Other (weekly, biweekly, monthly, or not applicable) 16 ( 6%)

D.2.3: Computed outcome‡

None (only raw outcomes used) 150 (53%)
Measure of epidemic trend‡ 34 (12%)
ë Growth rate ë 24 (71%)
ë Doubling time ë 11 (32%)
ë Other ë 1 ( 3%)
Epidemiological parameter‡ 89 (31%)
ë Reproduction number ë 78 (88%)
ë Transmission rate ë 6 ( 7%)
ë Other ë 16 (18%)
Summary statistic 8 ( 3%)
Change points 7 ( 2%)
Other 9 ( 3%)

D.2.4: Method to obtain the computed outcome

None (no computed outcome) 150 (53%)
One or several methods used‡ 135 (47%)
ë Simple computation (e. g. ratio, sum etc.) ë 35 (26%)
ë Exponential growth model ë 11 ( 8%)
ë Compartmental transmission model ë 35 (26%)
ë Statistical estimation of reproduction number ë 43 (32%)
ë Other ë 29 (21%)

D.2.5: Data source‡

Could not be evaluated 10 ( 4%)
Data from (sub)national authorities 141 (49%)
Data from publicly available cross-country selections 77 (27%)
Mobility data from corporate organizations 40 (14%)
Other 54 (19%)

D.2.6: Data availability

Data access via source 173 (61%)
Data made available by the authors 76 (27%)
Data not accessible 36 (13%)

‡ Multiple categories per analysis are possible. Frequencies refer to number of analyses to which category applies,
proportions thus do not sum to 100%.
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Time resolution of raw data155

Almost all raw data were obtained at daily resolution (n=269; 94%). Exceptions were data on156

surrogate diseases or from surveys, where reporting was usually only broken down in weekly, biweekly,157

or monthly intervals (n=16; 6%).158

Computed outcome159

Around half of the analyses involved an intermediate step, in which a latent outcome was computed160

from the raw data before assessing the effects of interventions. We identified four main types of161

computed outcomes:162

1) Measures of epidemic trend (n=34; 12%) were computed to describe the overall trend of the163

epidemic, e. g. through the growth rate or doubling time of confirmed cases or hospitalizations.164

2) Epidemiological parameters (n=89; 31%) were computed to measure specific infection dynamics,165

oftentimes in terms of the reproduction number. A few analyses also used individual-level166

epidemiological data to compute epidemiologically relevant time spans such as the serial interval167

or the time from symptom onset to isolation.168

3) Summary statistics (n=8; 3%) were computed to describe the progression of an epidemic in a169

certain population, e. g. the time until a certain number of documented cumulative cases was170

reached, or the time until the reproduction number first fell below one.171

4) Change points in the outcome (n=7; 2%) were computed with the aim to find time points of172

presumably structural changes in epidemic dynamics and compare them with implementation173

dates of interventions in the subsequent analysis10,22,23. Typically, change points were computed174

for the time series of confirmed cases or mobility.175

Of note, the raw outcome was not always used only for obtaining the computed outcome, e. g.176

changes both in the number of new confirmed cases (raw outcome) and in the reproduction number177

(computed outcome) were sometimes analyzed.178

Method to obtain the computed outcome179

1) Measures of epidemic trend were often obtained through simple computation (e. g. growth rate180

as percentage change in confirmed cases). Other analyses used simple modeling approaches,181
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e. g. fitting an exponential growth model to the time series and extracting the exponential182

growth rate or doubling time from the estimated parameters.183

2) Epidemiological parameters were mostly estimated from confirmed cases or deaths. Some184

approaches fitted a compartmental transmission model to the raw epidemiological outcome.185

For this, the parameter of interest was either allowed to vary over time, or the model was fitted186

independently on different time periods. Other approaches employed a statistical method to187

directly estimate reproduction numbers from the observed outcome. Here, the method by Cori188

et al.24 as implemented in the popular software package “EpiEstim”25 for estimation of the189

instantaneous effective reproduction number was used in a large number of analyses. However,190

we found that statistical methods were not always applied correctly, which could have led to191

bias in the inferred transmission dynamics (see SI Appendix A). Sometimes, authors also used192

methods to estimate reproduction numbers from contact matrices26 (derived from surveys on193

personal contacts) or from transmission chains27,28 (derived from contact tracing data).194

3) Summary statistics were typically obtained through simple computation.195

4) Change points in the outcome were obtained by fitting a compartmental transmission model196

with special parameters representing points in time when the transmission rate changes. Other197

analyses used special change point detection algorithms.198

Data source199

The majority of authors directly accessed surveillance data from national health authorities or other200

governmental bodies (n=141; 49%). In the case of individual-level data, which may be subject201

to privacy regulations, authors were often themselves affiliated to the relevant health authority.202

To obtain population-level data, a considerable share of analyses also used publicly available data203

from cross-country selections (n=77; 27%), e. g. the European Centre for Disease Prevention and204

Control (ECDC)29, the Johns Hopkins University (JHU)30, or Worldometer31, which offer aggregated205

surveillance data internationally from various sources for the pandemic. Mobile phone tracking206

data were usually provided by corporate organizations (n=40; 14%) such as Google32, Apple33, or207

Baidu34. A few analyses were also based on data collected by the authors, e. g. survey data on208

behavioral outcomes, seroprevalence studies, or data collected at a local facility such as a hospital.209
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Data availability210

Data for the raw outcome was usually publicly available, in particular for epidemiological population-211

level outcomes such as cases and deaths because such data could oftentimes be accessed via the212

source that is documented in the manuscript (n=173; 61%). In several cases, the data was made213

publicly available by the study authors (n=76; 27%), e. g. by depositing the analyzed data in a214

public repository. For a small, yet considerable number of analyses, data was not accessible (n=36;215

13%) as the data was neither made publicly available nor the source of the data could be identified.216

Of note, data on epidemiological individual-level data was typically not available due to privacy217

concerns. Furthermore, corporate mobility data was widely available in the past, but access has218

recently been restricted by many providers.219

2.3 Intervention220

The analyses vary in the types of exposures and non-pharmaceutical interventions. A systematic221

classification is shown in Table 3.222

Terminology for non-pharmaceutical interventions223

Varying terminology was used by the literature to refer to non-pharmaceutical interventions. This is224

reflected in our search string, where we used a large set of terms in order to capture a broad range of225

relevant studies. One part of our search string considers the different terminology for interventions226

in general, while the other part considers the terminology for the specific type of non-pharmaceutical227

interventions. In our review, the most frequent terms for interventions were “measures” (n=135;228

54%), followed by “interventions” (n=65; 26%) and “policies” (n=16; 6%). The most frequent229

terms for the specific type of non-pharmaceutical interventions were “non-pharmaceutical” (n=49;230

16%), “control” (n=48; 16%), and “social distancing” (n=45; 15%). While terminology sometimes231

reflected the specific types of non-pharmaceutical interventions that were analyzed, differences in232

terminology may also be the result of different research backgrounds of the study authors.233
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Table 3. Systematic classification and frequency of the interventions (D.3).

D.3.1: Terminology for interventions†‡ Frequency

Not applicable (only specific term for intervention type) 22 ( 9%)
Measures 135 (54%)
Interventions 65 (26%)
Policies 16 ( 6%)
Other 14 ( 6%)

D.3.2: Terminology for the specific type of non-pharmaceutical interventions†‡ Frequency

Not applicable (only general term for interventions) 3 ( 1%)
Non-pharmaceutical 49 (16%)
Control 48 (16%)
Social distancing 45 (15%)
Other 159 (52%)

D.3.3: Exposure types

One single intervention 43 (15%)
Multiple separate interventions 31 (11%)
One combination of interventions 84 (29%)
Multiple combinations of interventions 20 ( 7%)
All interventions together 70 (25%)
Other 37 (13%)

D.3.4: Types of single interventions

Not applicable (no single interventions analyzed) 211 (74%)
One or multiple single interventions analyzed (as defined in D.3.4 of the Documentation manual)‡ 74 (26%)
ë Stay-at-home order ë 44 (59%)
ë Other ë 27 (36%)
ë School closure ë 25 (34%)
ë Workplace closure ë 20 (27%)
ë International travel restrictions ë 17 (23%)
ë Declaration of a state of emergency ë 13 (18%)
ë Bans of large gatherings ë 13 (18%)
ë Venue closure ë 12 (16%)
ë Bans of small gatherings ë 10 (14%)

D.3.5: Coding of interventions
ë D.3.6: Source of intervention data

Not applicable (no specific interventions analyzed) 74 (26%)
Not necessary (no joint analysis of interventions across multiple populations) 137 (48%)
ë Could not be evaluated ë 98 (72%)
ë Government or news websites ë 30 (22%)
ë Other ë 9 ( 7%)
Necessary (joint analysis of interventions across multiple populations) 74 (26%)
ë Could not be evaluated ë 9 (12%)
ë Coding done by authors ë 20 (27%)
ë Use of externally coded data ë 45 (61%)

D.3.7: Availability of data on exposure

Not applicable (no specific interventions analyzed) 73 (26%)
Raw data documented in the manuscript 136 (48%)
Access to externally coded data via source 32 (11%)
Coded data made available by the authors 34 (12%)
Coded data not available 10 ( 4%)

† Results for this subdimension are reported at the study-level, and not the level of analysis (i. e. one study can
contain multiple analyses). If a study uses more than one term predominantly, then both are counted and added to
the total count.
‡ Multiple categories per analysis are possible. Frequencies refer to number of analyses to which category applies,
proportions thus do not sum to 100%. 12/46
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Exposure types and types of single interventions234

A considerable number of analyses examined one single (n=43; 15%)5,35 or multiple interventions235

separately (n=31; 11%)2,7. Among these analyses, the effects of school closures (n=25; 34%)236

and stay-at-home orders (n=44; 59%) were assessed most frequently, which may be due to these237

interventions being particularly controversial in the public discourse36,37. The majority of analyses,238

however, did not analyze the separate effects of multiple interventions but rather analyzed the joint239

effect for a combination of multiple interventions (n=84; 29%)38–40, which is often the case when240

multiple interventions were implemented on the same day and when thus the separate effects could not241

be disentangled. A considerable number of analyses were even less specific by only analyzing whether242

interventions were altogether effective but without attributing effects to specific interventions (n=70;243

25%)41,42. Other ways to assess the effectiveness of interventions were: examining the start time of244

intervention23,43, e. g. to assess the effect of different delays with which governments responded to245

the pandemic43; dividing the public health response into different periods44,45; dividing interventions246

into different categories46,47; or summarizing the stringency of interventions to a numerical index at247

a specific time point48,49.248

Of note, analyses that assessed the effects of a combination of interventions often referred to this249

combination as “lockdown”. In the underlying analysis, such lockdowns typically included multiple250

interventions implemented on the same day39,50. However, the specific interventions included in251

lockdowns varied considerably between populations. We therefore considered “lockdown” as an252

umbrella term for different combinations of interventions rather than as a specific type of intervention.253

Furthermore, some studies did not only assess the effects of non-pharmaceutical interventions on254

mobility, but also the effects of changes in mobility on population-level epidemiological outcomes.255

In these analyses, human mobility was typically defined as a continuous exposure. We extracted256

information on such complementary analyses of mobility as an addendum to the main review (see SI257

Appendix E).258

Coding of interventions259

When multiple populations were jointly analyzed, coding of interventions may have been necessary260

in order to reconcile differences in the definitions of interventions between populations. For instance,261

the term “school closures” could refer to the closure of primary or secondary schools or universities.262
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Differences across populations are thus reconciled during coding by deciding upon the type of263

intervention and providing a common name and definition that is then applied to all populations.264

Such coding of interventions was necessary in around a quarter of analyses (n=74; 26%).265

Source of intervention data266

If coding of interventions was not necessary, authors often obtained intervention data (i. e. the date267

of interventions) from a government or news website (n=30; 22%). Unfortunately however, the data268

source was often not provided by the authors and could thus not be evaluated (n=98; 72%). If269

coding of interventions was necessary, then study authors either coded the data themselves (n=20;270

27,%), i. e. collected the data from government or news websites and systematically categorized271

them, or used externally coded data instead (n=45; 61%). The most popular choices for externally272

coded data were the Oxford Government Response Tracker1 and, for the United States, the New273

York Times51.274

Availability of data on exposure275

Authors using exposure data (type of exposure, interventions, and implementation dates) where276

coding of interventions was not necessary usually documented the data in the manuscript. Some277

authors using externally coded data chose to make the data available themselves (n=34; 12%), e. g.278

by depositing it in a public repository, although many only referenced external data (n=32; 11%).279

2.4 Methodological approach280

A variety of methodological approaches were used to assess the effects of interventions. The281

methodological approaches extracted here describe the actual stage of estimating the intervention282

effect. A systematic classification of the methodological approaches is shown in Table 4.283

Empirical approach284

We distinguished three general empirical approaches for assessing the effects of interventions, namely285

(D) descriptive, (P) parametric, and (C) counterfactual approaches.286

• (D) Descriptive approaches (n=151; 53%): These approaches provided descriptive summaries287

of the outcome over time or between populations, and related variation in these summaries to288

the presence or absence of different interventions. For example, some analyses compared changes289

in the growth rate of observed cases before and after interventions were implemented52,53. Of290
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Table 4. Systematic classification and frequency of the methodological approach (D.4).

D.4.1: Empirical approach Total freq.

D: Descriptive 151 (53%)
P: Parametric 94 (33%)
C: Counterfactual 40 (14%)

D.4.2: Use of exposure variation (D) (P) (C)

Only variation over time for a single population 78 23 24 125 (44%)
Only variation over time for multiple populations 63 22 10 95 (33%)
Only variation between populations 4 14 0 18 ( 6%)
Both variation over time and between populations 6 35 6 47 (16%)

D.4.3: Method

Description of change over time 136 — — 136 (48%)
ë Description of time course ë 49 (36%)
ë Comparison of time periods ë 87 (64%)
Comparison of populations 8 — — 8 ( 3%)
Comparison of change points with intervention dates 7 — — 7 ( 2%)
Non-mechanistic model — 61 17 78 (27%)
ë Generalized linear model ë 51 (65%)
ë Exponential growth model ë 11 (14%)
ë Other ë 16 (21%)
Mechanistic model — 30 13 43 (15%)
ë Compartmental single-population transmission model ë 29 (67%)
ë Compartmental meta-population transmission model ë 4 ( 9%)
ë Semi-mechanistic Bayesian transmission model ë 5 (12%)
ë Other ë 5 (12%)
Synthetic controls — — 6 6 ( 2%)
Other 0 3 4 7 ( 2%)

D.4.4: Code availability

None (not available) 121 66 33 220 (77%)
Publicly available 30 28 7 65 (23%)

Empirical approach: (D) descriptive, (P) parametric, and (C) counterfactual
‡ Multiple categories per analysis are possible. Frequencies refer to number of analyses to which category applies,
proportions thus do not sum to 100%.

note, descriptive approaches could involve modeling as part of an intermediate step, where a291

latent outcome was computed from the raw outcome (see Computed outcome), while, afterward,292

a descriptive approach was used to assess the effect of interventions on the latent outcome.293

For example, some analyses used a single-population compartmental transmission model to294

estimate the time-varying reproduction number and then compared the reproduction number295

before and after interventions were implemented54–56.296

• (P) Parametric approaches (n=94; 33%): These approaches formulated an explicit link297

between the intervention and the outcome, where the effects of interventions were quantified298

via a parameter in a model. Most frequently these were regression-like links to estimate the299
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effects of interventions on the reproduction number2,8.300

• (C) Counterfactual approaches (n=40; 14%): These approaches assessed the effect of inter-301

ventions by comparing the observed outcome with a counterfactual outcome based on an302

explicit scenario in which the interventions were not implemented. For example, the observed303

number of cases was compared with the number of cases that would have been observed if the304

exponential growth in cases had continued as before the implementation of interventions57,58.305

Use of exposure variation306

Effects of interventions were assessed by exploiting variation in the exposure to the intervention307

over time, between populations, or both. Assessments exploiting exposure variation over time308

contrasted the outcome in time periods when specific measures were in place with the outcome in309

time periods when they were not in place. In contrast, assessments exploiting exposure variation310

between populations were based on a comparison of the outcome between populations that were311

subject to specific measures with populations that were not. In the majority of analyses, a single312

population was studied and thus only variation over time could be exploited in order to assess the313

effects of interventions (n=125; 44%). In around one third of analyses, multiple populations were314

studied but only variation over time was exploited (n=95; 33%), i. e. the effects of interventions315

were assessed within each population separately. A small number of analyses exploited only variation316

between populations (n=18; 6%). Less than one in five analyses exploited both variation over time317

and between populations (n=47; 16%).318

Method319

We grouped the different methods used into (i) description of change over time, (ii) comparison of320

populations, (iii) comparison of change points with intervention dates, (iv) non-mechanistic model,321

(v) mechanistic model, and (vi) synthetic controls. We review these in the following.322

(i) Description of change over time323

The large majority of analyses following a descriptive approach examined the change of the outcome324

over time to assess the intervention effect (n=136; 48%). In some of these analyses, the focus was on325

the course of the outcome over time, typically by attributing the observed change (e. g. a reduction326

in new cases over time) to the analyzed interventions (n=49; 36%). For example, the outcome was327

16/46

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 18, 2022. ; https://doi.org/10.1101/2022.04.14.22273858doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.14.22273858
http://creativecommons.org/licenses/by-nc-nd/4.0/


assessed at regular or irregular intervals, which were not necessarily aligned with the implementation328

dates of interventions41,42,59. The majority of analyses, however, followed the logic of an interrupted329

time series analysis, i. e. the outcome was explicitly compared between time periods before and after330

interventions (n=87; 64%)60–63.331

(ii) Comparison of populations332

A few descriptive analyses compared outcomes via summary statistics only between populations333

(i. e. without considering variation over time) to assess intervention effects (n=8; 3%). In such334

analyses, the outcomes were compared between populations that were stratified by different exposure335

to interventions (e. g. populations that implemented a certain intervention and populations that did336

not)64–66.337

(iii) Comparison of change points with intervention dates338

Some descriptive analyses checked whether the dates of estimated change points in outcomes and339

the implementation dates of interventions coincide (n=7; 2%)10,22,67. If both dates were more340

or less in agreement, this was taken as evidence confirming the effectiveness of the intervention.341

However, change point detection methods could also yield change points prior to the implementation342

of interventions, which was sometimes interpreted as a sign of additional factors influencing the343

outcome (e. g. proactive social distancing)22.344

(iv) Non-mechanistic model345

Non-mechanistic models are statistical models that typically make no explicit assumptions about346

the mechanisms that drive infection dynamics. Such models were used in both parametric and347

counterfactual approaches (n=78; 27%).348

In parametric approaches, non-mechanistic models – almost always (generalized) linear regression349

models – were used to model a direct link between interventions and outcome. Typically, dummy350

variables were used to indicate when (variation over time)9,68,69 or where (variation between351

populations)70–72 interventions were implemented. Analyses exploiting both variation over time and352

between populations typically used panel regression methods5,73,74.353

In counterfactual approaches, the non-mechanistic models used were mostly exponential growth354

models, and sometimes time series models (e. g. AR(I)MA or exponential smoothing)38,44,58. These355
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models were fitted using data prior to when an intervention was implemented and then extrapolated356

the outcome afterwards.357

(v) Mechanistic model358

Mechanistic models have a structure that makes, to some extent, explicit assumptions about the359

mechanisms that drive infection dynamics. They were used in both parametric and counterfactual360

approaches (n=43; 15%).361

In parametric approaches, the effect of an intervention was represented via a parameter that362

was functionally linked to the disease dynamics (i. e. via a latent variable) of the model. This was363

typically achieved by parameterizing the transmission rate or reproduction number as a function of364

binary variables, indicating whether interventions were implemented or not2,75–77. Others linked the365

effects of interventions to the contact rate, the transmission probability upon contact, or to entries366

in the contact matrix78–80. A few modeling approaches also represented the intervention via an367

explicit structure or dynamic in the model, e. g. a compartment for quarantined individuals with a368

quarantine rate47,81 or an exponential decay of the susceptible population46,47,82.369

The most popular mechanistic models used in parametric approaches were compartmental trans-370

mission models. These models were fitted to the time series of cases, hospitalizations, recovered371

cases, deaths, or several simultaneously. With the exception of one meta-population model83, all372

compartmental models used in analyses following a parametric approach were single-population373

models. If multiple populations were analyzed, each population was modeled separately. A few374

parametric analyses also used a semi-mechanistic Bayesian transmission model with a time-discrete375

renewal process, similar to the one in an early influential paper by Flaxman et al.8. These analyses376

fitted a Bayesian hierarchical model with stochastic elements for disease transmission and ascertain-377

ment on observed time series for cases, deaths, or both2,8, 84. The model was usually fitted to data378

from several populations, modeling separately the time course in each population but estimating379

the parameters for the intervention effects jointly across populations. Rarely, analyses used highly380

complex models such as individual-based transmission models simulating the behavior of individual381

agents, or phylodynamic models inferring both virus phylogenies and transmission dynamics from382

genome sequence data.383

In counterfactual approaches, mechanistic models were, similar to non-mechanistic models,384
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calibrated to data before the implementation of an intervention and then projected the outcome for385

the time after the intervention, while keeping the model parameters fixed85–87. Thus, no relationship386

between intervention and outcome is explicitly modeled. Regularly, these analyses used meta-387

population or individual-based models that incorporated migration dynamics through mobility data388

and a network between individuals or populations87–89.389

(vi) Synthetic controls390

Some counterfactual approaches used synthetic control methods (n=6; 2%). Here, a counterfactual391

scenario was constructed by computing the counterfactual outcome as a weighted combination of ob-392

servations from a pool of “control” populations in which the intervention was not implemented43,90,91.393

Weights were fitted so as to give more importance to control populations similar to the intervention394

population. In these analyses, the course of the outcome before intervention was often used as the395

primary measure of similarity6,90,91. Sometimes, further factors such as geographic proximity or396

population characteristics were also considered90,92.397

Code availability398

For around one in four analyses, a link to a publicly accessible repository containing the computer399

code implemented for a specific analysis was provided (n=65; 23%). Overall, the code availability400

was comparably higher for parametric approaches, where one in three analyses provided a link.401

2.5 Effect assessment402

The analyses in our review sample varied in their form of effect assessment, i. e. how the effect403

was quantified, whether uncertainty was reported, and whether sensitivity analyses or subgroup404

assessments were conducted. A systematic classification of the effect assessment is shown in Table 5.405

Reporting of intervention effect, measure of effect, and reporting of uncertainty406

The are difference in how effects of interventions were reported. Around one in five analyses made407

a qualitative assessment of the intervention effect (n=53; 19%), e. g. by qualitatively describing408

the change in the outcome over time following the implementation of interventions. More frequent409

was the reporting of comparisons of outcome values to assess the intervention effect (n=73; 26%),410

i. e. by comparing the outcome values before an intervention with the outcome values after an411

intervention. Around half of the analyses reported a quantitative change in outcome values (n=159;412

19/46

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 18, 2022. ; https://doi.org/10.1101/2022.04.14.22273858doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.14.22273858
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 5. Systematic classification and frequency of different effect assessments (D.5).

D.5.1: Reporting of intervention effect Total freq.

QS: Qualitative statement 53 (19%)
CO: Comparison of outcome values 73 (26%)
QC: Quantification of change in outcome values 159 (56%)

D.5.2: Measure of effect‡ (QS) (CO) (QC)

Change in reproduction number 22 44 29 95 (33%)
Change in confirmed cases 16 15 38 69 (24%)
Change in mobility 9 6 28 43 (15%)
Other 18 29 100 147 (52%)

D.5.3: Reporting of uncertainty

Not applicable 52 (18%)
Yes 154 (54%)
No 79 (28%)

D.5.4: Sensitivity analysis (including computed outcomes)

None (no sensitivity analyses w.r.t effect) 217 (76%)
One ore more sensitivity analyses one or more sensitivity analyses‡ 68 (24%)
ë Model specification varied ë 36 (53%)
ë Epidemiological parameters varied ë 29 (43%)
ë Different or modified outcome used ë 17 (25%)
ë Same analysis with (sub)population excluded ë 16 (24%)
ë Different coding of interventions used ë 10 (15%)
ë Start or end date of study period varied ë 4 ( 6%)

D.5.5: Subgroup assessment

None (no subgroups) 250 (88%)
One or more subgroups‡ 35 (12%)
ë Based on socioeconomic indicators ë 23 (66%)
ë Based on epidemiological indicators ë 16 (46%)
ë Based on public health response ë 9 (26%)
ë Based on geographic areas ë 6 (17%)

Reporting of intervention effect: (QS) qualitative statement, (CO) comparison of outcome values, and (QC)
quantification of change in outcome values
‡ Multiple categories per analysis are possible. Frequencies refer to number of analyses to which category applies,
proportions thus do not sum to 100%.

56%), e. g. by computing the difference in the outcome values before and after an intervention,413

or estimating the difference via a parameter in a statistical model. The intervention effect was414

oftentimes measured in terms of a change in the reproduction number (n=95; 33%), in confirmed415

cases (n=69; 24%), or in mobility (n=43; 15%), but many other measures of effect were also common.416

Notably, a relevant number of analyses in our review sample focused its methodology on estimating417

the reproduction number as the computed outcome and then conducted only a qualitative assessment418

of the intervention effects afterwards. Uncertainty was reported in around one half of the analyses419

(n=154; 54%), e. g. via standard error, confidence intervals, and credible intervals.420
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Sensitivity analyses421

We checked all works for sensitivity analyses that were specifically conducted to examine the422

robustness of the reported intervention effects. Many studies conducted sensitivity analyses only423

related to the predicted outcome or model fit, but not to the intervention effect. Overall, the vast424

majority of analyses did not conduct sensitivity analyses with regard to the intervention effect425

(n=217; 76%).426

Of those that did, sensitivity analyses focused on model extensions or adjustments in which the427

model specification was varied (n=36; 53%), e. g. by changing the structure of a transmission model428

or by adjusting the estimated effects of interventions for additional variables in a regression model.429

Others analyzed sensitivity with respect to variations in epidemiological parameters (n=29; 43%),430

e. g. by assuming a different basic reproduction number, generation or serial interval, infectious431

period, or reporting delay distribution. Only few analyses tested sensitivity with regard to data: i. e.432

using different or modified outcomes69,93 (n=17; 25%); using a different coding of interventions3,7433

(n=10; 15%); or repeating the same analysis but excluding (sub)populations2 (n=16; 24%). Of the434

different methodological approaches, analyses with semi-mechanistic Bayesian transmission models435

generally conducted more comprehensive sensitivity analyses. For example, one work2 performed436

checks regarding data, model, and epidemiological parameters and presented the results prominently437

in the main manuscript.438

Subgroup assessment439

The effects of interventions were rarely assessed within subgroups of the population (n=35; 12%).440

Two thirds of such assessments were within subgroups created based on socioeconomic indicators441

(n=23; 66%), e. g. assessing intervention effects within groups of individuals of different age and442

gender41 or assessing the effect of lockdown within low- and high-income income regions6. Less443

frequent were subgroups based on epidemiological indicators5, the public health response94, or444

geographic areas95.445

3 Discussion446

Our systematic review covers over 240 studies published between January 2020 and January 2021.447

Insights from this review can inform different types of future studies: (i) studies using data from448
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the same period that extend our knowledge on aspects that have so far been rarely investigated;449

(ii) studies using data from subsequent periods that generate new insights or corroborate existing450

ones; and (iii) studies using data from a future pandemic caused by another virus. Although the451

preconditions to conduct these studies differ, they share the goals and challenges of the studies in452

our review sample. Accordingly, the results from our systematic review allow us to make seven453

recommendations for the design of future studies, which are discussed in the following.454

Recommendation 1: Exploring the value of rarely analyzed outcomes455

During the COVID-19 pandemic, both surveillance data on confirmed cases, hospitalizations, or456

deaths29,30, and mobility data from mobile phones32,33 have become publicly available at scale. This457

has enabled a large number of studies assessing the effect of non-pharmaceutical interventions on458

population-level epidemiological outcomes and on human mobility (Table 2, D.2.1). However, there459

remains considerable potential to explore the value of other outcomes and data sources that have so460

far been rarely analyzed.461

First, more detailed insights into the effects of non-pharmaceutical interventions could be gained462

from using individual-level data. This has been demonstrated by studies in our review sample, e. g.463

by relating the effects of non-pharmaceutical interventions to the serial interval using symptom onset464

data41, to transmission chains using contact tracing data87, or to virus migration rates using genome465

sequence data20. We hope to see more such analyses as more individual-level data becomes available.466

Second, there can be great merit in analyses advancing our understanding of the mechanisms by467

which non-pharmaceutical interventions work. Our review sample contained many analyses assessing468

the effects of interventions on human behavior, or of human behavior on epidemiological outcomes.469

The majority of these analyses used mobility data from mobile phones (Table 2, D.2.1); however, more470

effort is needed to obtain a complete picture of how population behavior mediates the effects of non-471

pharmaceutical interventions. For example, interventions may influence behaviour and transmission472

through further factors not captured by previous studies, and, moreover, the relationship between473

mobility and disease transmission may change over time96,97. Additional insights can be gained from474

analyses using behavioral data from other sources, e. g. surveys evaluating compliance with mask475

mandates62 or the number of daily contacts98. Moreover, we see value in analyzing interventions,476

behavior and epidemiological outcomes jointly, i. e. in the form of a mediation analysis99,100, allowing477
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to differentiate the direct and indirect effect of non-pharmaceutical interventions.478

Recommendation 2: Exploiting variation in the exposure to interventions between populations479

Variation in the exposure to interventions (i. e. when, where and which interventions were imple-480

mented) is required in order to empirically assess their effects. Variation over time was the most481

common choice in our review sample (Table 4, D.4.2). Here, the effects were previously assessed482

within populations based on differences in outcomes before and after non-pharmaceutical interven-483

tions were implemented. However, such changes may falsely be attributed to non-pharmaceutical484

interventions if they are subject to confounding by concurring time trends. We thus recommend to485

also exploit exposure variation between populations, i. e. with respect to the timing and the types of486

single interventions that were implemented. This was done by only one in five analyses in our review487

sample (Table 4, D.4.2), although the types and timing of interventions varied considerably between488

the populations. This leaves a valuable source of variation largely untapped.489

Recommendation 3: Dissecting the effects of single interventions490

Evidenced-based decision making requires empirical estimates for the effects of single non-491

pharmaceutical interventions (e. g. school closures or stay-at-home orders). However, the majority of492

analyses assessed the effects of population-specific combinations of interventions such as lockdowns493

(Table 3, D.3.3). The underlying analyses typically studied only a single population (or multiple494

populations separately) where multiple interventions were implemented on the same day, and, as a495

result, the separate effects of interventions cannot be disentangled. For future work, we recommend496

more effort to conduct analyses across multiple populations, so that the separate effects of single497

interventions can be dissected.498

Recommendation 4: Careful coding of interventions499

Systematic coding of intervention data is necessary to compare the effects of non-pharmaceutical500

interventions across multiple populations (Tabble 3, D.3.5). However, the process of such systematic501

coding involves subjective decisions regarding if and when non-pharmaceutical interventions have502

been implemented2. These decisions are sometimes unavoidable, and they are also inherent to the503

development of public databases101. As a result, different coding of interventions could impact504

the results, and, therefore, coding decisions should be made transparent and documented carefully.505

In addition, we recommend to examine empirically the impact when using a different coding of506
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interventions, e. g. by comparing the results across different input data.507

Recommendation 5: Promoting comparability across different analyses508

During a pandemic, public health policy has a strong focus on the number of confirmed cases, hospi-509

talizations, and deaths, making them obvious outcomes to evaluate the effectiveness of interventions.510

However, non-pharmaceutical interventions act only indirectly or with a certain delay on these511

observable outcomes. Typically, non-pharmaceutical interventions should influence the behaviour512

of the population, which should reduce transmission (e. g. by limiting the contact rate), which in513

turn should affect the number of new infections and, subsequently, observed outcomes like confirmed514

cases, hospitalizations, or deaths. The question of how to assess intervention effects along this path515

has been answered differently by the studies in our review sample. We identified four main types of516

analyses; see (1)–(4) in Box 1. In the following, we discuss the different types with regard to their517

ability of enabling a comparison of results between studies.518
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Box 1. Different types of analyses to assess the effects of non-pharmaceutical interventions.

(1) Observed outcome directly linked
to interventions
A raw, observed outcome is analyzed directly
by evaluating differences (i) over time with
an interrupted time-series analysis comparing
the outcome before vs. after an intervention,
(ii) between populations with a cross-sectional
analysis comparing populations exposed vs.
not exposed to an intervention, or (iii) both
over time and between populations with a
panel data analysis. Mechanistic modeling is
typically not involved in this type of analysis,
with one exception, namely counterfactual
approaches using a transmission model to
project the observed outcome after interven-
tion.
(2) Computed, unobserved outcome
linked to interventions
In contrast to type (1), the intervention ef-
fect is measured in terms of an unobserved
outcome. This is computed from the raw out-
come and then analyzed in a similar manner
as in (1). Mechanistic modeling can be in-
volved in computing the unobserved outcome,
for example by using a model to estimate
the reproduction number or transmission rate
from the number of new cases.

(3) Observed outcome linked to inter-
ventions via unobserved outcome in
mechanistic model
Observed outcomes are used to fit a mechanis-
tic model (e. g. compartmental transmission
model) that includes a latent variable rep-
resenting an unobserved outcome (e. g. the
reproduction number), which in turn is pa-
rameterized as a function of interventions. For
instance, a regression-like link is used within
the mechanistic model to estimate the effect
of interventions on the transmission rate as a
latent variable.
(4) Change points in outcome related
to exposure
Change points are estimated in the time series
of an observed or unobserved outcome. The
estimated change points are then related to
the implementation dates of interventions. If
the estimated change points agree well with
the actual implementation dates of interven-
tions, this is interpreted as evidence for the
effectiveness of interventions.

519
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Analyses of type (1), where the observed outcome is directly linked to interventions, can avoid520

mechanistic modeling by directly analyzing an observed outcome such as cases or deaths. Here, a521

central challenge is to take into account the uncertain delay between the implementation of non-522

pharmaceutical interventions and their effects on the observable outcome. The fact that infections523

and subsequent outcomes such as confirmed cases follow exponential dynamics during an epidemic524

wave makes it difficult to compare intervention effects measured by observable outcomes across525

different epidemic phases. In contrast to that, analyses following type (2) or (3) employ mechanistic526

modeling, allowing to assess the effects of interventions on latent, unobservable outcomes such as527

the transmission rate or the reproduction number. Since these latent outcomes can be inferred from528

different observed outcomes like cases or deaths, it becomes possible to compare analyses that use529

different raw data. The difference between type (2) and (3) is that for (2) the estimation of the latent530

outcome is separated from the effect assessment. Such separation reduces model complexity, however,531

often at the expense of incomplete uncertainty assessments. The reason is that most analyses based532

on type (2) only incorporated uncertainty involved in modeling the effect of interventions on the533

latent outcome, thus leaving out uncertainty involved in the computation of the latent outcome.534

This also means that differences in uncertainty assessments must be carefully taken into account535

when synthesizing results from multiple studies.536

Finally, analyses following type (4), where change points in the outcome are related to the537

exposure, take a very different approach that shares few assumptions with the other approaches. A538

comparison of change points can verify the presence of an effect, yet without quantifying its size. As539

a result, such findings are best complemented with an analysis of type (1), (2), or (3).540

Recommendation 6: Understanding variation in effectiveness across subgroups541

The effects of non-pharmaceutical interventions may vary between and within populations. However,542

only one in ten analyses in our review sample examined variation across subgroups or populations543

(Table 4, D.4.2). Estimating and explaining such variation could help understand the conditions544

under which interventions are more or less effective for a specific subgroup, potentially allowing545

policy makers to tailor interventions to a specific subgroup or setting. Our review points out546

two approaches that can contribute towards a better understanding of the varying effectiveness547

of non-pharmaceutical interventions: (i) comparing the effects of interventions between subgroups548
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of the same population (e. g. between the young and elderly population); and (ii) comparing the549

effects of interventions between different populations and relating differences to population-specific550

characteristics (e. g. population density).551

Recommendation 7: Assessing sensitivity within and between studies552

While variation in methodologies can complicate the comparability among studies, it may help to553

identify the influence of certain methodological choices on the results. Here, the public availability of554

data for outcomes and interventions holds potential for sensitivity analyses within studies as well as555

comparisons between studies. Specifically, the same analysis could be repeated with different sets of556

publicly available data as part of the same study. This way, sensitivity of the findings with respect to557

the choice of outcome and intervention data could be assessed within studies, reducing the risk of bias558

from specific outcome data (e. g. incomplete case ascertainment due to limited testing capacity etc.)559

or the specific coding of interventions. For example, the number of new cases, deaths, or both could560

be used as the raw outcome in mechanistic models with a comparable latent outcome2. However,561

other aspects, in particular the specific setting and methodologies used, are presumably more difficult562

to vary as part of a sensitivity analysis, and may therefore need to be compared between different563

studies. Important for such comparisons is giving access to the preprocessed data, yet most study564

authors accessed these data directly from national authorities or external data providers without565

making the preprocessed data additionally available (Table 2, D.2.5-D.2.6 and Table 3, D.3.6-D.3.7).566

To promote reproducibility, study authors should always make the preprocessed data available for567

two reasons. First, future access to the data via the original source may be restricted (this has568

already been observed for corporate mobility data). Second, originally analyzed and recently accessed569

data may be different as publicly available epidemiological data and coded intervention data can be570

subject to updates, revisions, and corrections. In addition, publication of computed code is crucial571

to support comparisons of methodological approaches, specific modeling choices, and input data.572

4 Conclusions573

Our review of more than 240 studies on the effects of non-pharmaceutical interventions revealed574

substantial variation in methodologies. Until specific best practices emerge, further heterogeneity in575

studies is inevitable and can also be beneficial, e. g. for assessing robustness of the results with respect576
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to method and input data. Nevertheless, some standardization is required in order to synthesize577

evidence on the effects of non-pharmaceutical interventions from multiple studies. So far, a lack of578

common standards and substantial variation in the methodologies used have created a challenge579

for meta-analyses to summarize and compare the reported effects from existing studies11–15. Here,580

our methodology review can serve as a basis for subsequent meta-analyses to factor in the variety581

of existing methodologies when pooling and comparing the large number of effects that have been582

reported for non-pharmaceutical interventions on health-related outcomes. More importantly though,583

our review promotes common standards and reduces barriers to comparability across studies by584

making recommendations for the design of future studies.585

A general limitation of the studies included in our review is that it is difficult to estimate causal586

effects based on population-level observational data and to rule out unobserved confounding. This587

is also highlighted by the persistent debate on the role of voluntary behavioral change in curbing588

transmission102–105. Evidence from observational studies on the effects of non-pharmaceutical589

interventions should thus be evaluated in conjunction with evidence from other fields. For example,590

evidence on the infectiousness of school children and parental strategies to fill the care gap can591

produce independent predictions about the effects of school closures. Similarly, laboratory evidence592

regarding the effectiveness of masks together with evidence on compliance with masks can produce593

independent predictions of the effectiveness of mask mandates.594

During the COVID-19 pandemic, a tremendous amount of publicly available epidemiological595

data has been generated. The ease of access to this data allowed many researchers to contribute596

work, using a variety of methodologies to assess the effects of non-pharmaceutical interventions597

on health-related outcomes. With researchers from diverse fields contributing, there is a unique598

opportunity to benefit from the various inputs in developing a methodological foundation for timely599

and robust assessments during future pandemics. This will however require a thorough examination600

of the present methodologies in order to share lessons learnt and develop best practices. Our601

systematic review can be viewed as a first such attempt.602
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5 Materials and methods603

We tailored our review to the challenge of mapping a potentially diverse set methodologies from604

a large number of studies. To ensure rigour and consistency, we preregistered the procedures for605

all stages of the review process, following common guidelines for systematic literature reviews17.606

Certain guidelines were not applicable to a methodology review as ours. In particular, our eligibility607

criteria and risk of bias assessment reflect the objective of this review, which was not to evaluate the608

effects of non-pharmaceutical interventions, but to map the variation in methodologies used. The609

preregistered methodology was documented in a review protocol at PROSPERO19.610

We report our review according to the PRISMA 2020 statement18. A completed PRISMA 2020611

checklist is provided in SI Appendix G. We conceptualized the review by drawing on experience from612

our own primary research in the field4,97. The search strategy was developed jointly and executed by613

an experienced information consultant. Then, two authors (NB and AL) performed study selection,614

data extraction, and synthesis, while having regular meetings with the complete author team.615

5.1 Eligibility criteria for studies616

In the following, we describe our eligibility criteria, which informed our search strategy and were617

systematically applied during study selection. Importantly, if a study contained multiple analyses of618

which only some fulfilled our eligibility criteria, we included the study but extracted only the eligible619

analyses. This may sometimes not correspond to the main analysis of a paper or may include more620

than one analysis per study.621

Study design622

In this review, we considered observational studies assessing the effects of non-pharmaceutical623

interventions on outcomes related to the COVID-19 disease. We focused on retrospective analyses624

that used real-world observational data to assess the effects of non-pharmaceutical interventions.625

Specifically, we excluded modeling studies that predominantly worked with synthetic data or626

projected future transmission dynamics based on hypothetical scenarios without assessing the effects627

of interventions empirically.628
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Population629

We considered studies assessing the effects of non-pharmaceutical interventions on the population in630

one or several geographic regions. Our review was not limited to a specific geographic region, i. e.631

all national and subnational regions worldwide were considered. We furthermore included studies632

analyzing specific subpopulations in a certain region (e. g. certain age groups). We also considered633

analyses using individual-level data, as long as the intervention effect was assessed on a population634

level.635

Outcome636

The main outcomes considered were health-related outcomes at population level that are associated637

with COVID-19 (e. g. confirmed cases, hospitalizations, and deaths), and epidemiological outcomes638

characterizing infection dynamics such as reproduction numbers or transmission rates. We also639

considered similar outcomes associated with other infectious diseases (e. g. influenza), if used as640

a surrogate for COVID-19. Moreover, behavioral outcomes potentially mediating the effect of641

non-pharmaceutical interventions were included (e. g. human mobility). In contrast, we excluded642

analyses assessing the effects of non-pharmaceutical interventions solely on other outcomes not643

directly related to infectious diseases (e. g. psychological well-being or economic activities).644

Intervention645

As non-pharmaceutical interventions, we considered the implementation of health policy measures in646

the context of the COVID-19 pandemic. Specifically, we included any intervention related to social647

distancing (e. g. school closures, venue closures, workplace closures), containment (e. g. contact648

tracing, quarantining), population flow (e. g. border closures), or personal protection (e. g. facial649

mask mandates). Analyses were considered regardless of whether they assessed the effect of a650

single intervention, the effects of multiple interventions separately, or the effect of a combination651

of interventions. For simplicity, we refer to these as non-pharmaceutical interventions throughout652

the review, while recognizing that also other terms have been used in the literature. Importantly,653

we accounted for various alternative terms in our literature search (see Search strategy below). We654

excluded interventions not directly related to disease control (e. g. economic measures like social655

benefits).656
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5.2 Search strategy657

Our search strategy was informed by our personal experience with studies in the field from our own658

primary research on the impact of non-pharmaceutical interventions. The search was supported by659

an experienced information consultant.660

We searched for peer-reviewed original research articles in English language that were accepted,661

published, or in press between January 1, 2020 and January 12, 2021. In our review protocol,662

we specified that we would also include preprints in our search. However, due to their enormous663

volume, we eventually decided not to consider gray literature or preprints in our review. Our results664

therefore only cover methodologies used by articles peer-reviewed at the time of search, among665

which we already found considerable variation. To account for potentially new methodologies in666

articles published after the time of search, we also considered further recent studies on the effects667

of non-pharmaceutical interventions in our discussion and put them into the context of our review668

findings.669

We searched the databases Embase, PubMed, Scopus, and Web of Science. These databases670

include, among others, MEDLINE, Biological Abstracts, CAB Abstracts, and Global Health. We671

composed our search query of four components to be contained in the publication title or abstract:672

(1) a synonym for “non-pharmaceutical intervention”, (2) a synonym for “estimation” or “assessment”,673

(3) a synonym for “effect”, and (4) a synonym for “COVID-19”. Starting from a precompiled list674

of 18 references based on our primary research on the effects of non-pharmaceutical interventions,675

we created and repeatedly extended a collection of synonyms for each of the above components,676

thereby achieving a broad search while keeping the number of selected studies manageable. The677

strings for our search queries are provided in SI Appendix B. Importantly, we decided not to include678

search terms for single interventions such as face masks or travel restrictions, as this would have679

resulted in an unmanageable number of studies that were not concerned with the population-level680

impact of the non-pharmaceutical intervention. Nevertheless, our search query found studies on681

single interventions through other terms describing non-pharmaceutical interventions.682
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5.3 Data collection and analysis683

Study selection684

As a first step, we screened the titles of the studies retrieved from the database search for keywords685

clearly suggesting that the study would not meet our predefined eligibility criteria (e. g. “mental686

health” or “air quality”). The compiled set of keywords (see SI Appendix B) was used to automatically687

identify cases for exclusion via the publication title. For all remaining studies, two authors (AL and688

NB) checked the eligibility criteria and individually decided on inclusion or exclusion. Each of the689

two authors checked the eligibility for one half of the studies via the following process: First, studies690

were checked by title and, if in doubt, by abstract. Then, if still in doubt, studies were checked by691

full text and discussed by both authors. Any disagreements were resolved with involvement of a692

third author (WV). Generally, we followed an inclusive approach by keeping all studies that could693

not be excluded with high confidence. At each stage, all decisions were recorded in a spreadsheet.694

Data extraction695

We extracted data from all included studies in a spreadsheet. Our extraction strategy reflected the696

exploratory nature of our analysis and thus allowed for new data items to be added throughout697

the process. Therefore, we maintained a detailed manual with all data items and the potential698

values for each item (see SI Appendix D). Before extraction, a preliminary version of the data699

extraction form was created based on reporting items from checklists for observational studies700

(STROBE106, RECORD107), a template for public health policy interventions (TIDieR-PHP108),701

and our personal experience with studies in the field from our own primary research on the impact702

of non-pharmaceutical interventions. Aside from bibliographic information, the data to be extracted703

consisted of information on the study setting, outcome, intervention, methodological approach, and704

effect assessment.705

The extraction process was structured in four rounds. During the first round, two authors (AL706

and NB) extracted data from an initial set of 20 publications, blinded to each other’s coding. The707

coding was then compared, and any differences were discussed to resolve ambiguities. Corresponding708

changes were recorded by updating the extraction form and manual, and applied subsequently. In709

the second round, the two reviewers each extracted data from one half of the remaining publications710

and checked the other half coded by their colleague. Color-coding was used to highlight uncertain711
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or ambiguous entries for the other reviewer or to mark such entries for further discussion. Regular712

meetings were held between the two authors (AL and NB) to discuss these uncertainties and713

ambiguities. All disagreements were resolved through discussion, if needed by involving a third714

author (WV). Thereby, the data extraction manual and form were continuously refined and kept715

up-to-date. In particular, the list of values that could be potentially assigned to each data item was716

continuously extended and harmonized as new studies were extracted. In the third round, the data717

extraction form and manual were simplified by merging data items or categories that, retrospectively,718

were found redundant, or by relabeling items and categories to define them more precisely. This719

was done with particular attention to enable comparability among the extracted analyses as well as720

readability of the results. In the fourth round, the final scheme was applied to all studies.721

Quality assessment722

The goal of this systematic review was not to perform a meta-analysis or narrative synthesis of the723

effects of non-pharmaceutical interventions, but to compare the included studies along methodological724

dimensions and to analyze the variation in study setting, outcome, intervention, methodological725

approach, and effect assessment. Therefore, no risk of bias assessment with regard to the study726

results was conducted. Our minimum requirement for quality was that most information on the727

aforementioned dimensions could be extracted from the manuscript and/or supplementary material.728

This minimum requirement was not met by four studies, which were thus excluded. For other studies729

where only some methodological information was missing, we noted in the data extraction sheet730

that this information “could not be evaluated”.731

Data synthesis732

The results of the data extraction were synthesized in tabular form by recording the frequency of733

categories per item. We reported the frequency for each item of the main dimensions (study setting,734

outcome, intervention, methodological approach, and effect assessment) individually. For some items,735

we conducted further specialized analyses, for example by computing the frequencies of categories736

for different methodologies separately, or by qualitatively evaluating the supplementary information737

added to certain entries during extraction. Insights from these additional analyses were reported738

textually. Furthermore, we synthesized common analysis types based on patterns identified in the739

methodological approaches. Lastly, based on our findings, we derived specific recommendations for740
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future studies with regard to scope, robustness, and comparability, and put them into the context of741

more recent studies that were not part of our review sample.742
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